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1 Introduction

Transmission lines play the role of interconnections in electrical circuits. Discrete transmission line
models (see an example in Figure 5) are often used in circuit theory, see, e. g., [6, 7, 11, 22, 25].
Discrete modelling of a transmission line may be more convenient than a more accurate partial
differential equation description because, together with equations of other circuit elements, we obtain
a system of ordinary differential (and possibly algebraic) equations only. Furthermore, approximate
solving of partial differential equations usually also involves passing to a discrete model, which leads
to a similar loss of accuracy.

A linear discrete stationary circuit is described (after eliminating algebraic equations) by an
ordinary differential equation of the form x′(t) = Ax(t)+f(t) with a matrix coefficient A. Its solving
is reduced to finding the matrix exponential eAt, see Section 2. In turn, approximate calculation of
eAt is usually based [10, 15, 20, 21] on approximation of the function expt(λ) = eλt by a polynomial
(or a rational function) pt on the spectrum σ(A) of A and subsequent substitution of A into pt.

An approximation of expt on a set wider than σ(A) is not necessary. Moreover, it usually decreases
the accuracy of approximation (by a polynomial of the same degree); an example of this phenomena
is demonstrated in Figures 6-8. Using the Faber polynomials (see the definition in Section 3) allows
us to restrict the set of approximation to (almost) σ(A), i. e., the minimal possible. The idea of
using the Faber polynomials to calculate matrix functions has been employed by many authors, see,
e. g., [3, 4, 5, 14, 16, 26, 27, 28, 29, 31].

We propose to apply the Faber polynomials for approximate solving equations (Section 6) of a
discrete model of a transmission line. In this case, the spectrum σ(A) has a cross shape, see Figure 1.
Our numerical experiments (Section 7) demonstrate that using the Faber expansion instead of the
Taylor expansion can increase the accuracy by a factor of 100–1000. The main results of the paper
are the exact formulas for the Faber functions Ψ and Φ for the cross (Section 4), and the algorithm
(Section 5) that calculates the coefficients for expansion (3.6) of the exponential function in the Faber
series.
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For numerical calculations we use ‘Wolfram Mathematica’ [34].

2 Functions of matrices

In this section, we recall the definition of a matrix function and its main application.
Let A be a complex square matrix. The spectrum of A is the set σ(A) ⊆ C of all its eigenvalues.

Let f be a complex-valued holomorphic function defined in a neighbourhood of σ(A). The function
f applied to A is [10, 15, 20, 21] the matrix

f(A) =
1

2πi

∫
Γ

f(λ) (λ1− A)−1 dλ,

where the contour Γ surrounds σ(A) and 1 is the identity matrix.
The exponential function expt(λ) = eλt is the most important for applications. It depends on

the parameter t ∈ R. Its importance is explained by the fact that the solution of the initial value
problem

x′(t) = Ax(t) + f(t),

x(t0) = x0

can be represented in the form

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)f(t) dτ.

More generally, let the relation between the input vector function u and the output vector function
y be described by the relations

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

x(t0) = x0,

where A,B,C,D — are matrices of compatible sizes. Then the dependence of y on u can [1, p. 65]
be expressed as

y(t) = C

(
eA(t−t0)x0 +

∫ t

t0

eA(t−r)Bu(r) dr

)
+Du(t).

Usually, the matrix exponential eAt can be calculated only numerically. There is vast literature
on approximate calculation of eAt, see, e. g., [10, 15, 20, 21]. The main goal is fast and accurate
calculations; it is clear that these two goals are contradictory. Most methods for approximate calcu-
lation of f(A) are based on approximating f by a polynomial or a rational function and substituting
A into it. In this paper, we consider a special case when the differential equation x′(t) = Ax(t)+f(t)
describes a discrete model of a transmission line (Section 6). In this case, the set σ(A) has the shape
of a cross, see Figure 1. We use the Faber polynomials generated by the cross to reduce the order of
the approximating polynomial.

3 Faber polynomials

A detailed exposition of the theory of Faber series and expansions can be found in [13, 19, 24, 30, 32].
Here we only recall the facts that are necessary for our aims.
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Let K ⊂ C be a compact simply connected set containing more than one point. We denote by G
the complement C \K. Let

D = {w ∈ C : |w| > 1 }.

It is known [24, p. 104] that there exists a unique mapping Φ : G→ D such that (i) Φ is bijective,
(ii) Φ has a complex derivative at all points z ∈ G with Φ′(z) 6= 0, and (iii) there exists a number
γ > 0 such that

lim
z→∞

Φ(∞) =∞ and lim
z→∞

Φ(z)

z
= γ. (3.1)

The number γ is called the capacity of K. Evidently, in a neighborhood of infinity, the function Φ
possesses the Laurent expansion

Φ(z) = γz + γ0 +
γ1

z
+
γ2

z2
+
γ3

z3
+ . . . , (3.2)

where γ > 0 is the same as in (3.1). The general theory of Laurent series states that series (3.2)
converges absolutely for all z such that z ∈ G0, where G0 is the outer part of the smallest circle with
center at zero containing K:

G0 = { z ∈ C : |z| > |ζ| for all ζ ∈ K }.

For z ∈ G0, we have the representation

Φn(z) =
(
γz + γ0 +

γ1

z
+
γ2

z2
+
γ3

z3
+ . . .

)n
.

Due to absolute convergence, the Laurent series in the parentheses can be multiplied and summed in
any order. As a result we obtain the Laurent expansion of the function Φn. Removing the parentheses
we see that the Laurent series of Φn has the form

Φn(z) = γnzn + a
(n)
n−1z

n−1 + . . .+ a
(n)
1 z + a

(n)
0 +

b
(n)
1

z
+
b

(n)
2

z2
+
b

(n)
3

z3
+ . . . . (3.3)

The polynomials
Φn(z) = γnzn + a

(n)
n−1z

n−1 + . . .+ a
(n)
1 z1 + a

(n)
0 (3.4)

containing the terms with nonnegative powers of z in Laurent expansions (3.3) of Φn are called [24,
p. 105], [32, p. 33] the Faber polynomials generated by K. By definition, Φ0(z) = 1.

We denote by Ψ : D → G the inverse of Φ : G→ D. It is easy to show that Ψ has the Laurent
expansion of the form

Ψ(w) = βw + β0 +
β1

w
+
β2

w2
+
β3

w3
+ . . . , (3.5)

with β = 1/γ. Series (3.5) converges absolutely for all w ∈ D.
Often a holomorphic functions f can be represented as the Faber series

f(z) =
∞∑
n=0

cnΦn(z),

and such an expansion is unique. For our aims, it is important that the Faber series converges
faster [13, 19, 24, 30, 32] than the Taylor series. An accurate formulation of the existence of the
Faber series expansion is presented in the following theorem.
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Theorem 3.1 ([32, Chapter III, § 2]). Let f be a holomorphic function defined on an open neigh-
bourhood U of K. Let the function Ψ possess a continuous extension to the closure

D = {w ∈ C : |w| ≥ 1 }.

Then the function f can be expanded into the Faber series

f(z) =
∞∑
n=0

cnΦn(z), (3.6)

which uniformly converges on compact subsets of U . The coefficients cn can be found by the formula

cn =
1

2πi

∫
|w|=1

f
(
Ψ(w)

)
wn+1

dw, n = 0, 1, . . . . (3.7)

It is known [19, § 18.2.V] that the approximation of f by partial sums of series (3.6) is close to the
best uniform approximation on K by polynomials. This fact explains the efficiency of the transition
from the Taylor approximation to the Faber one.

For our goal, it is important that expansion (3.6) extends to functions of matrices.

Corollary 3.1 ([16, Theorem 3.1]). Let assumptions of Theorem 3.1 be satisfied. Let A be a square
complex matrix with σ(A) ⊆ K. Then

f(A) =
∞∑
n=0

cnΦn(A).

4 The functions Ψ and Φ for the cross

For some sets K, the Faber polynomials can be calculated explicitly. Examples can be found in [2,
8, 9, 17, 24, 32]. In this section, we restrict ourselves to the case, which is related to our problem.

Let a, b > 0 and c ∈ R be some numbers. We consider the set K ⊆ C shown in left Figure 1 and
having the shape of a cross. It consists of two segments intersecting at the point c on the real axis.
The endpoints of one segment are the points c−a and c+a, the endpoints of the second segment are
the points c− ib and c+ ib. In our situation, K contains the spectrum of our matrix A, see Section 7.

Theorem 4.1. For the cross shown in the left Figure 1 with parameters a > 0, b > 0 and c ∈ R, the
function Ψ has the form

Ψ(w) = c+ w

√
a2 + b2

2

√
a2 − b2

a2 + b2

1

w2
+

1

2

(
1 +

1

w4

)
, (4.1)

where the square root means the principal value, i. e.
√
· takes values in the right complex plane

Cr = { z ∈ C : Re z > 0 } ∪ {0}.

The function Ψ is bijective and holomorphic on D, and is continuous on the closure

D = {w ∈ C : |w| ≥ 1 }.

The conditions

lim
w→∞

Ψ(w) =∞ and lim
w→∞

Ψ(w)

w
=

√
a2 + b2

2
. (4.2)

are satisfied.
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c-a c c+a

b

-b

c-a c c+a

b

-b

Figure 1: Left: set K having the cross shape; right: the image of the set ∂D = {w ∈ C : |w| = 1 }
under the action of the function Ψ

Proof. The considered principal value of the square root function
√
· is defined and continuous on

the complement of the open half-line

L = { z ∈ C : z ∈ R and z < 0 }

and holomorphic on the complement of the closed half-line

L = { z ∈ C : z ∈ R and z ≤ 0 }.

Therefore, Ψ is (defined and) holomorphic at w ∈ C as long as ζ(w) /∈ L, where

ζ(w) =
a2 − b2

a2 + b2

1

w2
+

1

2

(
1 +

1

w4

)
,

and Ψ is (defined and) continuous at w0 ∈ C if w /∈ L for all w in a neighbourhood of w0.
Let us find out when ζ(w) ∈ L and ζ(w) ∈ L. For brevity we set g = a2−b2

a2+b2
; obviously, g can

take any value from (−1, 1). We represent w in the form w = r(cos t + i sin t), where r > 0 and
t ∈ (−π/2, π/2], and substitute it into the definition of ζ:

ζ(w) = g
1

w2
+

1

2

(
1 +

1

w4

)
=

2gw2 + w4 + 1

2w4

=
2gr2(cos t+ i sin t)2 + r4(cos t+ i sin t)4 + 1

2r4(cos t+ i sin t)4

=

(
2gr2(cos t+ i sin t)2 + r4(cos t+ i sin t)4 + 1

)
(cos t− i sin t)4

2r4

=
2gr2(cos t− i sin t)2 + r4 + (cos t− i sin t)4

2r4

=
−2gr2 sin2 t+ 2gr2 cos2 t+ r4 + sin4 t+ cos4 t− 6 sin2 t cos2 t

2r4

+ i
−4gr2 sin t cos t− 4 sin t cos3 t+ 4 sin3 t cos t

2r4

=
2gr2 cos 2t+ r4 + 2 cos2 2t− 1

2r4
− i
(
gr2 + cos 2t

)
sin 2t

r4
.

(4.3)
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We observe that ζ(w) ∈ L (respectively, ζ(w) ∈ L) if and only if (i) Im ζ(w) = 0 and (ii) Re ζ(w) ≤ 0
(respectively, Re ζ(w) < 0). According to representation (4.3), conditions (i) and (ii) mean that(

gr2 + cos 2t
)

sin 2t = 0,

2gr2 cos 2t+ r4 + 2 cos2 2t− 1 ≤ 0 (< 0).

The first condition is satisfied if and only if t = 0,±π/2, π or cos 2t = −gr2 (provided |gr2| ≤ 1).
After substituting t = 0,±π/2, π, the second condition turns into

±2gr2 + r4 + 2− 1 ≤ 0 (< 0)

or
(r2 − 1)2 + 2r2(1± g) ≤ 0 (< 0),

which is never true, because |g| < 1 and r > 0. Thus, in this case ζ(w) /∈ L and, moreover, ζ(w) /∈ L.
After substituting cos 2t = −gr2, the second condition turns into

r4 − 1 ≤ 0 (< 0).

If w ∈ D, i. e. r > 1, then r4 − 1 > 0 and r4 − 1 ≤ 0 does not hold; thus ζ(w) /∈ L for all w ∈ D.
Therefore, the function ζ is holomorphic on D.

However, if w ∈ D, i. e. r ≥ 1, then r4− 1 ≥ 0 and only r4− 1 < 0 does not hold; thus ζ(w) /∈ L
for all w ∈ D. Therefore, the function ζ is only continuous on D.

For a curious reader, the entire set of points w at which ζ(w) ∈ L (not only its intersection with
D) is shown in the left Figure 2.

e
iϕ1e

iϕ2

e
iϕ3 e

iϕ4

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

π

2
π 3π

2
ϕ1 ϕ2 ϕ3 ϕ4

b
2

a
2+b2

Figure 2: Left: the bold curves constitute the set of points w such that ζ(w) ∈ L; right: the solutions
ϕ1,2,3,4 of the equation cos2 t− b2

a2+b2
= 0 on [0, 2π]

Now let us move w along the boundary ∂D. From (4.3) we have

ζ(eit) =
1

2

(
2g cos 2t+ 2 cos2 2t

)
− i sin 2t(g + cos 2t)

= cos 2t(g + cos 2t)− i sin 2t(g + cos 2t)

= (g + cos 2t)e−2it.
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Therefore,

Ψ(eit) = c+ eit
√
a2 + b2

√
2

√
(g + cos 2t)e−2it

= c+ eit
√
a2 + b2

√
2

√(a2 − b2

a2 + b2
+ cos 2t

)
e−2it

= c+ eit
√
a2 + b2

√
2

√(a2 − b2

a2 + b2
+ 2 cos2 t− 1

)
e−2it

= c+ eit
√
a2 + b2

√(
cos2 t− b2

a2 + b2

)
e−2it.

We denote by ϕ1,2,3,4 the solutions of the equation cos2 t − b2

a2+b2
= 0 (here the unknown is t) on

[0, 2π], see the right Figure 2. Then Ψ(eit) can be represented as

Ψ(eit) = c+ eit
√
a2 + b2

√
(cos2 t− cos2 ϕ1)e−2it,

where
ϕ1 = arccos

b√
a2 + b2

.

In Figure 3, the real and imaginary parts of the function t 7→ Ψ(eit) − c are presented; the main
features are the values (and signs!) at points of extremums.

ϕ1 ϕ2 ϕ3 ϕ4ππ

2
3π
2

2π

a

b

-a

-b

Figure 3: The real (solid line) and imaginary (dashed line) parts of the function t 7→
eit
√
a2 + b2

√
(cos2 t− cos2 ϕ1)e−2it

Let us describe the curve z(t) = Ψ(eit), t ∈ [0, 2π], see the right Figure 1. When t ∈ [0, ϕ1], the
number z(t) is real and moves from c + a to c. When t ∈ [ϕ1, π/2], the number z(t) is imaginary
and varies form c to c+ ib. When t ∈ [π/2, ϕ2], the number z(t) remains imaginary and varies back
form c + ib to c. When t ∈ [ϕ2, π], the number z(t) becomes real and varies form c to c− a. When
t ∈ [π, ϕ3], the number z(t) remains real and varies form c−a to c. When t ∈ [ϕ3, 3π/2], the number
z(t) varies form c to c − ib. When t ∈ [3π/2, ϕ4], the number z(t) varies form c − ib to c. When
t ∈ [ϕ4, 2π], the number z(t) varies form c to c+ a and thus returns back.
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The fulfillment of (4.2) immediately follows from (4.1).
It remains to prove that Ψ : D → G is bijective. Let us take an arbitrary z ∈ C \K and consider

the equation Ψ(w) = z. We have to prove that the equation Ψ(w) = z has exactly one solution
w ∈ D for any z ∈ G.

We take an arbitrary point z ∈ G. We denote by SR the circle {w ∈ C : |w| = R } of large radius
R centered at 0 and oriented counterclockwise, and we denote by −S1 the circle {w ∈ C : |w| = 1 }
of the radius 1 centered at 0 and oriented clockwise, see Figure 4. We denote by SR − S1 the
contour consisting of SR and −S1. It is clear that SR − S1 is the oriented boundary of the annulus
AR = {w ∈ C : 1 ≤ |w| ≤ R }. From (4.2) it follows that the point z lies inside the image Ψ(SR) of
the circle SR under the action of Ψ if R is large enough.

z

Ψ(w)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3 SR

S1

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Figure 4: The circles SR and S1 (right) and their images (left) under the action of Ψ

We make use of the argument principle [23, p. 48, Theorem 2.3], [18, p. 278, Theorem 4.10a]:
the number of solutions w of the equation Ψ(w) = z in the annulus AR is equal to the increment of
the argument of the complex number Ψ(w)− z along the oriented boundary SR − S1 divided by 2π.
Since z lies outside K = Ψ(S1), the increment of the argument of Ψ(w)− z along S1 equals zero. On
the other hand, from formula (4.1) and the Rouche theorem [23, p. 48, Theorem 2.4], [18, p. 280,
Theorem 4.10b] (more correctly, from the proof of the Rouche theorem) it is seen that the increment
of the argument of Ψ(w)− z along SR equals the increment of the argument of Ψ1(w)− z along SR,
where

Ψ1(w) = c+ w

√
a2 + b2

2
,

provided R is large enough. But the increment of the argument of Ψ1(w)− z along SR is obviously
equal to 2π. Thus, for all R large enough, there is exactly one solution w of the equation Ψ(w) = z
in the annulus AR. Hence, there is exactly one solution in D.

Corollary 4.1. Let the assumptions of Theorem 4.1 be satisfied. Then for the function Φ : G→ D,
inverse to Ψ, conditions (3.1) are satisfied with γ = 2√

a2+b2
.
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Proof. The Laurent series of Ψ in a neighborhood of infinity has the form (3.5) and converges at all
points of D. Hence, the series

h(w) = β0 +
β1

w
+
β2

w2
+
β3

w3
+ . . .

also converges in D and is bounded in D2 = {w ∈ C : |w| ≥ 2 }. At the same time, by Theorem 4.1,
Ψ and, consequently, h are bounded in the annulus A2 = {w ∈ C : 1 ≤ |w| ≤ 2 }. Therefore h is
bounded in D. Then from (4.2) it follows that Ψ(w)→∞, w ∈ D, implies that w →∞.

Let us calculate limz→∞Φ(z). We set w = Φ(z) or z = Ψ(w). By the proved, when z = Ψ(w)→
∞, we also have Φ(z) = w →∞. This shows that limz→∞Φ(z) =∞.

Now, with the same change w = Φ(z) or z = Ψ(w), we have limz→∞
Φ(z)
z

= limw→∞
w

Ψ(w)
=

2√
a2+b2

.

Corollary 4.2. Let the assumptions of Theorem 4.1 be satisfied. Then the function Φ : G → D,
inverse to Ψ, possesses the representation

Φ(z) = (z − c)

√√√√√√ b2 − a2

(z − c)2
+ 2

√(
1− a2

(z − c)2

)(
b2

(z − c)2
+ 1

)
+ 2

a2 + b2
.

Proof. For brevity, we temporary set g = a2−b2
a2+b2

and h = a2+b2

2
. To find Φ we solve the equation

z = Ψ(w) (from Theorem 4.1 we know that the solution exists and unique):

z = c+ w
√
h

√
g

1

w2
+

1

2

(
1 +

1

w4

)
,

z − c
w
√
h

=

√
g

1

w2
+

1

2

(
1 +

1

w4

)
,

(z − c)2

w2h
= g

1

w2
+

1

2

(
1 +

1

w4

)
,

0 =
1

2
+
(
g − (z − c)2

h

) 1

w2
+

1

2

1

w4
,

0 =
1

2
w4 +

(
g − (z − c)2

h

)
w2 +

1

2
,

w2 = −g +
(z − c)2

h
±
√(
−g +

(z − c)2

h

)2

− 1,

w2 =
b2 − a2 + 2(z − c)2

a2 + b2
±
√(b2 − a2 + 2(z − c)2

a2 + b2

)2

− 1,

w2 =
b2 − a2 + 2(z − c)2

a2 + b2
± 1

a2 + b2

√(
b2 − a2 + 2(z − c)2

)2 −
(
a2 + b2

)2
,

w2 =
b2 − a2 + 2(z − c)2

a2 + b2
± 2

a2 + b2

√
((z − c)2 − a2)((z − c)2 + b2),

w2 =
b2 − a2 + 2(z − c)2 ± 2

√
((z − c)2 − a2)((z − c)2 + b2)

a2 + b2
,
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w2 = (z − c)2

b2−a2

(z−c)2 + 2± 2

√(
1− a2

(z−c)2

)(
1 + b2

(z−c)2

)
a2 + b2

,

w = ±(z − c)

√√√√√ b2−a2

(z−c)2 + 2± 2

√(
1− a2

(z−c)2

)(
1 + b2

(z−c)2

)
a2 + b2

.

We choose the signs + in the both ± because limz→∞
Φ(z)
z

= 2√
a2+b2

.

Now we can easily calculate the Faber polynomials Φn for the cross. According to definition (3.4)
we calculate the initial terms of the Laurent series of the function z 7→ Φn(z) and take its polynomial
part. Since we have an exact representation for Φ (Corollary 4.2), the calculations can be performed
symbolically and thus Φn can be found explicitly. For example,

Φ11(z) = 2

(
1

a2 + b2

)11/2

(z − c)
(
−11 a10 + 55 a8

(
5 b2 + 4(z − c)2

)
− 44 a6

(
25 b4 + 50 b2(z − c)2 + 28(z − c)4

)
+ 44 a4

(
25 b6 + 100 b4(z − c)2 + 140 b2(z − c)4 + 64(z − c)6

)
− 11 a2

(
5 b4 + 20 b2(z − c)2 + 16(z − c)4

)2

+ 11 b10 + 220 b8(z − c)2 + 1232 b6(z − c)4 + 2816 b4(z − c)6

+ 2816 b2(z − c)8 + 1024 (z − c)10
)
.

5 Calculating the Faber coefficients of the exponential function

We begin with the presentation of a simple algorithm for calculating the Faber coefficients cm in the
expansion

ez =
∞∑
m=0

cmΦm(z).

For doing it we use formula (3.7):

cm =
1

2πi

∫
|w|=1

f
(
Ψ(w)

)
wm+1

dw =
1

2π

∫ π

0

exp
(
Ψ(eit)

)
e−imt dt. (5.1)

Since the function Φ has breaks at the points ϕ1,2,3,4 (see Figure 3), it is reasonable to represent the
integral as the sum of four ones: ∫ π

0

=

∫ ϕ1

−ϕ1

+

∫ ϕ2

ϕ1

+

∫ ϕ3

ϕ2

+

∫ ϕ4

ϕ3

and use for each integral the Gauss quadrature rule with the Chebyshev weight. Since we are going
to substitute a matrix A instead of z, a high accuracy in cm is desirable. The high accuracy of
integral values can be archived by calculating the integrals with an increased number of significant
digits (this will not lead to the significant loss of time compared to matrix operations to come later).

Remark 1. A useful idea is proposed in paper [12]. According to formula (5.1), the numbers cm can
be interpreted as the Fourier coefficients of the function w 7→ exp

(
Ψ(eit)

)
. This observation makes

it possible to use the fast Fourier transform to calculate integrals of kind (5.1), which speeds up
calculations.
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The above algorithm for calculating cm has a drawback: it calculates eAt only at one point t = 1.
Nevertheless, it is often important to have the resulting matrix eAt in the form of an expression
depending on t. Now we present another algorithm that is free from this shortcoming.

By formula (3.5), the function Ψ has the expansion

Ψ(w) = βw + β0 +
β1

w
+
β2

w2
+
β3

w3
+ . . . ,

which converges in the open exterior D of the unit circle. We consider the Laurent expansions for
the powers Ψn of Ψ:

Ψn(w) =
(
βw + β0 +

β1

w
+
β2

w2
+
β3

w3
+ . . .

)n
,

and in analogy with the Faber polynomials Φn define Ψn as the polynomial part of Ψn:

Ψn(w) = b(n)
n wn + b

(n)
n−1w

n−1 + . . .+ b
(n)
1 w1 + b

(n)
0 .

The polynomials Ψn and their coefficients b(n)
k can be calculated symbolically (and therefore explicitly)

in the same way as was done for Φn.
We set

M = max
|w|=1
|Ψ(w)|.

Obviously,
|Ψn(w)| ≤Mn, |w| = 1. (5.2)

From the formula for the Laurent coefficients [23, p. 6, Theorem 1.2] we have

b
(n)
k =

1

2πi

∫
|w|=1

Ψn(w)

wk+1
dw =

1

2πi

∫
|w|=1

Ψn(w)

wk+1
dw, 0 ≤ k ≤ n.

which implies
|b(n)
k | ≤Mn. (5.3)

We consider the function expt(z) = etz. For it, expansion (3.6) looks like

expt(z) =
∞∑
m=0

cm(t)Φm(z).

For the coefficients cm(t), from formula (3.7) we have (due to estimates (5.2) and (5.3), all series
converges absolutely):

expt
(
Ψ(w)

)
=
∞∑
n=0

tnΨn(w)

n!
,

cm(t) =
1

2πi

∫
|w|=1

∑∞
n=0

tnΨn(w)
n!

wm+1
dw

=
∞∑
n=0

tn

n!

1

2πi

∫
|w|=1

Ψn(w)

wm+1
dw

=
∞∑
n=0

tn

n!
b(n)
m =

∞∑
n=m

tn

n!
b(n)
m .
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The series
∑∞

n=m
tn

n!
b

(n)
m converges quickly. Therefore, we can use the approximate formula

cm(t) ≈
N∑

n=m

tn

n!
b(n)
m ,

where N is a large number; in our numerical examples we take N = 20. Numerical experiments show
that for t = 1 the both algorithms give practically the same result.

6 A discrete model of a transmission line

We consider the circuit shown in Figure 5 consisting of n = 150 sections. It is a discrete transmission
line model. We take the following parameters: C = C0/n, L = L0/n, R = R0/n, G = G0/n
(specific values of the constants C0, L0, R0, G0 are given in Figures 6-8). We use the state variable
formulation [33] of the circuit to derive its equations in the form ẋ(t) = Ax(t) + f(t) with the matrix
A of the size 300× 300. The chosen directions of voltages and currents are shown in Figure 5.

Figure 5: A discrete model of a transmission line

Let us assume that an independent voltage source Eleft(t) is connected to the left side, while
the right side is open (the right contacts are disconnected). We take as unknowns the vector UC of
voltages across the inductors and the vector IL of currents through the capacitors. Skipping dull
calculations, we present the final differential equation that describe the considered circuit:

(
U̇C(t)

İL(t)

)
= −

( R0

C0
1 n

C0
(N − 1)

n
L0

(1−NT ) G0

L0
1

)(
UC(t)
IL(t)

)
+


0
. . .

− n
L0
Eleft(t)

. . .
0

 ,

where the nonzero coordinate − n
L0
Eleft(t) in the free term corresponds to the first coordinate of IL,

1 is the identity matrix of the size n× n, and

N =


0 1 . . . 0
. . . . . . . . .
0 0 . . . 1
0 0 . . . 0

 .

Thus the block matrix A has the form

A = −
( R0

C0
1 n

C0
(N − 1)

n
L0

(1−NT ) G0

L0
1

)
. (6.1)
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7 Numerical experiments

Example 1. We compare the approximation of the function z 7→ ez by the 10-th Faber polynomial
generated by the cross with different parameters and the 10-th Taylor polynomial. We take a discrete
model of transmission line (Figure 5) consisting of 150 sections with parameters C0, L0, R0, and G0

shown at the tops of Figures 6-8. We calculate the spectrum of corresponding matrix (6.1) and the
parameters a, b, and c of the corresponding cross that contains the spectrum. We graph the level
curves of the functions

F (z) =
∣∣∣ez − 10∑

k=0

ckΦk(z)
∣∣∣, T (z) =

∣∣∣ez − 10∑
k=0

ec

k!
(z − c)k

∣∣∣. (7.1)

The results are shown in Figures 6-8. We present two level curves: the inner level curve corresponds
to the minimal value CF at which the F level curve surrounds the spectrum σ(A); the outer level
curve corresponds to the minimal value CT at which the T level curve surrounds the spectrum σ(A).
The points of σ(A) are shown by dots.

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

-0.5

0.0

0.5

C0 = 2.5× 102 , L0 = 3.× 102

R0 = 5.55× 102 , G0 = 1.×101

-2.0 -1.5 -1.0 -0.5 0.0

-1.0
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0.0

0.5

1.0

C0 = 2.5× 102 , L0 = 3.× 102

R0 = 5.55× 102 , G0 = 1.×101

Figure 6: The eigenvalues of matrix (6.1) and the level curves of the functions F (left) and T (right)
corresponding to the levels CF = 2.362 · 10−11 and CT = 2.382 · 10−8; CT/CF = 1008.36

Example 2. We consider the circuit with parameters shown in Figure 6 and the corresponding
matrix A. We substitute A into the 10-th Faber polynomial and the 10-th Taylor polynomial, i. e.
we calculate the matrices

EF =
10∑
k=0

ckΦk(A), ET =
10∑
k=0

ec

k!
(A− c1)k.

We also calculate the precise matrix eA using the MatrixExp command from ‘Wolfram Mathemat-
ica’ [34]. The comparison of accuracy gives

‖eA − EF‖ = 4.7 · 10−10, ‖eA − ET‖ = 2.4 · 10−8.

For matrices, we use the norm induced by the Euclidean norm in C2n.
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Figure 7: The eigenvalues of matrix (6.1) and the level curves of the functions F (left) and T (right)
corresponding to the levels CF = 6.795 · 10−10 and CT = 7.259 · 10−8; CT/CF = 106.8
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Figure 8: The eigenvalues of matrix (6.1) and the level curves of the functions F (left) and T (right)
corresponding to the levels CF = 2.114 · 10−11 and CT = 9.84 · 10−9; CT/CF = 465.484

So, we have seen that the Faber polynomials can give higher accuracy than the Taylor ones of
the same order. Of course, the calculation of the Faber polynomials takes more time. But this loss
of time is insignificant compared to subsequent matrix operations.
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