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1 Introduction. Notation. Description of main results

Consider the following system of odd-order quasilinear equations

ut − (−1)l(a2l+1∂
2l+1
x u+ a2l∂

2l
x u)−

l−1∑
j=0

(−1)j∂jx
[
a2j+1(t, x)∂j+1

x u+ a2j(t, x)∂jxu
]

+
l∑

j=0

(−1)j∂jx
[
gj(t, x, u, . . . , ∂

l−1
x u)

]
= f(t, x), l ∈ N, (1.1)

posed on an interval I = (0, R) (R > 0 is arbitrary). Here u = u(t, x) = (u1, . . . , un)T , n ∈ N,
is the unknown vector-function, f = (f1, . . . , fn)T , gj = (gj1, . . . , gjn)T are also vector-functions,
a2l+1 = diag(a(2l+1)i), a2l = diag(a(2l)i), i = 1, . . . , n, are constant diagonal n×n matrices, aj(t, x) =(
ajim(t, x)

)
, i,m = 1, . . . , n, for j = 0, . . . , 2l − 1, are n× n matrices.

In a rectangle QT = (0, T ) × I for certain T > 0 consider an initial-boundary value problem for
system (1.1) with the initial condition

u(0, x) = u0(x), x ∈ [0, R], (1.2)

and the boundary conditions

∂jxu(t, 0) = µj(t), j = 0, . . . , l − 1, ∂jxu(t, R) = νj(t), j = 0, . . . , l, t ∈ [0, T ], (1.3)

where u0 = (u01, . . . , u0n)T , µj = (µj1, . . . , µjn)T , νj = (νj1, . . . , νjn)T .
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Besides this direct problem consider the following inverse problem: let for any i = 1, . . . , n the
function fi be represented in the form

fi(t, x) ≡ h0i(t, x) +

mi∑
k=1

Fki(t)hki(t, x) (1.4)

for a certain non-negative integer number mi (if mi = 0 then fi = h0i), where the functions hki are
given and the functions Fki are unknown. Then problem (1.1)–(1.3) is supplemented with overdeter-
mination conditions in an integral form: if mi > 0 for certain i, then∫

I

ui(t, x)ωki(x) dx = ϕki(t), t ∈ [0, T ], k = 1, . . . ,mi, (1.5)

for certain given functions ωki and ϕki. In particular, for certain i the overdetermination conditions
on ui can be absent, but in the case of the inverse problem we always assume that

M =
n∑
i=1

mi > 0. (1.6)

Then the aim is to find the functions Fki such that the corresponding solution u to problem (1.1)–(1.3)
satisfies conditions (1.5).

In the case of a single equation n = 1 equations of type (1.1) were considered in [9] (direct
problem) and [10] (inverse problems). In particular, in these articles one can found examples of
physical models, which can be described by such equations: the Korteweg–de Vries (KdV) and
Kawahara equations with generalizations, the Kortewes–de Vries–Burgers and Benney-Lin equations,
the Kaup–Kupershmidt equation and others (see also [1], [14]). However, besides the single equations,
systems of odd-order quasilinear evolution equations also arise in real physical situations. Among
such systems on can mention the Majda–Biello system (see [17]){

ut + uxxx + vvx = 0,

vt + αvxxx + (uv)x = 0, α > 0,

and more general systems of KdV-type equations with coupled nonlinearities ([5]).
The KdV-type Boussinesq system ([6, 23, 25]){

ut + vx + vxxx + (uv)x = 0,

vt + ux + uxxx + vvx = 0

and the coupled system of two KdV equations, derived in [13] and studied in [3, 4, 7, 15, 18, 19, 20,
21, 22] (also with more general nonlinearities){

ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x = 0,

b1vt + rvx + vvx + b2a3uxxx + vxxx + b2a2uux = 0, b1 > 0, b2 > 0,

are not directly written in form (1.1), but can be transformed to it by a linear change of unknown
functions (see [3, 6, 23]).

In paper [9] initial-boundary value problem (1.1)–(1.3) was considered in the scalar case and a
result on global well-posedness in the class of weak solutions under small input data was established.
For simplicity it was assumed there that µj(t) = νj(t) ≡ 0 for j ≤ l − 1. Note that the general case
of (1.3) can be reduced to the homogeneous one by the simple substitution v(t, x) = u(t, x)−ψ(t, x),
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where the sufficiently smooth function ψ satisfies (1.3) for j ≤ l− 1, while the form of equation (1.1)
is invariant under the corresponding transformation.

In the present paper a result on global well-posedness of problem (1.1)–(1.3) itself is obtained in
the class of weak solutions under small input data. Note that in the aforementioned articles in the
case of systems such a problem was not studied. The assumptions on system (1.1) are similar to the
ones in [9, 10] in the case of single equations.

The significance of integral overdermination conditions in inverse problems is discussed in [24].
The study of inverse problems for the KdV-type equation with integral overdetermination was started
in [8]. In paper [10] for problem (1.1)–(1.3) in the scalar case two inverse problems with one integral
overdetemination condition of type (1.5) were considered. In the first one the right-hand side of the
equation of a type similar to (1.4) was chosen as the control, in the second one — the boundary data
νl. Results on well-posedness either for small input data or small time interval were established. In
paper [12] an initial-boundary value problem on a bounded interval for the higher order nonlinear
Schrödinger equation

iut + auxx + ibux + iuxxx + λ|u|pu+ iβ
(
|u|pu

)
x

+ iγ
(
|u|p
)
x
u = 0

(u is a complex-valued function) with initial and boundary conditions similar to (1.2), (1.3) was con-
sidered and three inverse problems were studied. The first two of them were similar to the problems
considered in [10] with similar results. In the third problem two overdetermination conditions of
(1.5) type were introduced and both the right-hand side of the equation and the boundary function
were chosen as controls. The results were similar to the first two cases.

Note that the inverse problem with two integral overdetermination conditions for the Korteweg–
de Vries type equation

ut + uxxx + uux + α(t)u = F (t)g(t)

in the periodic case, where the functions α and F were unknown, was considered in [16] and the
existence and uniqueness results were obtained for a small time interval.

In paper [21] an inverse problem on a bounded interval with the terminal overdetermination
condition

u(T, x) = uT (x)

for a given function uT (such problems are called controllability ones) was studied for the aforemen-
tioned coupled system of two KdV equations. Results on existence of solutions under small input
data were established.

In the present paper, results on well-posedness of inverse problem (1.1)–(1.6) are obtained either
for small input data or small time interval. Note that since the amount of integral overdetermination
conditions is arbitrary, the result is new even in the case of one equation.

Solutions of the considered problems are constructed in the special function space
(
X(QT )

)n of
all vector-functions u = (u1, . . . , un)T such that such that for every i = 1, . . . , n

ui(t, x) ∈ X(QT ) = C([0, T ];L2(I)) ∩ L2(0, T ;H l(I)),

endowed with the norm

‖u‖(X(QT ))n =
n∑
i=1

(
sup
t∈(0,T )

‖ui(t, ·)‖L2(I) + ‖∂lxui‖L2(QT )

)
.

For r > 0 let Xrn(QT ) denote the closed ball {u ∈
(
X(QT )

)n
: ‖u‖(X(QT ))n ≤ r}.

Introduce the notion of a weak solution of problem (1.1)–(1.3).
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Definition 1. Let u0 ∈
(
L2(I)

)n, µj, νj ∈ (L2(0, T )
)n ∀j, f ∈ (L1(QT )

)n, aj ∈ (C(QT )
)n2

∀j.
A function u ∈

(
X(QT )

)n is called a weak solution of problem (1.1)–(1.3) if ∂jxu(t, 0) ≡ µj(t),
∂jxu(t, R) ≡ νj(t), j = 0, . . . , l−1, and for all test functions φ(t, x), such that φ ∈

(
L2(0, T ;H l+1(I))

)n,
φt ∈

(
L2(QT )

)n, φ∣∣
t=T
≡ 0, ∂jxφ

∣∣
x=0

= ∂jxφ
∣∣
x=R
≡ 0, j = 0, . . . , l − 1, ∂lxφ

∣∣
x=0
≡ 0, the functions(

gj(t, x, u, . . . , ∂
l−1
x u), ∂jxφ

)
∈ L1(QT ), j = 0, . . . , l, and the following integral identity holds:∫∫

QT

[
(u, φt)− (a2l+1∂

l
xu, ∂

l+1
x φ) + (a2l∂

l
xu, ∂

l
xφ)

+
l−1∑
j=0

(
(a2j+1∂

j+1
x u+ a2j∂

j
xu), ∂jxφ

)
−

l∑
j=0

(
gj(t, x, u, . . . , ∂

l−1
x u), ∂jxφ

)
+ (f, φ)

]
dxdt+

∫
I

(u0, φ
∣∣
t=0

) dx+

∫ T

0

(a2l+1νl, ∂
l
xφ
∣∣
x=R

) dt = 0, (1.7)

where (·, ·) denotes the scalar product in Rn.

Let f̂(ξ) ≡ F [f ](ξ) and F−1[f ](ξ) be the direct and inverse Fourier transforms of a function f ,
respectively . In particular, for f ∈ S(R)

f̂(ξ) =

∫
R
e−iξxf(x) dx, F−1[f ](x) =

1

2π

∫
R
eiξxf(ξ) dξ.

For s ∈ R define the fractional order Sobolev space

Hs(R) =
{
f : F−1[(1 + |ξ|s)f̂(ξ)] ∈ L2(R)

}
and for certain T > 0 let Hs(0, T ) be the space of restrictions on (0, T ) of functions from Hs(R). To
describe properties of boundary functions µj, νj we use the following function spaces. Let m = l− 1
or m = l, define (

Bm(0, T )
)n

=
( m∏
j=0

H(l−j)/(2l+1)(0, T )
)n
,

endowed with the natural norm.
The coefficients of the linear part of the system further are always assumed to verify the following

conditions:
a(2l+1)i > 0, a(2l)i ≤ 0, i = 1, . . . , n, (1.8)

and for any 0 ≤ j ≤ l − 1, i,m = 1, . . . n

∂kxa(2j+1)im ∈ C(QT ), k = 0, . . . , j + 1, ∂kxa(2j)im ∈ C(QT ), k = 0, . . . , j. (1.9)

Let ym = (ym1, . . . , ymn) for m = 0, . . . , l− 1. The functions gj(t, x, y0, . . . , yl−1) for any 0 ≤ j ≤ l
are always subjected to the following assumptions: for i = 1, . . . , n

gji, gradykgji ∈ C(QT × Rln), j = 0, . . . , l − 1, gji(t, x, 0, . . . , 0) ≡ 0, (1.10)

∣∣gradykgji(t, x, y0, . . . , yl−1)
∣∣ ≤ c

l−1∑
m=0

(
|ym|b1(j,k,m) + |ym|b2(j,k,m)

)
, k = 0, . . . , l − 1,

∀(t, x, y0, . . . , yl−1) ∈ QT × Rln, (1.11)
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where 0 < b1(j, k,m) ≤ b2(j, k,m), |ym| = (ym, ym)1/2.
Regarding the functions ωki we always need the following conditions:

ω ∈ H2l+1(I), ω(m)(0) = 0, m = 0, . . . , l, ω(m)(R) = 0, m = 0, . . . , l − 1, (1.12)

for all ωki (where here ω stands for ωki).
Now we can pass to the main results and begin with the direct problem.

Theorem 1.1. Let the coefficients aj, j = 0, . . . , 2l + 1, satisfy conditions (1.8), (1.9). Let the
functions gj satisfy conditions (1.10), (1.11), where

b2(j, k,m) ≤ 4l − 2j − 2k

2m+ 1
∀ j, k,m. (1.13)

Let u0 ∈
(
L2(I)

)n, (µ0, . . . , µl−1) ∈
(
Bl−1(0, T )

)n, (ν0, . . . , νl) ∈
(
Bl(0, T )

)n, f ∈ (L1(0, T ;L2(I))
)n

for an arbitrary T > 0. Denote

c0 = ‖u0‖(L2(I))n + ‖(µ0, . . . , µl−1)‖(Bl−1(0,T ))n + ‖(ν0, . . . , νl)‖(Bl(0,T ))n

+ ‖f‖(L1(0,T ;L2(I)))n . (1.14)

Then there exists δ > 0 such that under the assumption c0 ≤ δ there exists a unique weak solution
u ∈

(
X(QT )

)n of problem (1.1)–(1.3). Moreover, the map(
u0, (µ0, . . . , µl−1), (ν0, . . . , νl), f

)
→ u (1.15)

is Lipschitz continuous on the closed ball of the radius δ in the space
(
L2(I)

)n×(Bl−1(0, T )
)n ×(

Bl(0, T )
)n × (L1(0, T ;L2(I))

)n into the space
(
X(QT )

)n.
Theorem 1.2. Let the hypotheses of Theorem 1.1 be satisfied except inequalities (1.13) which are
substituted by the following ones:

b2(j, k,m) <
4l − 2j − 2k

2m+ 1
∀ j, k,m. (1.16)

Let c0 is given by formula (1.14).
Then for a fixed arbitrary δ > 0 there exists T0 > 0 such that if c0 ≤ δ and T ∈ (0, T0] there exists

a unique weak solution u ∈
(
X(QT )

)n of problem (1.1)–(1.3). Moreover, the map (1.15) is Lipschitz
continuous on the closed ball of the radius δ similarly to Theorem 1.1.

For the inverse problem the results are as follows.

Theorem 1.3. Let the coefficients aj, j = 0, . . . , 2l+ 1, satisfy conditions (1.8), (1.9) and the func-
tions gj satisfy conditions (1.10), (1.11), (1.13). Let u0 ∈

(
L2(I)

)n, (µ0, . . . , µl−1) ∈
(
Bl−1(0, T )

)n,
(ν0, . . . , νl) ∈

(
Bl(0, T )

)n, h0 = (h01, . . . , h0n)T ∈
(
L1(0, T ;L2(I))

)n for an arbitrary T > 0. Assume
that condition (1.6) holds and for any i = 1, . . . , n, satisfying mi > 0, for k = 1, . . .mi the functions
ωki satisfy condition (1.12); ϕki ∈ W 1

1 (0, T ) and

ϕki(0) =

∫
I

u0i(x)ωki(x) dx; (1.17)

hki ∈ C([0, T ];L2(I)) for k = 1, . . . ,mi. Let

ψkji(t) ≡
∫
I

hji(t, x)ωki(x) dx, k, j = 1, . . . ,mi, (1.18)
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and assume that
∆i(t) ≡ det

(
ψkji(t)

)
6= 0 ∀ t ∈ [0, T ]. (1.19)

Denote

c0 = ‖u0‖(L2(I))n + ‖(µ0, . . . , µl−1)‖(Bl−1(0,T ))n + ‖(ν0, . . . , νl)‖(Bl(0,T ))n

+ ‖h0‖(L1(0,T ;L2(I)))n +
∑
i:mi>0

mi∑
k=1

‖ϕ′ki‖L1(0,T ). (1.20)

Then there exists δ > 0 such that under the assumption c0 ≤ δ there exist functions Fki ∈ L1(0, T ),
i : mi > 0, k = 1, . . . ,mi, and the corresponding weak solution u ∈

(
X(QT )

)n of problem (1.1)–(1.3)
satisfying (1.5), where the function f is given by formula (1.4). Moreover, there exists r > 0 such that
this solution u is unique in the ball Xrn(QT ) with the corresponding unique functions Fki ∈ L1(0, T )
and the map (

u0, (µ0, . . . , µl−1), (ν0, . . . , νl), h0, {ϕ′ki}
)
→ (u, {Fki}) (1.21)

is Lipschitz continuous on the closed ball of the radius δ in the space
(
L2(I)

)n×(Bl−1(0, T )
)n ×(

Bl(0, T )
)n × (L1(0, T ;L2(I))

)n × (L1(0, T )
)M into the space

(
X(QT )

)n × (L1(0, T )
)M .

Theorem 1.4. Let the hypotheses of Theorem 1.3 be satisfied except inequalities (1.13) which are
substituted by inequalities (1.16). Let c0 be given by formula (1.20). Then two assertions are valid.

1. For a fixed arbitrary δ > 0 there exists T0 > 0 such that if c0 ≤ δ and T ∈ (0, T0], there
exist unique functions Fki ∈ L1(0, T ), i : mi > 0, k = 1, . . . ,mi, and the corresponding unique weak
solution u ∈

(
X(QT )

)n of problem (1.1)–(1.3) satisfying (1.5), where the function f is given by
formula (1.4).

2. For a fixed arbitrary T > 0 there exists δ > 0 such that under the assumption c0 ≤ δ there
exist unique functions Fki ∈ L1(0, T ), i : mi > 0, k = 1, . . . ,mi, and the corresponding unique weak
solution u ∈

(
X(QT )

)n of problem (1.1)–(1.3) satisfying (1.5), where the function f is given by
formula (1.4).

Moreover, map (1.21) is Lipschitz continuous on the closed ball of the radius δ similarly to The-
orem 1.3.

Remark 1. Theorems 1.2 and 1.4 are valid for the aforementioned Majda–Biello system. In the case
of such a system with more general nonlinearities{

ut + uxxx +
(
g1(u, v)

)
x

= f1,

vt + αvxxx +
(
g2(u, v)

)
x

= f2, α > 0,

Theorems 1.1 and 1.3 are valid if

|∂ykgj(y1, y2)| ≤ c
(
|y1|b1 + |y2|b1 + |y1|b2 + |y2|b2

)
, k, j = 1, 2,

where 0 < b1 ≤ b2 ≤ 2, for example, if g1(y1, y2) = cy3
2, g2(y1, y2) = c1y

2
1y2 + c2y1y

2
2.

The paper is organized as follows. Section 2 contains certain auxiliary results on the corresponding
linear initial-boundary value problem and interpolating inequalities. Section 3 is devoted to the direct
problem, Section 4 — to the inverse one.
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2 Preliminaries

Further we use the following interpolating inequality (see, for example, [2]): there exists a constant
c = c(R, l, p) such that for any ϕ ∈ H l(I), integer m ∈ [0, l) and p ∈ [2,+∞]

‖ϕ(m)‖Lp(I) ≤ c‖ϕ(l)‖2s
L2(I)‖ϕ‖1−2s

L2(I) + c‖ϕ‖L2(I), s = s(p, l,m) =
2m+ 1

4l
− 1

2lp
. (2.1)

On the basis of (2.1) in [10, Lemma 3.3] the following inequality was proved: let j ∈ [0, l],
k,m ∈ [0, l − 1], b ∈ (0, (4l − 2j − 2k)/(2m+ 1)], then for any functions v, w ∈ X(QT )∥∥|∂mx v|b∂kxw∥∥L2l/(2l−j)(0,T ;L2(I))

≤ c
(
T ((4l−2j−2k)−(2m+1)b)/(4l) + T (2l−j)/(2l))‖v‖bX(QT )‖w‖X(QT ). (2.2)

Besides nonlinear system (1.1) consider its linear analogue

ut − (−1)l(a2l+1∂
2l+1
x u+ a2l∂

2l
x u)−

l−1∑
j=0

(−1)j∂jx
[
a2j+1(t, x)∂j+1

x u+ a2j(t, x)∂jxu
]

= f(t, x) +
l∑

j=0

(−1)j∂jxGj(t, x), (2.3)

Gj = (Gj1, . . . , Gjn)T . The notion of a weak solution to the corresponding initial-boundary value
problem is similar to Definition 1. In particular, the corresponding integral identity (for the same
test functions as in Definition 1) is as follows:∫∫

QT

[
(u, φt)− (a2l+1∂

l
xu, ∂

l+1
x φ) + (a2l∂

l
xu, ∂

l
xφ)

+
l−1∑
j=0

(
(a2j+1∂

j+1
x u+ a2j∂

j
xu), ∂jxφ

)
+
(
f(t, x), φ

)
+

l∑
j=0

(
Gj(t, x), ∂jxφ

)]
dxdt

+

∫
I

(u0, φ
∣∣
t=0

) dx+

∫ T

0

(a2l+1νl, ∂
l
xφ
∣∣
x=R

) dt = 0. (2.4)

First consider the case aj ≡ 0 for j ≤ 2l− 1. Then system (2.3) is obviously splitted into the set
of separate equations and we can use the corresponding results from [11] and [9] for single equations.

Lemma 2.1. Let the coefficients a2l+1 and a2l satisfy condition (1.8), aj ≡ 0 for j ≤ 2l − 1,
u0 ∈

(
L2(I)

)n, (µ0, . . . , µl−1) ∈
(
Bl−1(0, T )

)n, (ν0, . . . , νl) ∈
(
Bl(0, T )

)n, f = Gj ≡ 0 ∀j.
Then there exists a unique weak solution u ∈

(
X(QT )

)n of problem (2.3), (1.2), (1.3) and for any
t ∈ (0, T ]

‖u‖(X(Qt))n ≤ c(T )
[
‖u0‖(L2(I))n + ‖(µ0, . . . , µl−1)‖(Bl−1(0,t))n + ‖(ν0, . . . , νl)‖(Bl(0,t))n

]
. (2.5)

Proof. This assertion succeeds from [11, Lemma 4.3].

Lemma 2.2. Let the coefficients a2l+1 and a2l satisfy condition (1.8), aj ≡ 0 for j ≤ 2l − 1,
u0 ≡ 0, µj ≡ 0 for j = 0, . . . , l − 1, νj ≡ 0 for j = 0, . . . , l, f ∈

(
L1(0, T ;L2(I))

)n,
Gj ∈

(
L2l/(2l−j)(0, T ;L2(I))

)n, j = 0, . . . , l.
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Then there exists a unique weak solution u ∈
(
X(QT )

)n of problem (2.3), (1.2), (1.3) and for any
t ∈ [0, T ]

‖u‖(X(Qt))n ≤ c(T )
[
‖f‖(L1(0,t;L2(I)))n +

l∑
j=0

‖Gj‖(L2l/(2l−j)(0,t;L2(I)))n

]
; (2.6)

moreover, for i = 1, . . . , n and ρ(x) ≡ 1 + x∫
I

u2
i (t, x)ρ(x) dx+

∫∫
Qt

(
(2l + 1)a(2l+1)i − 2a(2l)iρ(x)

)(
∂lxui(τ, x)

)2
dxdτ

≤ 2

∫∫
Qt

fiuiρ dxdτ + 2
l∑

j=0

∫∫
Qt

Gji(∂
j
xuiρ+ j∂j−1

x ui) dxdτ. (2.7)

Proof. This assertion succeeds from [9, Lemma 4].

Theorem 2.1. Let the coefficients aj satisfy conditions (1.8), (1.9), u0 ∈
(
L2(I)

)n, (µ0, . . . , µl−1) ∈(
Bl−1(0, T )

)n, (ν0, . . . , νl) ∈
(
Bl(0, T )

)n, f ∈ (L1(0, T ;L2(I))
)n, Gj ∈

(
L2l/(2l−j)(0, T ;L2(I))

)n, j =
0, . . . , l.

Then there exists a unique weak solution u ∈
(
X(QT )

)n of problem (2.3), (1.2), (1.3) and for any
t ∈ (0, T ]

‖u‖(X(Qt))n ≤ c(T )
[
‖u0‖(L2(I))n + ‖(µ0, . . . , µl−1)‖(Bl−1(0,t))n

+ ‖(ν0, . . . , νl)‖(Bl(0,t))n + ‖f‖(L1(0,t;L2(I)))n +
l∑

j=0

‖Gj‖(L2l/(2l−j)(0,t;L2(I)))n

]
. (2.8)

Proof. Denote by w = (w1, . . . , wn)T the solution of problem (2.3), (1.2), (1.3) constructed in
Lemma 2.1 Let U(t, x) ≡ u(t, x) − w(t, x). Consider an initial-boundary value problem for the
function U :

Ut − (−1)l(a2l+1∂
2l+1
x U + a2l∂

2l
x U)−

l−1∑
j=0

(−1)j∂jx
[
a2j+1(t, x)∂j+1

x U + a2j(t, x)∂jxU
]

= f(t, x) +
l∑

j=0

(−1)j∂jxG̃j(t, x), (2.9)

where G̃l ≡ Gl, while G̃j ≡ Gj + a2j+1∂
j+1
x w + a2j∂

j
xw for j < l, and zero initial and boundary

conditions (1.2), (1.3). Note that by virtue of (2.1) for m = 0 or m = 1, j < l and i = 1, . . . , n

‖∂j+mx wi‖L2(I) ≤ c‖∂lxwi‖
(j+m)/l
L2(I) ‖wi‖

(l−j−m)/l
L2(I) + c‖wi‖L2(I).

Therefore, G̃j ∈
(
L2l/(2l−j)(0, T ;L2(I))

)n with

‖G̃j‖(L2l/(2l−j)(0,t;L2(I)))n ≤ ‖Gj‖(L2l/(2l−j)(0,t;L2(I)))n + c(T )‖w‖(X(Qt))n . (2.10)

In order to obtain the solution to the initial-value problem for system (2.9) we apply the con-
traction principle and first construct it on a small time interval [0, t0] as the fixed point of a map
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U = ΛV , where for V ∈
(
X(Qt0)

)n the function U ∈
(
X(Qt0)

)n is a solution to an initial-boundary
value problem for the system

Ut − (−1)l(a2l+1∂
2l+1
x U + a2l∂

2l
x U) =

l−1∑
j=0

(−1)j∂jx
[
a2j+1(t, x)∂j+1

x V + a2j(t, x)∂jxV
]

+ f(t, x) +
l∑

j=0

(−1)j∂jxG̃j(t, x), (2.11)

with zero initial and boundary conditions (1.2), (1.3). Note that similarly to (2.10) the hypothesis
of Lemma 2.2 is verified and such a map is defined for any t0 ∈ (0, T ]. Moreover, according to (2.6)

‖U‖(X(Qt0 ))n ≤ c(T )
[
‖f‖(L1(0,t0;L2(I)))n +

l∑
j=0

‖G̃j‖(L2l/(2l−j)(0,t0;L2(I)))n

+
l−1∑
j=0

(
‖∂j+1

x V ‖(L2l/(2l−j)(0,t0;L2(I)))n + (‖∂jxV ‖(L2l/(2l−j)(0,t0;L2(I)))n
)]
. (2.12)

By virtue of (2.1) if j +m ≤ 2l − 1 for i = 1, . . . , n

‖∂mx Vi‖L2l/(2l−j)(0,t0;L2(I))

≤ c
(∫ t0

0

(
‖∂lxVi‖

2m/(2l−j)
L2(I) ‖Vi‖2(l−m)/(2l−j)

L2(I) + ‖Vi‖2l/(2l−j)
L2(I)

)
dt
)(2l−j)/(2l)

≤ ct
(2l−j−m)/(2l)
0 ‖Vi‖(l−m)/l

C([0,t0];L2(I))‖∂
l
xVi‖

m/l
L2(Qt0 ) + ct

(2l−j)/(2l)
0 ‖Vi‖C([0,t0];L2(I))

≤ c(T )t
1/(2l)
0 ‖Vi‖X(Qt0 ). (2.13)

Therefore, it follows from (2.12) that

‖U‖(X(Qt0 ))n ≤ c(T )
[
‖f‖(L1(0,t0;L2(I)))n +

l∑
j=0

‖G̃j‖(L2l/(2l−j)(0,t0;L2(I)))n

+ t
1/(2l)
0 ‖V ‖(X(Qt0 ))n

]
. (2.14)

Similarly to (2.14) for Ṽ ∈
(
X(Qt0)

)n, Ũ = ΛṼ

‖U − Ũ‖(X(Qt0 ))n ≤ c(T )t
1/(2l)
0 ‖V − Ṽ ‖(X(Qt0 ))n . (2.15)

Inequalities (2.14), (2.15) provide existence of a unique solution U ∈
(
X(Qt0)

)n to the considered
problem if, for example, c(T )t

1/(2l)
0 ≤ 1/2. Then since the value of t0 depends only on T step by step

this solution can be extended to the whole time segment [0, T ], moreover,

‖U‖(X(Qt))n ≤ c(T )
[
‖f‖(L1(0,t;L2(I)))n

l∑
j=0

‖G̃j‖(L2l/(2l−j)(0,t;L2(I)))n

]
. (2.16)

Combining (2.5) (applied to the function w), (2.10) and (2.16), for u ≡ U + w we complete the
proof.
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Introduce certain additional notation. Let

u = S(u0, (µ0, . . . , µl−1), (ν0, . . . , νl), f, (G0, . . . , Gl))

be a weak solution of problem (2.3), (1.2), (1.3) from the space
(
X(QT )

)n under the hypotheses of
Theorem 2.1. Define also

W = (u0, (µ0, . . . , µl−1), (ν0, . . . , νl)),

S̃W = S(W, 0, (0, . . . , 0)), S̃ :
(
L2(I)× Bl−1(0, T )× Bl(0, T )

)n → (
X(QT )

)n
,

S0f = S(0, (0, . . . , 0), (0, . . . , 0), f, (0, . . . , 0)), S0 :
(
L1(0, T ;L2(I))

)n → (
X(QT )

)n
,

S̃jGj = S(0, (0, . . . , 0), (0, . . . , 0), 0, (0, . . . , Gj, . . . , 0)),

Sj :
(
L2l/(2l−j)(0, T ;L2(I))

)n → (
X(QT )

)n
, j = 0, . . . , l.

Let W̃ 1
1 (0, T ) = {ϕ ∈ W 1

1 (0, T ) : ϕ(0) = 0}. Obviously, the equivalent norm in this space is
‖ϕ′‖L1(0,T ).

Let a function ω ∈ C(I). On the space of functions u(t, x), lying in L1(I) for all t ∈ [0, T ], define
a linear operator Q(ω) by a formula (Q(ω)u)(t) = q(t;u, ω), where

q(t;u, ω) ≡
∫
I

u(t, x)ω(x) dx, t ∈ [0, T ].

Lemma 2.3. Let the hypotheses of Theorem 2.1 be satisfied. Let the function ω satisfy condition
(1.12).

Then for the function u = (u1 . . . , un)T = S(u0, (µ0, . . . , µl−1), (ν0, . . . , νl), f, (G0, . . . , Gl)) the
functions q(·;ui, ω) = Q(ω)ui ∈ W 1

1 (0, T ), i=1,. . . ,n, and for almost every t ∈ (0, T )

q′(t;ui, ω) = r(t;ui, ω) ≡ νli(t)a(2l+1)iω
(l)(R)

+
l−1∑
k=0

(−1)l+k
[
νki(t)

(
a(2l+1)iω

(2l−k)(R)− a(2l)iω
(2l−k−1)(R)

)
− µki(t)

(
a(2l+1)iω

(2l−k)(0)− a(2l)iω
(2l−k−1)(0)

)]
+

n∑
m=1

l−1∑
j=0

j−1∑
k=0

(−1)j+k
[
νkm(t)

(
(a(2j+1)imω

(j))(j−k)(R)− (a(2j)imω
(j))(j−k−1)(R)

)
− µkm(t)

(
(a(2j+1)imω

(j))(j−k)(0)− (a(2j)imω
(j))(j−k−1)(0)

)]
+ (−1)l+1

∫
I

ui(t, x)
(
a(2l+1)iω

(2l+1) − a(2l)iω
(2l)
)
dx

+
n∑

m=1

l−1∑
j=0

(−1)j+1

∫
I

um(t, x)
[
(a(2j+1)imω

(j))(j+1) − (a(2j)imω
(j))(j)

]
dx

+

∫
I

fi(t, x)ω dx+
l∑

j=0

∫
I

Gji(t, x)ω(j) dx, (2.17)

‖q′(·;ui, ω)‖L1(0,T ) ≤ c(T )
[
‖u0‖(L2(I))n + ‖(µ0, . . . , µl−1)‖(Bl−1(0,T ))n

+ ‖(ν0, . . . , νl)‖(Bl(0,T ))n + ‖f‖(L1(0,T ;L2(I)))n +
l∑

j=0

(
‖Gj‖(L2l/(2l−j)(0,T ;L2(I)))n

)]
, (2.18)

where the constant c does not decrease in T .
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Proof. For an arbitrary function ψ ∈ C∞0 (0, T ) let φi(t, x) ≡ ψ(t)ω(x) for certain i, φm(x) ≡ 0 when
m 6= i. This function φ satisfies the assumption on a test function in Definition 1 and then equality
(2.4) after integration by parts yields that∫ T

0

ψ′(t)q(t;ui, ω) dt = −
∫ T

0

ψ(t)r(t;ui, ω) dt. (2.19)

Since r ∈ L1(0, T ) it follows from (2.19) that there exists the weak derivative q′(t;ui, ω) = r(t;ui, ω) ∈
L1(0, T ) and

‖q′‖L1(0,T ) ≤ c
[ l−1∑
j=0

‖µj‖(L1(0,T ))n +
l∑

j=0

‖νj‖(L1(0,T ))n + ‖f‖(L1(0,T ;L2(I)))n

+
l∑

j=0

‖Gj‖(L1(0,T ;L1(I)))n + ‖u‖(L1(0,T ;L2(I)))n

]
.

Since ‖u‖(L1(0,T ;L2(I))n ≤ T‖u‖(C([0,T ];L2(I)))n ≤ T‖u‖(X(QT ))n , application of inequality (2.8) completes
the proof.

3 The direct problem

Proof of the existence part of Theorem 1.1. On the space
(
X(QT )

)n consider the map Θ

u = Θv ≡ S̃W + S0f −
l∑

j=0

S̃jgj(t, x, v, . . . , ∂
l−1
x v). (3.1)

Note that according to conditions (1.10), (1.11) for i = 1, . . . , n

|gji(t, x, v, . . . , ∂l−1
x v)| ≤ c

l−1∑
k=0

l−1∑
m=0

(
|∂mx v|b1(j,k,m) + |∂mx v|b2(j,k,m)

)
|∂kxv| (3.2)

In particular, conditions (1.13) and inequality (2.2) yield that gji(t, x, v, . . . , ∂
l−1
x v) ∈

L2l/(2l−j)(0, T ;L2(I)), moreover,

‖gj(t, x, v, . . . , ∂l−1
x v)‖(L2l/(2l−j)(0,T ;L2(I)))n

≤ c
l−1∑
k=0

l−1∑
m=0

2∑
i=1

(T ((4l−2j−2k)−(2m+1)bi(j,k,m))/(4l) + T (2l−j)/(2l))‖v‖bi(j,k,m)+1
(X(QT ))n . (3.3)

In particular, Theorem 2.1 ensures that the map Θ exists. Let

b1 = min
j,k,m

(b1(j, k,m)), b2 = max
j,k,m

(b2(j, k,m)), 0 < b1 ≤ b2, (3.4)

then it follows from (3.3) that

‖gj(t, x, v, . . . , ∂l−1
x v)‖(L2l/(2l−j)(0,T ;L2(I)))n ≤ c(T )

(
‖v‖b1+1

(X(QT ))n + ‖v‖b2+1
(X(QT ))n

)
, (3.5)

therefore, inequality (2.8) implies that

‖Θv‖(X(QT ))n ≤ c(T )c0 + c(T )
(
‖v‖b1+1

(X(QT ))n + ‖v‖b2+1
(X(QT ))n

)
. (3.6)
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Next, for any functions v1, v2 ∈
(
X(QT )

)n
|gji(t, x, v1, . . . , ∂

l−1
x v1)− gji(t, x, v2, . . . , ∂

l−1
x v2)|

≤ c

l−1∑
k=0

l−1∑
m=0

(
|∂mx v1|b1(j,k,m) + |∂mx v2|b1(j,k,m) + |∂mx v1|b2(j,k,m) + |∂mx v2|b2(j,k,m)

)
× |∂kx(v1 − v2)|, (3.7)

therefore, similarly to (3.5)

‖gj(t, x, v1, . . . , ∂
l−1
x v1)− gj(t, x, v2, . . . , ∂

l−1
x v2)‖(L2l/(2l−j)(0,T ;L2(I)))n

≤ c(T )
(
‖v1‖b1(X(QT ))n + ‖v2‖b1(X(QT ))n + ‖v1‖b2(X(QT ))n + ‖v2‖b2(X(QT ))n

)
‖v1 − v2‖(X(QT ))n . (3.8)

and similarly to (3.6)

‖Θv1 −Θv2‖(X(QT ))n

≤ c(T )
(
‖v1‖b1(X(QT ))n + ‖v2‖b1(X(QT ))n + ‖v1‖b2(X(QT ))n + ‖v2‖b2(X(QT ))n

)
‖v1 − v2‖(X(QT ))n . (3.9)

Now, choose r > 0 such that

rb1 + rb2 ≤ 1

4c(T )
(3.10)

and then δ > 0 such that
δ ≤ r

2c(T )
. (3.11)

Then it follows from (3.6) and (3.9) that on the ball Xrn(QT ) the map Θ is a contraction. Its unique
fixed point u ∈

(
X(QT )

)n is the desired solution. Moreover,

‖u‖(X(QT ))n ≤ c(c0). (3.12)

Note that the above argument ensures uniqueness only in a certain ball. In order to establish
uniqueness and continuous dependence in the whole space we apply another approach. Then the rest
part of Theorem 1.1 succeeds from (3.12) and the theorem below.

Theorem 3.1. Let the assumptions on the functions aj and gj from the hypotheses of The-
orem 1.1 be satisfied. Let u0, ũ0 ∈

(
L2(I)

)n, (µ0, . . . , µl−1), (µ̃0, . . . µ̃l−1) ∈
(
Bl−1(0, T )

)n,
(ν0, . . . , νl), (ν̃0, . . . , ν̃l) ∈

(
Bl(0, T )

)n, f, f̃ ∈ (L1(0, T ;L2(I))
)n and let u, ũ be two weak solutions

to corresponding problems (1.1)–(1.3) in the space
(
X(QT )

)n with ‖u‖(X(QT ))n , ‖ũ‖(X(QT ))n ≤ K for
a certain positive K.

Then there exists a positive constant c = c(T,K) such that

‖u− ũ‖(X(QT ))n ≤ c
(
‖u0 − ũ0‖(L2(I))n + ‖(µ0 − µ̃0, . . . , µl−1 − µ̃l−1)‖(Bl−1(0,T ))n

+ ‖(ν0 − ν̃0, . . . , νl − ν̃l)‖(Bl(0,T ))n + ‖f − f̃‖(L1(0,T ;L2(I)))n
)
. (3.13)

Proof. Let w ∈
(
X(QT )

)n be a solution to the linear problem

wt − (−1)l(a2l+1∂
2l+1
x w + a2l∂

2l
x w) = 0, (3.14)
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w(0, x) = u0(x)− ũ0(x), (3.15)

∂jxw(t, 0) = µj(t)− µ̃j(t), j = 0, . . . , l − 1, ∂jxw(t, R) = νj(t)− ν̃j(t), j = 0, . . . , l. (3.16)

Lemma 2.1 ensures that such a function exists and according to (2.5)

‖w‖(X(QT ))n ≤ c(T )
(
‖u0 − ũ0‖(L2(I))n + ‖(µ0 − µ̃0, . . . , µl−1 − µ̃l−1)‖(Bl−1(0,T ))n

+ ‖(ν0 − ν̃0, . . . , νl − ν̃l)‖(Bl(0,T ))n
)
. (3.17)

Let v(t, x) ≡ u(t, x) − ũ(t, x) − w(t, x), Then v ∈
(
X(QT )

)n is a solution to the initial-boundary
problem in QT for the system

vt − (−1)l(a2l+1∂
2l+1
x v + a2l∂

2l
x v) = (f − f̃)

+
l−1∑
j=0

(−1)j∂jx
[
a2j+1(t, x)∂j+1

x (u− ũ) + a2j(t, x)∂jx(u− ũ)
]

−
l∑

j=0

(−1)j∂jx
[
gj(t, x, u, . . . , ∂

l−1
x u)− gj(t, x, ũ, . . . , ∂l−1

x ũ)
]

(3.18)

with zero initial and boundary conditions of (1.2), (1.3) type. Similarly to (2.11)–
(2.13) a2j+1(t, x)∂j+1

x u + a2j(t, x)∂jxu ∈
(
L2l/(2l−j)(0, T ;L2(I))

)n, similarly to (3.2), (3.3)
gj(t, x, u, . . . , ∂

l−1
x u) ∈

(
L2l/(2l−j)(0, T ;L2(I))

)n. The same properties hold in the case of the function
ũ. Therefore, the hypothesis of Lemma 2.2 is satisfied and for i = 1, . . . , n according to (2.7)∫

I

v2
i (t, x)ρ dx+

∫∫
Qt

(
(2l + 1)a(2l+1)i − 2a(2l)iρ

)(
∂lxvi(τ, x)

)2
dxdτ

≤ 2

∫∫
Qt

(fi − f̃i)viρ dxdτ

+ 2
n∑

m=1

l−1∑
j=0

∫∫
Qt

(
a(2j+1)im(t, x)∂j+1

x (vm + wm) + a(2j)im(t, x)∂jx(vm + wm)
)

× (∂jxviρ+ j∂j−1
x vi) dxdτ

− 2
l∑

j=0

∫∫
Qt

(
gji(t, x, u, . . . , ∂

l−1
x u)− gji(t, x, ũ, . . . , ∂l−1

x ũ)
)

× (∂jxviρ+ j∂j−1
x vi) dxdτ. (3.19)

Note that by virtue of (1.8) uniformly in i and x

(2l + 1)a(2l+1)i − 2a(2l)iρ(x) ≥ α0 > 0. (3.20)

It follows from (2.1) for p = 2 that if j ≤ l − 1∫∫
Qt

|∂j+1
x vm| · |∂jxvi| dxdτ ≤ c

∫ t

0

[
‖∂lxv‖

(2l−1)/l)
(L2(I))n ‖v‖

1/l
(L2(I))n + ‖v‖2

(L2(I))n

]
dτ

≤ ε

∫∫
Qt

|∂lxv|2 dxdτ + c(ε)

∫∫
Qt

|v|2ρ dxdτ, (3.21)
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where ε > 0 can be chosen arbitrarily small;∫∫
Qt

|∂j+1
x wm| · |∂jxvi| dxdτ ≤

(∫∫
Qt

(∂jxvi)
2 dxdτ

∫∫
Qt

(∂j+1
x wm)2 dxdτ

)1/2

≤ ε

∫∫
Qt

|∂lxv|2 dxdτ + c(ε)

∫∫
Qt

|v|2ρ dxdτ + c‖w‖2
(X(QT ))n . (3.22)

Next, similarly to (3.7)

|gji(t, x, u, . . . , ∂l−1
x u)− gji(t, x, ũ, . . . , ∂l−1

x ũ)|

≤ c

l−1∑
k=0

l−1∑
m=0

(
|∂mx u|b1(j,k,m) + |∂mx ũ|b1(j,k,m) + |∂mx u|b2(j,k,m) + |∂mx ũ|b2(j,k,m)

)
× |∂kx(v + w)|. (3.23)

Note that, for example, for j ≤ l, k,m ≤ l − 1 if 0 ≤ b ≤ (4l − 2j − 2k)/(2m+ 1)∫
I

|∂mx u|b|∂kxv| · |∂jxv| dx ≤ sup
x∈I
|∂mx u|b

(∫
I

|∂kxv|2 dx
∫
I

|∂jxv|2 dx
)1/2

≤ c sup
x∈I
|∂mx u|b

[(∫
I

|∂lxv|2 dx
)(k+j)/(2l)(∫

I

|v|2 dx
)(2l−j−k)/(2l)

+

∫
I

|v|2 dx
]

≤ ε

∫
I

|∂lxv|2 dx+ c(ε)
[
sup
x∈I
|∂mx u|2lb/(2l−j−k) + sup

x∈I
|∂mx u|b

] ∫
I

|v|2ρ dx, (3.24)

where∫ T

0

sup
x∈I
|∂mx u|2lb/(2l−j−k) dt

≤ sup
t∈(0,T )

(∫
I

|u|2 dx
)(2l−2m−1)b/(4l−2j−2k)

∫ T

0

(∫
I

|∂lxu|2 dx
)(2m+1)b/(4l−2j−2k)

dt

≤ c(T )‖u‖2lb/(2l−j−k)
(X(QT ))n dt; (3.25)

also split b into two parts: b = b′+b′′, where 0 ≤ b′ ≤ (2l−2j)/(2m+1), 0 ≤ b′′ ≤ (2l−2k)/(2m+1),
then similarly to (3.24)∫

I

|∂mx u|b|∂kxw| · |∂jxv| dx ≤ sup
x∈I
|∂mx u|b

′+b′′
(∫

I

|∂jxv|2 dx
∫
I

|∂kxw|2 dx
)1/2

≤ ε

∫
I

|∂lxv|2 dx+ c(ε)
[
sup
x∈I
|∂mx u|2lb

′/(l−j) + sup
x∈I
|∂mx u|2b

′
] ∫

I

|v|2ρ dx

+ c

∫
I

|∂lxw|2 dx+ c
[
sup
x∈I
|∂mx u|2lb

′′/(l−k) + sup
x∈I
|∂mx u|2b

′′
] ∫

I

|w|2 dx, (3.26)

where similarly to (3.25)∫ T

0

sup
x∈I
|∂mx u|2lb

′/(l−j) dt,

∫ T

0

sup
x∈I
|∂mx u|2lb

′′/(l−k) dt ≤ c(T,K). (3.27)

Gathering (3.20)–(3.27) we deduce from inequality (3.19) that∫
I

v2
i (t, x)ρ dx+ α0

∫∫
Qt

(∂lxvi)
2 dxdτ ≤ α0

2n

∫∫
Qt

|∂lxv|2 dxdτ

+

∫ t

0

γ(τ)

∫
I

|v|2ρ dxdτ + 2

∫ t

0

‖f − f̃‖(L2(I))n‖vi‖L2(I) dτ + c(T,K)‖w‖2
(X(QT ))n , (3.28)
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where ‖γ‖L1(0,T ) ≤ c(T,K). Summing inequalities (3.28) with respect to i, using estimate (3.17) and
applying Gronwall lemma we complete the proof.

In this section it remains to prove Theorem 1.2.

Proof of Theorem 1.2. Overall, the proof repeats the proof of the existence part of Theorem 1.1. The
desired solution is constructed as a fixed point of the map Θ from (3.1). In comparison with (3.3)
here we obtain the following estimate: let

σ =
min
j,k,m

(4l − 2j − 2k − (2m+ 1)b2(j, k,m))

4l
(3.29)

(note that σ > 0 because of (1.16)), then

‖gj(t, x, v, . . . , ∂l−1
x v)‖(L2l/(2l−j)(0,T ;L2(I)))n ≤ c(T )T σ

l−1∑
k=0

l−1∑
m=0

2∑
i=1

‖v‖bi(j,k,m)+1
(X(QT ))n . (3.30)

and similarly to (3.6), (3.9)

‖Θv‖(X(QT ))n ≤ c(T )c0 + c(T )T σ
(
‖v‖b1+1

(X(QT ))n + ‖v‖b2+1
(X(QT ))n

)
. (3.31)

‖Θv1 −Θv2‖(X(QT ))n

≤ c(T )T σ
(
‖v1‖b1(X(QT ))n + ‖v2‖b1(X(QT ))n + ‖v1‖b2(X(QT ))n + ‖v2‖b2(X(QT ))n

)
× ‖v1 − v2‖(X(QT ))n . (3.32)

Now for a fixed δ choose T0 > 0 such that

4c(T0)T σ0
(
(2c(T0)δ)b1 + (2c(T0)δ)b2

)
≤ 1 (3.33)

(it is possible since c(T ) does not decrease in T ) and then for every T ∈ (0, T0] choose an arbitrary
r such that

r ≥ 2c(T )δ, 4c(T )T σ(rb1 + rb2) ≤ 1 (3.34)

(this set is not empty because of (3.33)). Then the map Θ is a contraction on the ball Xrn(QT ).
In order to prove uniqueness in the whole space note that for an arbitrarily large r the value of

T0 can be chosen sufficiently small such that the solution of the considered problem u ∈ (X(QT0)n)
is the unique fixed point of the contraction Θ in Xrn(QT0).

4 The inverse problem

We start with the linear case. The following lemma is the crucial part of the study.

Lemma 4.1. Let the assumptions on the functions aj from the hypotheses of Theorem 1.3 be satisfied.
Let condition (1.6) be valid and for any i = 1, . . . , n, satisfying mi > 0, for k = 1, . . . ,mi the func-
tions ωki satisfy condition (1.12), ϕki ∈ W̃ 1

1 (0, T ), hki ∈ C([0, T ];L2(I)) and for the corresponding
functions ψkji conditions (1.19) be satisfied.

Then there exists a unique set of M functions

F = {Fki(t), i : mi > 0, k = 1, . . . ,mi}
= Γ{ϕki, i : mi > 0, k = 1, . . . ,mi} ∈ (L1(0, T ))M



48 O.S. Balashov, A.V. Faminskii

such that for f = (f1, . . . , fn)T ≡ HF , where for any i = 1, . . . , n the function fi(t, x) is presented
by formula (1.4), where h0i ≡ 0 (fi ≡ 0 if mi = 0), the corresponding function

u = S0f = (S0 ◦H)F, (4.1)

satisfies all conditions (1.5). Moreover, the linear operator Γ :
(
W̃ 1

1 (0, T )
)M → (

L1(0, T )
)M is

bounded and its norm does not decrease in T .

Proof. First of all note that by virtue of (1.18), (1.19)

|∆i(t)| ≥ ∆0 > 0, |ψkji(t)| ≤ ψ0, t ∈ [0, T ]. (4.2)

On the space
(
L1(0, T )

)M introduce M linear operators Λki = Q(ωki) ◦ S0 ◦H. Let Λ = {Λki}.
Then since HF ∈

(
L1(0, T ;L2(I))

)n by Theorem 2.1 and Lemma 2.1 the operator Λ acts from the
space

(
L1(0, T )

)M into the space
(
W̃ 1

1 (0, T )
)M and is bounded.

Note that the set of equalities ϕki = ΛkiF , i : mi > 0, k = 1, . . . ,mi, for F ∈
(
L1(0, T )

)M
obviously means that the set of functions F is the desired one.

Let for i verifying mi > 0

r̃(t;ui, ωki) ≡ (−1)l+1

∫
I

ui(t, x)
(
a(2l+1)iω

(2l+1)
ki − a2lω

(2l)
ki

)
dx

+
n∑

m=1

l−1∑
j=0

(−1)j+1

∫
I

um(t, x)
[
(a(2j+1)imω

(j)
ki )(j+1) − (a(2j)imω

(j)
ki )(j)

]
dx, (4.3)

where u = (u1, . . . , un)T = (S0 ◦H)F . Then from (2.17) it follows that for q(t;ui, ωki) =
(
ΛkiF

)
(t)

q′(t;ui, ωki) = r̃(t;ui, ωki) +

mi∑
j=1

Fji(t)ψkji(t), (4.4)

where the functions ψkji are given by formula (1.18). Let

yki(t) ≡ q′(t;ui, ωki)− r̃(t;ui, ωki), k = 1, . . . ,mi. (4.5)

and ∆̃ki(t) be the determinant of the mi×mi-matrix, where in comparison with the matrix
(
ψkji(t)

)
the k-th column is substituted by the column

(
y1i(t), . . . , ymii(t)

)T . Then (4.4) implies

Fki(t) =
∆̃ki(t)

∆i(t)
, k = 1, . . . ,mi. (4.6)

Let
zki(t) ≡ ϕ′ki(t)− r̃(t;ui, ωki), k = 1, . . . ,mi, (4.7)

and ∆ki(t) be the determinant of the mi × mi-matrix, where in comparison with ∆̃ki(t) the k-th
column

(
y1i(t), . . . , ymii(t)

)T is substituted by the column
(
z1i(t), . . . , zmii(t)

)T .
Introduce operators Aki : L1(0, T )→ L1(0, T ) by

(AkiF )(t) ≡ ∆ki(t)

∆i(t)
(4.8)

and let AF = {AkiF}, A :
(
L1(0, T )

)M → (
L1(0, T )

)M .
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Note that ϕki = ΛkiF , for all i : mi > 0, k = 1, . . . ,mi if and only if AF = F .
Indeed, if ϕki = ΛkiF , then ϕ′ki(t) ≡ q′(t;ui, ωki) for the function q(t;ui, ωki) ≡

(
ΛkiF

)
(t) and

equalities (4.5), (4.7) yield ∆ki(t) ≡ ∆̃ki(t). Hence, AF = F .
Vice versa, if AF = F , then ∆ki(t) ≡ ∆̃ki(t) and the condition ∆i(t) 6= 0 implies zki(t) ≡ yki(t)

and so ϕ′ki(t) ≡ q′(t;ui, ωki). Since ϕki(0) = q(0;ui, ωki) = 0, we have q(t;ui, ωki) ≡ ϕki(t).
Next, we show that the operator A is a contraction under the choice of a special norm in the

space
(
L1(0, T )

)M .
Let F1, F2 ∈

(
L1(0, T )

)M , um ≡ (S0 ◦H)Fm, m = 1, 2, and let ∆∗ki(t) be the determinant of the
mi × mi-matrix, where in comparison with the matrix

(
ψkji(t)

)
the k-th column is substituted by

the column, where on the j-th line stands the element r̃(t;u1i, ωji)− r̃(t;u2i, ωji) = r̃(t;u1i−u2i, ωji).
Then (

AkiF1

)
(t)−

(
AkiF2

)
(t) = −∆∗ki(t)

∆i(t)
. (4.9)

By (2.8) for t ∈ [0, T ]

‖u1(t, ·)− u2(t, ·)‖(L2(I))n ≤ c(T )
∑
i:mi>0

mi∑
j=1

‖hji‖C([0,T ];L2(I))‖F1ji − F2ji‖L1(0,t). (4.10)

Let γ > 0, then by virtue of (4.2), (4.3), (4.9) and (4.10)

‖e−γt(AF1 − AF2)‖(L1(0,T ))M

≤
c
(
{‖ωji‖H2l+1(I)}, ψ0

)
∆0

∫ T

0

e−γt‖u1(t, ·)− u2(t, ·)‖(L2(I))n dt

≤ c
(
T,
(
{‖ωji‖H2l+1(I)}, ψ0, {‖hji‖C([0,T ];L2(I))}

)
×
∫ T

0

e−γt
∫ t

0

∑
i:mi>0

mi∑
j=1

|F1ji(τ)− F2ji(τ)| dτdt

= c

∫ T

0

∑
i:mi>0

mi∑
j=1

|F1ji(τ)− F2ji(τ)|
∫ T

τ

e−γt dtdτ ≤ c

γ
‖e−γτ (F1 − F2)‖(L1(0,T ))M . (4.11)

It remains to choose sufficiently large γ.
As a result, for any set of functions ϕki ∈

(
W̃ 1

1 (0, T )
)M there exists a unique set of functions

F ∈
(
L1(0, T )

)M satisfying AF = F , that is ϕki = ΛkiF . This means that the operator Λ is invertible
and so the Banach theorem implies that the inverse operator Γ = Λ−1 :

(
W̃ 1

1 (0, T )
)M → (

L1(0, T )
)M

is continuous. In particular,

‖Γ{ϕki}‖(L1(0,T ))M ≤ c(T )‖{ϕki}‖(W̃ 1
1 (0,T ))M . (4.12)

For an arbitrary T1 > T extend the functions ϕki by the constant ϕki(T ) to the interval (T, T1).
Then the analogue of inequality (4.12) on the interval (0, T1) for such a function evidently holds with
c(T ) ≤ c(T1). This means that the norm of the operator Γ is non-decreasing in T .

The next result is the solution of the corresponding inverse problem for the full linear problem.

Theorem 4.1. Let the function f be given by formula (1.4) and condition (1.6) be satisfied. Let the
functions ai, u0, (µ0, . . . , µl−1), (ν0, . . . , νl), h0, ϕki, ωki, hki satisfy the hypothesis of Theorem 1.3
and the functions Gj satisfy the hypothesis of Theorem 2.1.
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Then there exists a unique set of M functions

F = {Fki(t), i : mi > 0, k = 1, . . . ,mi} ∈ (L1(0, T ))M

such that the corresponding unique weak solution u ∈
(
X(QT )

)n of problem (2.3), (1.2), (1.3) satisfies
all conditions (1.5). Moreover, the functions F and u are given by formulas

F = Γ
{
ϕki −Q(ωki)

(
S̃W + S0h0 +

l∑
j=0

S̃jGj

)
i

}
, (4.13)

u = S̃W + S0h0 +
l∑

j=0

SjGj + (S0 ◦H)F. (4.14)

Proof. Set

v ≡ S(u0, (µ0, . . . , µl−1), (ν0, . . . , νl), h0, (G0, . . . , Gl)) = S̃W + S0h0 +
l∑

j=0

S̃jGj.

Lemma 2.1 implies Q(ωki)vi ∈ W 1
1 (0, T ). Moreover, by virtue of (1.17) Q(ωki)vi

∣∣
t=0

= ϕki(0). Set

ϕ̃ki ≡ ϕki −Q(ωki)vi,

then ϕ̃ki ∈ W̃ 1
1 (0, T ). In turn, Lemma 4.1 implies that the functions F ≡ Γ{ϕ̃ki} and u ≡ v+(S0◦H)F

provide the desired result. Uniqueness also follows from Lemma 4.1.

Now we pass to the nonlinear equation.

Proof of Theorem 1.3. On the space
(
X(QT )

)n consider a map Θ

u = Θv ≡ S̃W + S0h0 −
l∑

j=0

S̃jgj(t, x, v, . . . , ∂
l−1
x v) + (S0 ◦H)F, (4.15)

F ≡ Γ
{
ϕki −Q(ωki)

(
S̃W + S0h0 −

l∑
j=0

S̃jgj(t, x, v, . . . , ∂
l−1
x v)

)
i

}
. (4.16)

Then estimate (3.5) and Theorem 4.1 applied to Gj(t, x) ≡ gj(t, x, v, . . . , ∂
l−1
x v) ensure that the map

Θ exists.
Apply Lemmas 2.3 and 4.1, then the function F from (4.16) is estimated as follows:

‖F‖(L1(0,T ))M ≤ c(T )
[
‖u0‖(L2(I))n + ‖(µ0, . . . , µl−1)‖(Bl−1(0,T ))n + ‖(ν0, . . . , νl)‖(Bl(0,T ))n

+ ‖h0‖(L1(0,T ;L2(I)))n + ‖{ϕ′ki}‖(L1(0,T ))M + ‖v‖b1+1
(X(QT ))n + ‖v‖b2+1

(X(QT ))n

]
; (4.17)

therefore, since also

‖HF‖(L1(0,T ;L2(I)))n ≤ max
i:mi>0,k=1,...,mi

(
‖hki‖C([0,T ];L2(I))

)
‖F‖(L1(0,T ))M ,

Theorem 2.1 provides for the map Θ estimate (3.6).
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Next, for any functions v1, v2 ∈
(
X(QT )

)n since

Θv1 −Θv2 = −
l∑

j=0

S̃j
[
gj(t, x, v1, . . . , ∂

l−1
x v1)− gj(t, x, v2, . . . , ∂

l−1
x v2)

]
+ (S0 ◦H ◦ Γ)

{
Q(ωki)

( l∑
j=0

S̃j
[
gj(t, x, v1, . . . , ∂

l−1
x v1)− gj(t, x, v2, . . . , ∂

l−1
x v2)

])
i

}
, (4.18)

using (3.8) we derive estimate (3.9).
Now choose r > 0 and δ > 0 as in (3.10), (3.11). Then it follows from (3.6) and (3.9) that on

the ball Xrn(QT ) the map Θ is a contraction. Its unique fixed point u ∈
(
X(QT )

)n is the desired
solution. Moreover, Theorem 4.1 implies that the function F in (4.16) (for v ≡ u) is determined in
a unique way.

Continuous dependence is obtained similarly to (3.6), (3.9).

Proof of Theorem 1.4. In general, the proof repeats the previous argument. The desired solution is
constructed as a fixed point of the map Θ from (4.15), (4.16). In comparison with (3.6), (3.9) here
(also with the use of (4.18)) we obtain estimates (3.31) and (3.32), where σ is defined in (3.29).

The end of the proof is the same as in Theorem 1.2 (with the corresponding supplements as in
Theorem 1.3).
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