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Abstract. The famous Hardy inequality was formulated in 1920 and finally proved in 1925. Since
then, this inequality has been greatly developed. The first development was related to the consid-
eration of more general weights. The next step was to use more general operators with different
kernels instead of the Hardy operator. At present, there are many works devoted to Hardy-type
inequalities with iterated operators. Motivated by important applications, all these generalizations
of the Hardy inequality are studied not only on the cone of non-negative functions but also on the
cone of monotone non-negative functions. In this paper, new Hardy-type inequalities are proved
for operators with kernels that satisfy less restrictive conditions than those considered earlier. The
presented inequalities have already been characterized for non-negative functions. In this paper, we
continue this study but for monotone non-negative functions.
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1 Introduction

Let I = (0,∞), 1 < p, q <∞ and p′ = p
p−1

. Suppose that v, u and v1−p′ are positive functions locally
integrable on I.

We consider the following Hardy-type inequality ∞∫
0

u(x)

∣∣∣∣∣∣
x∫

0

K(x, t)f(t)dt

∣∣∣∣∣∣
q

dx


1
q

≤ C

 ∞∫
0

v(x)|f(x)|pdx

 1
p

, (1.1)

for all functions f ∈ Lp,v(I), where C > 0 is independent of f and Lp,v(I) is the weighted Lebesgue

space of all functions f , Lebesgue measurable on I, such that ‖f‖p,v =

(∞∫
0

v(x)|f(x)|pdx
) 1

p

< ∞.

Here

Kf(x) =

x∫
0

K(x, t)f(t)dt, x > 0, (1.2)

is an integral operator with a non-negative kernel K(x, t).
Inequality (1.1) has been completely characterized for the kernel K(x, t) ≡ 1 (for more details see

[8, 9]) and the kernel K(x, t) ≡ (x− t)α−1, α > 1 (see [17, 18, 19, 20] and for more details see [6]).
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In works [3] and [7, 10, 11, 12], inequality (1.1) was studied for kernels K(x, t) satisfying the
Oinarov condition stating that there exists a number d ≥ 1 such that

d−1 (K(x, s) +K(s, t)) ≤ K(x, t) ≤ d (K(x, s) +K(s, t)) (1.3)

for all x, s, t : x ≥ s ≥ t > 0. A further development of this problem was the introduction of the
classes O±n , n ≥ 0, which are less restrictive for kernels K(x, t) than the Oinarov condition. We will
refer to O±n , n ≥ 0, as the Oinarov classes (the definitions of these classes are given in Section 2).
In paper [13], inequality (1.1) was studied in the case 1 < p ≤ q <∞. The case 1 < q < p <∞ was
considered in the paper [1], but for kernels belonging to the Oinarov classes O±1 . In the recent paper
[14] the case 1 < q < p < ∞ is also discussed, but now kernels are from O±2 . For operators with
kernels from the classes O±1 in paper [14] an alternative criterion for the validity of (1.1) is presented.

If, in addition, f is a monotone function, characterizations of the Hardy-type inequalities help
to find boundedness of certain operators in Lorentz spaces. Moreover, the Hardy-type inequalities
restricted to monotone functions are used for the weighted Marcinkiewicz interpolation results. For
more applications, we refer to monograph [9, Chapter 8] (see also [16]).

Motivated by the applications, in this paper, we find necessary and sufficient conditions for the
validity of inequality (1.1) for operator (1.2) with kernels from the Oinarov classes O±2 on the cone
of monotone functions in the case 1 < q < p < ∞. The case 1 < p ≤ q < ∞ was discussed in
paper [2] for kernels from O−n , n ≥ 0. We note that the case when kernels belong to the classes
O+
n , n ≥ 0, has been left in [2] as an open question. The presented paper covers the class O+

2 . As
soon as inequality (1.1) is established for kernels from the general classes O±n , n ≥ 0, on the cone of
non-negative functions in the case 1 < q < p < ∞, it can be established on the cone of monotone
functions in the same way as here. Moreover, in paper [2], the authors also considered the conjugate

operator K∗f(x) =
∞∫
x

K(t, x)f(t)dt, x > 0, but kernels were from O+
n , n ≥ 0. Since the conjugate

operator K∗f needs a different approach than operator (1.2), so this is one more topic for a separate
paper.

This paper is organized as follows. Section 2 contains all the auxiliary statements required to
prove the main results. In Section 3, the validity of inequality (1.1) is established on the cone of
non-increasing functions for operator (1.2) with kernels from the Oinarov class O+

2 . In Section 4, we
present a similar result but for the operator (1.2) with kernels from the class O−2 . Section 5 is devoted
to the case 1 < p ≤ q < ∞ when kernels belong to the class O+

2 , which has not been considered in
[2].

2 Auxiliary statements

Throughout the paper, the symbol A � B means that A ≤ cB with some constant c > 0. The
symbol A ≈ B stands for A � B � A. Moreover, f ↑ and f ↓ mean non-decreasing or non-
increasing non-negative functions, respectively.

Let us give the definitions of the classes O±1 and O±2 . Let Ω = {(x, t) ∈ I × I : x ≥ t}.

Definition 1. A measurable function K1(·, ·) ≥ 0 defined on the set Ω belongs to the class O+
1 , if it

does not decrease in the first argument and there exists a non-negative function K1,0(·, ·) measurable
on Ω and a number d1 ≥ 1 such that

d−1
1 (K1,0(x, s) +K1(s, t)) ≤ K1(x, t) ≤ d1 (K1,0(x, s) +K1(s, t)) (2.1)

for all x, s, t : x ≥ s ≥ t > 0.
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Definition 2. A measurable function K1(·, ·) ≥ 0 defined on the set Ω belongs to the class O−1 ,
if it does not increase in the second argument and there exists a non-negative function K0,1(·, ·)
measurable on Ω and a number d̄1 ≥ 1 such that

d̄−1
1 (K1(x, s) +K0,1(s, t)) ≤ K1(x, t) ≤ d̄1 (K1(x, s) +K0,1(s, t))

for all x, s, t : x ≥ s ≥ t > 0.

Definition 3. A measurable function K2(·, ·) ≥ 0 defined on the set Ω belongs to the class O+
2 , if

it does not decrease in the first argument and there exist non-negative functions K2,0(·, ·), K2,1(·, ·)
and K1(·, ·) measurable on Ω and a number d2 ≥ 1 such that K1(·, ·) ∈ O+

1 and

d−1
2 (K2,0(x, s) +K2,1(x, s)K1(s, t) +K2(s, t)) ≤ K2(x, t)

≤ d2 (K2,0(x, s) +K2,1(x, s)K1(s, t) +K2(s, t)) (2.2)

for all x, s, t : x ≥ s ≥ t > 0.

Definition 4. A measurable function K2(·, ·) ≥ 0 defined on the set Ω belongs to the class O−2 , if it
does not increase in the second argument and there exist non-negative functions K0,2(·, ·), K1,2(·, ·)
and K1(·, ·) measurable on Ω and a number d̄2 ≥ 1 such that K1(·, ·) ∈ O−1 and

d̄−1
2 (K2(x, s) +K1(x, s)K1,2(s, t) +K0,2(s, t)) ≤ K2(x, t)

≤ d̄2 (K2(x, s) +K1(x, s)K1,2(s, t) +K0,2(s, t)) (2.3)

for all x, s, t : x ≥ s ≥ t > 0.

Note that since the classes O±2 are wider than the classes of operators satisfying condition (1.3),
many recent publications have been devoted to them (see, e.g., [5, 14]). Examples of kernels that
belong to the classes O±1 and O±2 can be found in [14].

To prove our main results we use the following theorems established in [14].

Theorem A. Let 1 < q < p < ∞ and K(·, ·) ≡ K2(·, ·) ∈ O+
2 . Then inequality (1.1) holds if and

only if B2 = max{B2,0, B2,1, B2,2} < ∞. Moreover, C ≈ B2, where C is best constant in inequality
(1.1) and

B2,0 =

 ∞∫
0

 ∞∫
z

Kq
2,0(x, z)u(x)dx


p
p−q
 z∫

0

v1−p′(s)ds


p(q−1)
p−q

v1−p′(z)dz


p−q
pq

,

B2,1 =

 ∞∫
0

 ∞∫
z

Kq
2,1(x, z)u(x)dx


p
p−q
 z∫

0

Kp′

1 (z, s)v1−p′(s)ds


p(q−1)
p−q

× d

 z∫
0

Kp′

1 (z, t)v1−p′(t)dt


p−q
pq

,

B2,2 =

 ∞∫
0

 ∞∫
z

u(t)dt


p
p−q
 z∫

0

Kp′

2 (z, s)v1−p′(s)ds


p(q−1)
p−q

d

 z∫
0

Kp′

2 (z, s)v1−p′(s)ds




p−q
pq

.
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Theorem B. Let 1 < q < p < ∞ and K(·, ·) ≡ K1(·, ·) ∈ O−1 . Then inequality (1.1) holds if
and only if B1 = max{B0,1,B1,1} < ∞. Moreover, C ≈ B1, where where C is the best constant in
inequality (1.1) and

B0,1 =

 ∞∫
0

 t∫
0

Kp′

0,1(t, x)v1−p′(x)dx


q(p−1)
p−q

 ∞∫
t

u(s)ds


q
p−q

u(t)dt


p−q
pq

,

B1,1 =

 ∞∫
0

 t∫
0

v1−p′(x)dx


q(p−1)
p−q

 ∞∫
t

Kq
1(s, t)u(s)ds


q
p−q

d

− ∞∫
t

Kq
1(s, t)u(s)ds




p−q
pq

.

Theorem C. Let 1 < q < p < ∞ and K(·, ·) ≡ K2(·, ·) ∈ O−2 . Then inequality (1.1) holds if and
only if B2 = max{B0,2,,B1,2,B2,2} <∞. Moreover, C ≈ B2, where C is the best constant in inequality
(1.1) and

B0,2 =

 ∞∫
0

 z∫
0

Kp′

0,2(z, s)v1−p′(s)ds


q(p−1)
p−q

 ∞∫
z

u(s)ds


q
p−q

u(z)dz


p−q
pq

,

B1,2 =

 ∞∫
0

 z∫
0

Kp′

1,2(z, s)v1−p′(s)ds


q(p−1)
p−q

 ∞∫
z

Kq
1(x, z)u(x)dx


q
p−q

× d

− ∞∫
z

Kq
1(x, z)u(x)dx


p−q
pq

,

B2,2 =

 ∞∫
0

 z∫
0

v1−p′(t)dt


p(q−1)
p−q

 ∞∫
z

Kq
2(x, z)u(x)dx


p
p−q

v1−p′(z)dz


p−q
pq

.

In paper [15], there is a formula that gives the equivalence between inequality (1.1) for all non-
increasing non-negative functions and a certain inequality, but for arbitrary non-negative functions.
This equivalence is now called the Sawyer duality principle and has the form:

sup
0≤f↓

∞∫
0

g(x)f(x)dx(∞∫
0

v(x)fp(x)dx

) 1
p

≈


∞∫

0

v(x)


x∫
0

g(t)dt

x∫
0

v(t)dt


p′

dx


1
p′

+

∞∫
0

g(x)dx(∞∫
0

v(x)dx

) 1
p

. (2.4)

Equivalence (2.4) can be transformed into the following statement (see, e.g., [4]). The inequality ∞∫
0

u(x)(Kf(x))qdx

 1
q

≤ C

 ∞∫
0

v(x)fp(x)dx

 1
p

(2.5)
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holds for a non-increasing function f ≥ 0 if and only if the following two inequalities ∞∫
0

u

K
 ∞∫

x

h

q
1
q

≤ C

 ∞∫
0

v1−pV php

 1
p

, (2.6)

 ∞∫
0

u(K1)q

 1
q

≤ C

 ∞∫
0

v

 1
p

(2.7)

hold for any function h ≥ 0 and V (∞) <∞, where V (t) :=
t∫

0

v(x)dx and 1 is a function identically

equal to 1 on I. From (2.4) it is obvious that in the case V (∞) =∞ for inequality (2.5) to hold we
need only the validity of inequality (2.6).

3 Main result for the class O+
2

Assume that

M±
1 =

 ∞∫
0

u(x)

 x∫
0

K(x, t)dt

q

dx


1
q
 ∞∫

0

v(x)dx

− 1
p

,

M±
2 =

 ∞∫
0

 t∫
0

 x∫
0

K(x, z)dz

q

u(x)dx


p
p−q
 ∞∫

t

V −p
′
(s)v(s)ds


p(q−1)
p−q

V −p
′
(t)v(t)dt


p−q
pq

,

M+
3 =

 ∞∫
0

 ∞∫
t

Kq
2,0(x, z)u(x)dx


p
p−q
 t∫

0

sp
′
V −p

′
(s)v(s)ds


p(q−1)
p−q

tp
′
V −p

′
(t)v(t)dt


p−q
pq

,

M+
4 =


∞∫

0

 ∞∫
t

Kq
2,1(x, z)u(x)dx


p
p−q
 t∫

0

 s∫
0

K1(t, z)dz

p′

V −p
′
(s)v(s)ds


p(q−1)
p−q

× d

 t∫
0

 s∫
0

K1(t, z)dz

p′

V −p
′
(s)v(s)ds




p−q
pq

,

M+
5 =


∞∫

0

 ∞∫
t

u(x)dx


p
p−q
 t∫

0

 s∫
0

K(t, z)dz

p′

V −p
′
(s)v(s)ds


p(q−1)
p−q

× d

 t∫
0

 s∫
0

K(t, z)dz

p′

V −p
′
(s)v(s)ds




p−q
pq

.
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M+ = max{M±
1 ,M

±
2 ,M

+
3 ,M

+
4 ,M

+
5 } and M̃+ = max{M±

2 ,M
+
3 ,M

+
4 ,M

+
5 }.

Our main result of this section reads as follows.

Theorem 3.1. Let 1 < q < p < ∞ and K(·, ·) ∈ O+
2 . Then inequality (1.1) holds for any non-

increasing f ≥ 0 if and only if M+ <∞ for V (∞) <∞ and M̃+ <∞ for V (∞) =∞.

Proof. Since K1 =
x∫
0

K(x, t)dt, inequality (2.7) has the form

 ∞∫
0

u(x)

 x∫
0

K(x, t)dt

q

dx


1
q

≤ C

 ∞∫
0

v(x)dx

 1
p

,

which is equivalent to the condition M±
1 < ∞. As we mentioned above, in the case of V (∞) = ∞,

inequality (2.7) is not required, so the condition M±
1 <∞ is also not required.

Let us turn to inequality (2.6) for non-negative functions, the validity of which is necessary and
sufficient for the validity of (2.5) for non-increasing functions for the both cases V (∞) < ∞ and
V (∞) =∞. Inequality (2.6) can be rewritten as follows: ∞∫

0

u(x)

 x∫
0

K(x, t)

 ∞∫
t

h(s)ds

 dt

q

dx


1
q

≤ C

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

. (3.1)

Our aim is to characterize inequality (3.1) for any non-negative function h ≥ 0. Let us transform
the left-hand side S of (3.1). We split the inner integral in (3.1) and get

S ≈

 ∞∫
0

u(x)

 x∫
0

K(x, t)

 x∫
t

h(s)ds

 dt

q

dx


1
q

+

 ∞∫
0

u(x)

 x∫
0

K(x, t)

 ∞∫
x

h(s)ds

 dt

q

dx


1
q

. (3.2)

The change of the order of integration in the first term of (3.2) gives

S ≈

 ∞∫
0

u(x)

 x∫
0

 s∫
0

K(x, t)dt

h(s)ds

q

dx


1
q

+

 ∞∫
0

u(x)

 x∫
0

K(x, t)dt

q ∞∫
x

h(s)ds

q

dx


1
q

.

Therefore, the validity of inequality (3.1) is equivalent to the validity of the following two inequalities: ∞∫
0

u(x)

 x∫
0

 s∫
0

K(x, t)dt

h(s)ds

q

dx


1
q

≤ C1

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

, (3.3)
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 ∞∫
0

u(x)

 x∫
0

K(x, t)dt

q ∞∫
x

h(s)ds

q

dx


1
q

≤ C2

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

. (3.4)

The inequality (3.4) is the standard weighted Hardy inequality, which holds if and only ifM±
2 <∞

(see, e.g., [9]).
Inequality (3.3) can be rewritten in the form: ∞∫

0

u(x)

 x∫
0

K(x, s)s h(s)ds

q

dx


1
q

≤ C1

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

.

where K(x, s) = 1
s

s∫
0

K(x, t)dt with K(x, t) from O+
2 . Using relation (2.2), for x ≥ z ≥ t we get

K(x, s) ≈ 1

s

s∫
0

(K2,0(x, z) +K2,1(x, z)K1(z, t) +K(z, t))dt

=
1

s
K2,0(x, z) s+K2,1(x, z)

1

s

s∫
0

K1(z, t)dt+
1

s

s∫
0

K(z, t)dt

= K2,0(x, z) +K2,1(x, z)K1(z, s) +K(z, s), (3.5)

where K1(z, s) = 1
s

s∫
0

K1(z, t)dt. If we prove that K1(z, s) ∈ O+
1 , we prove that K(x, s) ∈ O+

2 .

By the definition K1(z, t) ∈ O+
1 , therefore from (2.1) for z ≥ τ ≥ t we have that K1(z, t) ≈

K1,0(z, τ) +K1(τ, t). Hence,

K1(z, s) ≈ 1

s

s∫
0

(K1,0(z, τ) +K1(τ, t))dt

=
1

s
K1,0(z, τ) s+

1

s

s∫
0

K1(τ, t)dt = K1,0(z, τ) +K1(τ, s).

Then K1(z, s) belongs to the class O+
1 . Consequently, from (3.5) we obtain that K(x, s) belongs to

the class O+
2 . Thus, replacing s h(s) by g1(s), by Theorem A inequality (3.3) holds for g1(s) if and

only if M+
3 <∞, M+

4 <∞ and M+
5 <∞.

4 Main result for the class O−2

Assume that

M−
3 =

 ∞∫
0

 t∫
0

Kp′

0,2(t, s) sp
′
V −p

′
(s)v(s)ds


q(p−1)
p−q

 ∞∫
t

u(x)dx


q
p−q

u(t)dt


p−q
pq

<∞,
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M−
4 =

 ∞∫
0

 t∫
0

Kp′

1,2(t, s) sp
′
V −p

′
(s)v(s)ds


q(p−1)
p−q

 ∞∫
t

Kq
1(x, t)u(x)dx


q
p−q

× d

− ∞∫
t

Kq
1(x, t)u(x)dx


p−q
pq

<∞,

M−
5 =

 ∞∫
0

 t∫
0

sp
′
V −p

′
(s)v(s)ds


p(q−1)
p−q

 ∞∫
t

Kq(x, t)u(x)dx


p
p−q

tp
′
V −p

′
(t)v(t)dt


p−q
pq

,

M−
6 =


∞∫

0

 t∫
0

Kp′

0,1(t, s)V −p
′
(s)v(s)

 s∫
0

K1,2(s, z)dz

p′

ds


q(p−1)
p−q  ∞∫

t

u(x)dx


q
p−q

u(t)dt


p−q
pq

,

M−
7 =


∞∫

0

 t∫
0

V −p
′
(s)v(s)

 s∫
0

K1,2(s, z)dz

p′

ds


q(p−1)
p−q  ∞∫

t

Kq
1(x, t)u(x)dx


q
p−q

× d

− ∞∫
t

Kq
1(x, t)u(x)dx


p−q
pq

<∞,

M−
8 =


∞∫

0

 t∫
0

V −p
′
(s)v(s)

 s∫
0

K0,2(s, z)dz

p′

ds


q(p−1)
p−q  ∞∫

t

u(x)dx


q
p−q

u(t)dt


p−q
pq

<∞,

M− = max{M±
1 ,M

±
2 ,M

−
3 ,M

−
4 ,M

−
5 ,M

−
6 ,M

−
7 ,M

−
8 },

M̃− = max{M±
2 ,M

−
3 ,M

−
4 ,M

−
5 ,M

−
6 ,M

−
7 ,M

−
8 }.

Our main result of this section reads as follows.

Theorem 4.1. Let 1 < q < p < ∞ and K(·, ·) ∈ O−2 . Then inequality (1.1) holds for any non-
increasing f ≥ 0 if and only if M− <∞ for V (∞) <∞ and M̃− <∞ for V (∞) =∞.

Proof. The beginning of the proof of Theorem 4.1 is the same as the beginning of the proof of
Theorem 3.1, i.e., for the validity of (1.1) we need the condition M±

1 < ∞ for V (∞) < ∞ and the
condition M±

2 <∞ for both V (∞) =∞ and V (∞) <∞.
Let us turn to inequality (3.3). Using relation (2.3) in inequality (3.3), it is equivalent to the

inequality ∞∫
0

u(x)

 x∫
0

 s∫
0

(K(x, s) +K1(x, s)K1,2(s, t) +K0,2(s, t))dt

h(s)ds

q

dx


1
q

≤ C1

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

.
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Thus, the validity of inequality (3.3) is equivalent to the validity of the following three inequalities: ∞∫
0

u(x)

 x∫
0

K(x, s) s h(s)ds

q

dx


1
q

≤ C11

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

, (4.1)

 ∞∫
0

u(x)

 x∫
0

K1(x, s)

 s∫
0

K1,2(s, t)dt

h(s)ds

q

dx


1
q

≤ C12

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

,

(4.2) ∞∫
0

u(x)

 x∫
0

 s∫
0

K0,2(s, t)dt

h(s)ds

q

dx


1
q

≤ C13

 ∞∫
0

v1−p(x)V p(x)hp(x)dx

 1
p

. (4.3)

If we replace s h(s) by g1(s), then by Theorem C inequality (4.1) holds for g1(s) if and only if
M−

3 <∞, M−
4 <∞ and M−

5 <∞.

If we replace
(

s∫
0

K1,2(s, t)dt

)
h(s) by g2(s), then by Theorem B inequality (4.2) holds for g2(s)

if and only if M−
6 <∞ and M−

7 <∞.

If we replace
(

s∫
0

K0,2(s, t)dt

)
h(s) by g3(s), then (4.3) is the standard weighted Hardy inequality

for g3(s), which holds if and only if M−
8 <∞ (see, e.g., [9]).

Remark 1. Let us note that the proofs of Theorems 3.1 and 4.1 need different approaches because

the kernel K(x, s) = 1
s

s∫
0

K(x, t)dt belongs to the class O+
2 if the kernel K(x, t) belongs to the class

O+
2 but it does not belong to the class O−2 if the kernel K(x, t) belongs to the class O−2 .

5 Supplementary results

In the paper [13], it was proved that if 1 < p ≤ q <∞ and K(·, ·) ∈ O+
2 , then inequality (1.1) holds

for any f ≥ 0 if and only if one of the following conditions

A+
1 = sup

0<z<∞

 ∞∫
z

u(x)

 z∫
0

Kp′(x, s)v1−p′(s)ds


q
p′

dx


1
q

<∞,

A+
2 = sup

0<z<∞


z∫

0

v1−p′(s)

 ∞∫
z

Kq(x, s)u(x)dx


p′
q

ds


1
p′

<∞

holds, in addition, C ≈ A+
1 ≈ A+

2 , where C is the best constant in inequality (1.1).
Using the above result and following the same steps as in the proof of Theorem 3.1, we can present

the statement on the cone of non-increasing functions for the case 1 < p ≤ q < ∞ when kernels
K(·, ·) belong to the class O+

2 , which was not considered in [2].
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Theorem 5.1. Let 1 < p ≤ q < ∞ and K(·, ·) ∈ O+
2 . Then inequality (1.1) holds for

any non-increasing f ≥ 0 if and only if one of the conditions max{M±
1 ,M+

2 ,M+
3 } < ∞ and

max{M±
1 ,M+

2 ,M+
4 } < ∞ holds for V (∞) < ∞ and one of the conditions max{M+

2 ,M+
3 } < ∞

and max{M+
2 ,M+

4 } <∞ holds for V (∞) =∞, where

M+
2 = sup

0<z<∞

 z∫
0

 x∫
0

K(x, t)dt

q

u(x)dx


1
q
 ∞∫

z

V −p
′
(s)v(s)ds

 1
p′

,

M+
3 = sup

0<z<∞


∞∫
z

u(x)

 z∫
0

 s∫
0

K(x, t)dt

p′

V −p
′
(s)v(s)ds


q
p′

dx


1
q

,

M+
4 = sup

0<z<∞


z∫

0

V −p
′
(s)v(s)

 ∞∫
z

 s∫
0

K(x, t)dt

q

u(x)dx


p′
q

ds


1
p′

.

Remark 2. On the basis of the duality principle for a non-decreasing function f ≥ 0:

sup
0≤f↑

∞∫
0

g(x)f(x)dx(∞∫
0

v(x)fp(x)dx

) 1
p

≈


∞∫

0

v(x)


∞∫
x

g(t)dt

∞∫
x

v(t)dt


p′

dx


1
p′

+

∞∫
0

g(x)dx(∞∫
0

v(x)dx

) 1
p

,

where g ≥ 0 is any function, we can characterize inequality (1.1) on the cone of non-decreasing
functions for operator (1.2) with kernels from the Oinarov classes O+

2 and O−2 . However, we omit
both statements and their proofs here, since they are similar. Let us only present as an example that
the value M±

2 turns to

M±2 =

 ∞∫
0

 ∞∫
t

 ∞∫
x

K(z, x)dz

q

u(x)dx


p
p−q
 t∫

0

V −p
′

∗ (s)v(s)ds


p(q−1)
p−q

V −p
′

∗ (t)v(t)dt


p−q
pq

,

where V∗(t) :=
∞∫
t

v(x)dx. All other quantities in M+ and M− can be rewritten similarly.
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