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1 Introduction

In this paper, we consider estimates for decreasing rearrangements of convolutions. The books by
S.G. Krein, Yu.I. Petunin and E.M. Semenov [12], C. Bennett and R. Sharpley [3] contain main
definitions and basic facts related to this topic. The properties of the classical Bessel and Riesz
potentials are described in the books by V.G. Maz’ya [13], S.M. Nikol’skii [14], E.M. Stein [17].

In Section 2 of the paper, we obtain two–sided estimates for convolutions for some classes of radial
symmetrical functions. The case of functions that are positive on Rn is considered here. In Section 3
we consider the case, where one of the convolved function has support contained in the finite ball
BR = {x ∈ Rn : |x| ≤ R} for some R ∈ (0,∞). Such consideration will be useful for application of
these results to generalized Bessel potentials. In that case the kernel of the convolution is splitted
into two parts, and one part is supported in BR.

We apply these estimates in Section 4 to obtaining two–sided estimates for symmetrical and
decreasing rearrangements of convolutions. These estimates give, in particular, a reversal of the well-
known inequality for convolutions proved by R. O’Neil [16]. They develop and refine the estimates
obtained in our papers [5]–[6], [8]–[10]. We will use these results to justify pointwise and integral
coverings for cones of decreasing rearrangements for generalized Bessel-Riesz potentials. As a result,
exact descriptions of equivalent cones for cones of decreasing rearrangements of potentials will be
obtained. They develop the results of our works [9], [10]. Note that E. Nursultanov and S. Tikhonov
[15] obtained some further developments of O’Neil’s results. For researches related to the topic, see
[2, 4, 11].

In Section 5 we prove a lemma which may be useful in many considerations related to the subject
of this paper. The proof of this lemma is related to the proofs of Theorems in Sections 2–4.



Order-sharp estimates for decreasing rearrangments of convolutions 9

2 Two–sided estimates for convolutions. The case R =∞

Let α ∈ (1,∞), R ∈ (0,∞].

Definition 1. As Jα(∞) we denote the class of all measurable functions F : (0,∞)→ (0,∞), such
that for all ξ ∈ (0,∞)

τ ∈ [ξ, 2ξ] implies α−1F (ξ) ≤ F (τ) ≤ αF (ξ). (2.1)

Remark 1. Let α ∈ (1,∞), F ∈ Jα(∞), m ∈ N, ξ ∈ (0,∞). Then, the following estimate holds

η ∈ [ξ, 2mξ]⇒ α−mF (ξ) ≤ F (η) ≤ αmF (ξ). (2.2)

Proof. Let us use the method of induction.
For m = 1 estimate (2.2) for F ∈ Jα(∞) follows from the definition.
Assumption of induction: assume that estimate (2.2) holds for all numbers from 1 to m. Step of

induction: let us prove that then it is true for the number m+ 1.
For η ∈ [ξ, 2m+1ξ] = [ξ, 2mξ]

⋃
[2mξ, 2m+1ξ] we have on [ξ, 2mξ] estimate (2.2), and for η ∈

[2mξ, 2m+1ξ] the estimate holds for F ∈ Jα(∞)

α−1F (2mξ) ≤ F (η) ≤ αF (2mξ).

For η = 2mξ, according to (2.2), α−mF (ξ) ≤ F (2mξ) ≤ αmF (ξ), so that we obtain

α−(m+1)F (ξ) ≤ F (η) ≤ α(m+1)F (ξ), η ∈ [2mξ, 2m+1ξ].

Recall that α > 1, so that (2.2) implies, in particular, that

α−(m+1)F (ξ) ≤ F (η) ≤ α(m+1)F (ξ), η ∈ [ξ, 2mξ].

These estimates give the desired inequality:

α−(m+1)F (ξ) ≤ F (η) ≤ α(m+1)F (ξ), η ∈ [ξ, 2m+1ξ].

Definition 2. As Jα(R) with R ∈ (0,∞) we denote the class of all measurable functions F : (0,∞)→
[0,∞), such that F (ξ) > 0, ξ ∈ (0, R], F (ξ) = 0 for ξ > R and

ξ ∈ (0, R), τ ∈ [ξ,min {2ξ, R}]⇒ α−1F (ξ) ≤ F (τ) ≤ αF (ξ).

For a function F ∈ Jα(R), R ∈ (0,∞) we have an analogue of (2.2):

ξ ∈ (0, R), τ ∈ [ξ,min {2mξ, R}]⇒ α−mF (ξ) ≤ F (τ) ≤ αmF (ξ). (2.3)

The following remark shows the link of two–sided estimates for the left and the right ends of the
segment [ξ, 2mξ].

Remark 2. 1. Let α ∈ (1,∞). From (2.2) it follows easily that for β = α2

τ ∈ [ξ, 2mξ]⇒ β−mF (2mξ) ≤ F (τ) ≤ βmF (2mξ). (2.4)

2. Let β ∈ (1,∞). From (2.2) it follows easily that for α = β2

τ ∈ [ξ, 2mξ]⇒ α−mF (ξ) ≤ F (τ) ≤ αmF (ξ). (2.5)
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The next remark shows the link of two–sided estimates for any two points of the segment [ξ, 2mξ].

Remark 3. Let α ∈ (1,∞), m ∈ N, F ∈ Jα(∞), so that estimate (2.2) holds. Then, it follows easily
that for any two points t, τ ∈ [ξ, 2mξ] the following estimate holds:

α−2mF (t) ≤ F (τ) ≤ α2mF (t).

Remark 4. Let α ∈ (1,∞), m ∈ N, R ∈ (0,∞), F ∈ Jα(R), so that estimate (2.3) holds. Then, it
follows easily that for any t, τ ∈ [ξ,min {2mξ, R}] the following estimate holds:

α−2mF (t) ≤ F (τ) ≤ α2mF (t).

Theorem 2.1. Let α, β ∈ (1,∞); F ∈ Jα(∞), G ∈ Jβ(∞), x ∈ Ṙn = {x ∈ Rn, x 6= 0},

f(x) = F (|x|), g(x) = G(|x|); (2.6)

u(x) = (f ∗ g)(x) = (g ∗ f)(x) =

∫
Rn

f(y)g(x− y)dy; (2.7)

ũ(x) =

∞∫
0

[F (τ)G(|x|+ τ) + F (|x|+ τ)G(τ)] τn−1dτ. (2.8)

Then, there exist constants ci = ci(α, β, n), i = 1, 2, such that 0 < c1 ≤ c2 <∞ and

c1u(x) ≤ ũ(x) ≤ c2u(x), x ∈ Ṙn. (2.9)

Proof. 1. Let Sn−1 = {ω ∈ Rn : |ω| = 1} be the unit sphere in Rn, Cn =
∫

Sn−1

dω = 2πn/2Γ(n/2)−1

be the integral over all angles in Sn−1.

For x ∈ Ṙn we introduce the spherical system of coordinates with the center at the point 0 and
the polar axis L0 such that x ∈ L0. In the spherical coordinates for y ∈ Ṙn we have

y = (τ, ω), τ = |y| > 0, ω ∈ Sn−1;

and we obtain that

∫̇
Rn
F (|y|)G(|x|+ |y|)dy =

∞∫
0

F (τ)G(|x|+ τ)

( ∫
Sn−1

dω

)
τn−1dτ

= Cn
∞∫
0

F (τ)G(|x|+ τ)τn−1dτ. (2.10)

Let Ω = B(x, |x|/2) be the ball with the center x and the radius r = |x|/2. It follows from
(2.6) and (2.7) that

u(x) =

∫
Ṙn

F (|y|)G(|x− y|)dy = I1 + I2, x ∈ Ṙn, (2.11)
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where
I1 =

∫
Ṙn\Ω

F (|y|)G(|x− y|)dy, I2 =

∫
Ω

F (|y|)G(|x− y|)dy. (2.12)

For y ∈ Ṙn \ Ω we have |x| ≤ 2|x− y|, so

|y| = |y − x+ x| ≤ |y − x|+ |x| ≤ 3|y − x|.

Then,
|x− y| ≤ |x|+ |y| ≤ 5|x− y| < 23|x− y|, y ∈ Ṙn \ Ω,

and for G ∈ Jβ(∞) it follows from (2.2) with m = 3, α = β that

β−3 ≤ G(|x|+ |y|)/G(|x− y|) ≤ β3, y ∈ Ṙn \ Ω.

It means that
β−3I1 ≤

∫
Ṙn\Ω

F (|y|)G(|x|+ |y|)dy ≤ β3I1. (2.13)

The left–hand–side inequality in (2.13) shows that

I1 ≤ β3

∫
Ṙn

F (|y|)G(|x|+ |y|)dy.

Therefore, analogously to (2.10) we obtain in the spherical coordinates

I1 ≤ β3Cn

∞∫
0

F (τ)G(|x|+ τ)τn−1dτ. (2.14)

Moreover, let KΩ be a minimal cone with the cone apex at the origin, such that Ω ⊂ KΩ.
Denote

ΣΩ =
{
ω ∈ Sn−1 : ω /∈ KΩ

}
, σn =

∫
ΣΩ

dω;

∆Ω =
{
ω ∈ Sn−1 : ω ∈ KΩ

}
, δn =

∫
∆Ω

dω.

Our construction is such that the sets KΩ, ΣΩ, ∆Ω are the same for all x ∈ L0, they depend
only on dimension n. Moreover, ΣΩ ∩ ∆Ω = {∅}, ΣΩ ∪ ∆Ω = Sn−1. Then, 0 < σn, δn,
σn + δn =

∫
Sn−1

dω = Cn, so that, in particular, 0 < σn < Cn.

Note that Ω ⊂ KΩ ⇒ Rn \KΩ ⊂ Rn \ Ω. Thus, the right–hand–side estimate in (2.13) implies

I1 ≥ β−3

∫
Rn\Ω

F (|y|)G(|x|+ |y|)dy ≥ β−3

∫
Rn\KΩ

F (|y|)G(|x|+ |y|)dy.

Like in (2.10), we obtain in the spherical coordinates that
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∫
Rn\KΩ

F (|y|)G(|x|+ |y|)dy =

∞∫
0

F (τ)G(|x|+ τ)

∫
ΣΩ

dω

 τn−1dτ

= σn

∞∫
0

F (τ)G(|x|+ τ)τn−1dτ.

As a result,

I1 ≥ β−3σn

∞∫
0

F (τ)G(|x|+ τ)τn−1dτ. (2.15)

Estimates (2.14) and (2.15) give the two–sided inequality:

β−3C−1
n I1 ≤

∞∫
0

F (τ)G(|x|+ τ)τn−1dτ ≤ β3σ−1
n I1. (2.16)

2. We move on to the estimates for I2 =
∫
Ω

F (|y|)G(|x− y|)dy. For y ∈ Ω we have

y ∈ Ω⇒

{
|y| ≤ |x|+ |y − x|;
3|y| ≥ 3

2
|x| = |x|+ 1

2
|x| ≥ |x|+ |y − x|.

Thus, y ∈ Ω⇒ 2−2(|x|+ |y − x|) ≤ |y| ≤ |x|+ |y − x|.
For F ∈ Jα(∞) it follows from here and from Remark 2 (see (2.4)) that

α−2F (|x|+ |y − x|) ≤ F (|y|) ≤ α2F (|x|+ |y − x|), y ∈ Ω.

Therefore,

α−2I2 ≤
∫
Ω

F (|x|+ |y − x|)G(|y − x|)dy ≤ α2I2.

We introduce the spherical system of coordinates with the center at the point x and the spherical
radius λ = |y − x|. Then,

y ∈ Ω, y 6= x⇔ y − x = (λ, ω), 0 < λ = |y − x| ≤ |x|/2, ω ∈ Sn−1,

and we obtain the following equality with Cn =
∫

Sn−1

dω = 2πn/2Γ(n/2)−1:

∫
Ω

F (|x|+ |y − x|)G(|y − x|)dy = Cn

|x|/2∫
0

F (|x|+ λ)G(λ)λn−1dλ,

so

α−2C−1
n I2 ≤

|x|/2∫
0

F (|x|+ λ)G(λ)λn−1dλ ≤ α2C−1
n I2. (2.17)
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3. For the further consideration it is convenient to use the following notation: let
A(x), B(x), C(x), D(x), E(x) ≥ 0, x ∈ Ṙn. We write D(x) ∼= E(x) if there exist constants
ci = ci(α, β, n), i = 1, 2, such that 0 < c1 ≤ c2 <∞ and

c1D(x) ≤ E(x) ≤ c2D(x), x ∈ Ṙn. (2.18)

Let us note that if
0 ≤ C(x) ≤ c3A(x), x ∈ Ṙn, (2.19)

with 0 ≤ c3 = c3(α, β, n) <∞, then

A(x) +B(x) ∼= A(x) +B(x) + C(x), x ∈ Ṙn. (2.20)

Indeed, according to (2.19)

A(x) +B(x) ≤ A(x) +B(x) + C(x) ≤ (1 + c3)(A(x) +B(x)), x ∈ Ṙn.

Let here (see estimates (2.16), (2.17))

A(x) := I1
∼=

∞∫
0

F (τ)G(|x|+ τ)τn−1dτ,

B(x) := I2
∼=
|x|/2∫
0

F (|x|+ τ)G(τ)τn−1dτ,

C(x) :=

∞∫
|x|/2

F (|x|+ τ)G(τ)τn−1dτ.

For τ ≥ |x|/2 we have |x| ≤ 2τ , so that

τ ≤ |x|+ τ ≤ 3τ ⇒ |x|+ τ ∈ [τ, 22τ ].

Therefore, for F ∈ Jα(∞), G ∈ Jβ(∞) we have estimates like in (2.2):

F (|x|+ τ) ≤ α2F (τ), G(τ) ≤ β2G(|x|+ τ),

so that

0 ≤ C(x) ≤ α2β2

∞∫
|x|/2

F (τ)G(|x|+ τ)τn−1dτ ≤ α2β2

∞∫
0

F (τ)G(|x|+ τ)τn−1dτ,

that is
0 ≤ C(x) ≤ c3A(x), x ∈ Ṙn. (2.21)

Let us consider

ũ(x) =

∞∫
0

[F (τ)G(|x|+ τ) + F (|x|+ τ)G(τ)] τn−1dτ ∼= A(x) +B(x) + C(x).

Estimates (2.19) -(2.21) show that here

A(x) +B(x) + C(x) ∼= A(x) +B(x).

Therefore,
ũ(x) ∼= A(x) +B(x) = I1 + I2 = u(x).

This completes the proof of estimate (2.9).
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Corollary 2.1. Under the assumptions of Theorem 2.1 the following two–sided estimate holds:

u(x) ∼= F (|x|)
|x|∫

0

G(τ)τn−1dτ +G(|x|)
|x|∫

0

F (τ)τn−1dτ +

∞∫
|x|

F (τ)G(τ)τn−1dτ (2.22)

with positive constants depending only on α, β, n (as in (2.18)).

Proof. Indeed, for functions F ∈ Jα(∞), G ∈ Jβ(∞) we have

F (|x|+ τ) ∼= F (|x|), G(|x|+ τ) ∼= G(|x|), τ ∈ (0, |x|];

F (|x|+ τ) ∼= F (τ), G(|x|+ τ) ∼= G(τ), τ > |x|;

and estimate (2.9) implies (2.22).

Remark 5. Under notation (2.6)- (2.8) let functions F and G be nonnegative and decreasing. Then,

u(x) ≥ 2−1Cnũ(x), x ∈ Ṙn, Cn = 2πn/2Γ(n/2)−1. (2.23)

Proof. For decreasing functions F and G we have:

|y − x| ≤ |x|+ |y| ⇒ F (|y − x|) ≥ F (|x|+ |y|), G(|y − x|) ≥ G(|x|+ |y|).

Then,

u(x) =

∫
Rn

F (|y|)G(|y − x|)dy ≥
∫
Rn

F (|y|)G(|x|+ |y|)dy.

Thus, in the spherical coordinates we have

u(x) ≥ Cn

∞∫
0

F (τ)G(|x|+ τ)τn−1dτ. (2.24)

But u = f ∗ g = g ∗ f , so

u(x) =

∫
Rn

F (|x− y|)G(|y|)dy ≥
∫
Rn

F (|x|+ |y)G(|y|)dy.

In the spherical coordinates we have

u(x) ≥ Cn

∞∫
0

F (|x|+ τ)G(τ)τn−1dτ. (2.25)

We add estimates (2.24), (2.25) and obtain that

2u(x) ≥ Cn

∞∫
0

[F (τ)G(|x|+ τ) + F (|x|+ τ)G(τ)] τn−1dτ = Cnũ(x). (2.26)

This implies estimate (2.23).
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Corollary 2.2. Under the assumptions of Remark 5 the following estimate holds for the symmetrical
rearrangement of convolution

u#(ρ) ≥ 2−1Cn

∞∫
0

[F (τ)G(ρ+ τ) + F (ρ+ τ)G(τ)] τn−1dτ, ρ ∈ (0,∞). (2.27)

Indeed, estimate (2.23) implies the related estimate for symmetrical rearrangements:

u#(ρ) ≥ 2−1Cnũ
#(ρ), ρ ∈ (0,∞).

But, under the assumptions of Remark 5, function ũ (2.8) is nonnegative, radial symmetrical and
decreasing as the function of ρ = |x|. Therefore, its symmetrical rearrangement u# coincides with
the integral in the right–hand side of (2.27).

3 Two–sided estimates for convolutions. The case R <∞

First, we formulate a useful technical result.

Lemma 3.1. 1. Let G ∈ Jβ(∞), ξ ∈ (0,∞). Then,

ξ/2∫
0

G(λ)λn−1dλ ≤
ξ∫

0

G(λ)λn−1dλ ≤ (1 + 2nβ3)

ξ/2∫
0

G(λ)λn−1dλ. (3.1)

2. Let F ∈ Jα(R), ξ ∈ (0, R]. Then,

ξ/2∫
0

F (λ)λn−1dλ ≤
ξ∫

0

F (λ)λn−1dλ ≤ (1 + 2nα3)

ξ/2∫
0

F (λ)λn−1dλ. (3.2)

Proof. We will prove (3.1) (for (3.2) the proof is analogous). For G ∈ Jβ(∞) we have

G(λ) ≥ 0⇒
ξ/2∫
0

G(λ)λn−1dλ ≤
ξ∫

0

G(λ)λn−1dλ. (3.3)

Thus, the left part in estimate (3.1) holds. Let us prove the right part in estimate (3.1). Note that
for G ∈ Jβ(∞), ξ ∈ (0,∞) we have inequalities

β−1G(ξ/2) ≤ G(λ) ≤ βG(ξ/2), λ ∈ [ξ/2, ξ].

Therefore,

β−1G(ξ/2)

ξ∫
ξ/2

λn−1dλ ≤
ξ∫

ξ/2

G(λ)λn−1dλ ≤ βG(ξ/2)

ξ∫
ξ/2

λn−1dλ,

and we obtain by calculation of integrals

β−1n−1(1− 2−n)ξnG(ξ/2) ≤
ξ∫

ξ/2

G(λ)λn−1dλ ≤ βn−1(1− 2−n)ξnG(ξ/2). (3.4)
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Moreover, by application of Remark 3, we have for G ∈ Jβ(∞)

β−2G(ξ/2) ≤ G(λ) ≤ βG(ξ/2), λ ∈ [ξ/4, ξ/2] ,

and, therefore,

ξ/2∫
ξ/4

G(λ)λn−1dλ ≥ β−2

 ξ/2∫
ξ/4

λn−1dλ

G(ξ/2) = β−2n−12−n(1− 2−n)ξnG(ξ/2).

Thus,
ξ/2∫
0

G(λ)λn−1dλ ≥
ξ/2∫
ξ/4

G(λ)λn−1dλ ≥ β−2n−12−n(1− 2−n)ξnG(ξ/2).

Together with the right estimate in (3.4) this shows that

ξ∫
ξ/2

G(λ)λn−1dλ ≤ 2nβ3

ξ/2∫
0

G(λ)λn−1dλ,

and we obtain

ξ∫
0

G(λ)λn−1dλ =

ξ/2∫
0

G(λ)λn−1dλ+

ξ∫
ξ/2

G(λ)λn−1dλ ≤ (1 + 2nβ3)

ξ/2∫
0

G(λ)λn−1dλ.

Thus, we arrive at the right estimate in (3.1).

Corollary 3.1. Let 0 < ρ < 1, m ∈ N be such that 2−m ≤ ρ ≤ 2−m+1. Then, the following estimates
hold.

1. For 1 < β <∞, G ∈ Jβ(∞), ξ ∈ (0,∞) we have

ρξ∫
0

G(λ)λn−1dλ ≤
ξ∫

0

G(λ)λn−1dλ ≤
(
1 + 2nβ3

)m ρξ∫
0

G(λ)λn−1dλ. (3.5)

2. For 1 < α <∞, 0 < R <∞, F ∈ Jα(R), ξ ∈ (0, R] we have

ρξ∫
0

F (λ)λn−1dλ ≤
ξ∫

0

F (λ)λn−1dλ ≤
(
1 + 2nα3

)m ρξ∫
0

F (λ)λn−1dλ. (3.6)

Proof. We will prove (3.5) (for (3.6) the proof is analogous). The left estimate in (3.5) is evident.
By induction we can easily prove that for m ∈ N the following estimate holds

ξ∫
0

G(λ)λn−1dλ ≤
(
1 + 2nβ3

)m 2−mξ∫
0

G(λ)λn−1dλ. (3.7)
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Indeed, for m = 1 it coincides with (3.1). Assumption of induction is that it holds for all numbers
from 1 to m. Then, for the number m + 1 we have by application of (3.1) with 2−mξ instead of
ξ ∈ (0,∞):

2−mξ∫
0

G(λ)λn−1dλ ≤
(
1 + 2nβ3

) 2−(m+1)ξ∫
0

G(λ)λn−1dλ.

Therefore, application of (3.7) shows that

ξ∫
0

G(λ)λn−1dλ ≤
(
1 + 2nβ3

)m+1

2−(m+1)ξ∫
0

G(λ)λn−1dλ.

Thus, (3.7) holds for any m ∈ N. Therefore, for 2−m ≤ ρ ≤ 2−m+1 we have

ξ∫
0

G(λ)λn−1dλ ≤
(
1 + 2nβ3

)m 2−mξ∫
0

G(λ)λn−1dλ ≤
(
1 + 2nβ3

)m ρξ∫
0

G(λ)λn−1dλ.

This is the right estimate in (3.5).

Theorem 3.1. Let
α, β ∈ (1,∞), R ∈ (0,∞), F ∈ Jα(R), G ∈ Jβ(∞); (3.8)

f(x) = F (|x|), g(x) = G(|x|), x ∈ Ṙn; (3.9)

u(x) = (f ∗ g)(x) =

∫
Rn

f(x− y)g(y)dy =

∫
Rn

f(y)g(x− y)dy, x ∈ Ṙn. (3.10)

For x ∈ Ṙn we define ũ(x) by the following formulas:

1. If |x| < 2R/3, then

ũ(x) =

R−|x|∫
0

F (|x|+ λ)G(λ)λn−1dλ+

R∫
0

F (λ)G(|x|+ λ)λn−1dλ. (3.11)

2. If 2R/3 ≤ |x| ≤ 4R/3, then

ũ(x) = F (R)

R∫
0

G(λ)λn−1dλ+G(R)

R∫
0

F (λ)λn−1dλ. (3.12)

3. If 4R/3 < |x| <∞, then

ũ(x) = G(|x|)
R∫

0

F (λ)λn−1dλ. (3.13)

Then, there exist constants ci = ci(α, β, n), i = 1, 2, 0 < c1 ≤ c2 <∞, such that

c1u(x) ≤ ũ(x) ≤ c2u(x), x ∈ Ṙn. (3.14)
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Proof. 1. We consider the case |x| < 2R/3. In this case the proof is similar to the proof of
Theorem 2.1. Let Ω = B(x, |x|/2) be the ball with the center x ∈ Ṙn and the radius r = |x|/2.
Note that for 0 < |x| < 2R/3 we have Ω ⊂ BR = B(0, R). Let ḂR = B(0, R) \ {0}.

We will take into account that F (|y|) = 0 for |y| > R and obtain

u(x) =

∫
BR

F (|y|)G(|x− y|)dy = u1 + u2, x ∈ Ṙn, (3.15)

where
u1 =

∫
ḂR\Ω

F (|y|)G(|x− y|)dy, u2 =

∫
Ω

F (|y|)G(|x− y|)dy. (3.16)

For y ∈ ḂR \ Ω we have |x| ≤ 2|x− y|, so

|y| = |y − x+ x| ≤ |y − x|+ |x| ≤ 3|y − x|.

Then,
|x− y| ≤ |x|+ |y| ≤ 5|x− y|, y ∈ ḂR \ Ω,

that is
|x− y|/ (|x|+ |y|) ∈

[
5−1, 1

]
⊂
[
2−3, 1

]
,

and for G ∈ Jβ(∞), y ∈ ḂR \ Ω we obtain from (2.2) (with m = 3, ξ = 2−3) that

|x− y|/ (|x|+ |y|) ∈
[
ξ, 23ξ

]
⇒ β−3 ≤ G(|x− y|)/G(|x|+ |y|) ≤ β3. (3.17)

It follows from (3.17) that

β−3u1 ≤
∫

ḂR\Ω

F (|y|)G(|x|+ |y|)dy ≤ β3u1. (3.18)

The left–hand–side inequality in (3.18) shows that

u1 ≤ β3

∫
BR

F (|y|)G(|x|+ |y|)dy.

For x ∈ Ṙn we introduce the spherical system of coordinates with the center at the point 0 and
the polar axis L0 such that x ∈ L0. In the spherical coordinates for y ∈ ḂR we have

y = (τ, ω) , 0 < τ = |y| ≤ R, ω ∈ Sn−1.

Analogously to (2.10), we obtain that

u1 ≤ β3Cn

R∫
0

F (τ)G(|x|+ τ)τn−1dτ. (3.19)

Here Cn = 2πn/2Γ(n/2)−1. As in Theorem 2.1, we introduce the minimal cone KΩ with the
cone apex at the origin, such that Ω ⊂ KΩ, and define

ΣΩ =
{
ω ∈ Sn−1 : ω /∈ KΩ

}
, σn =

∫
ΣΩ

dω; ∆Ω =
{
ω ∈ Sn−1 : ω ∈ KΩ

}
, δn =

∫
∆Ω

dω.
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We have y = |y|ω ∈ BR \KΩ for ω ∈ ΣΩ and for any 0 < |y| ≤ R. Note that our construction
is such that the cone KΩ and σn, δn do not depend on x ∈ L0 with 0 < |x| < 2R/3,they depend
only on the dimension n. Moreover, ΣΩ ∩ ∆Ω = {∅}, ΣΩ ∪ ∆Ω = Sn−1. Then, 0 < σn, δn;
σn + δn =

∫
Sn−1

dω = Cn, so that, in particular, 0 < δn < Cn. The right–hand–side estimate in

(3.18) shows that

u1 ≥ β−3

∫
BR\KΩ

F (|y|)G(|x|+ |y|)dy.

As in (2.10) we obtain in the spherical coordinates that∫
BR\KΩ

F (|y|)G(|x|+ |y|)dy = σn

R∫
0

F (τ)G(|x|+ τ)τn−1dτ.

As a result,

u1 ≥ β−3σn

R∫
0

F (τ)G(|x|+ τ)τn−1dτ. (3.20)

Estimates (3.19) and (3.20) give the two–sided inequality:

β−3C−1
n u1 ≤

R∫
0

F (τ)G(|x|+ τ)τn−1dτ ≤ β3σ−1
n u1. (3.21)

We move on to the estimates for u2 =
∫
Ω

F (|y|)G(|x− y|)dy. Note that

y ∈ Ω⇒

{
|y| ≤ |x|+ |x− y| ≤ 3

2
|x| ≤ R;

3|y| ≥ 3
2
|x| = |x|+ 1

2
|x| ≥ |x|+ |x− y|.

Therefore, for y ∈ Ω we have

|y| ≤ |x|+ |x− y| ≤ min
{

22|y|, R
}
.

For F ∈ Jα(R) it follows from here and from (2.3) with m = 2 that

α−2F (|x|+ |x− y|) ≤ F (|y|) ≤ α2F (|x|+ |x− y|), y ∈ Ω.

Therefore,

α−2u2 ≤
∫
Ω

F (|x|+ |x− y|)G(|x− y|)dy ≤ α2u2.

In Ω we introduce the spherical system of coordinates with the center at the point x and the
spherical radius λ = |y − x|. Then,

y ∈ Ω, y 6= x⇔ y − x = (λ, ω), λ = |y − x| = |x− y| ∈ (0, |x|/2], ω ∈ Sn−1,

and we obtain the equality

∫
Ω

F (|x|+ |x− y|)G(|x− y|)dy = Cn

|x|/2∫
0

F (|x|+ λ)G(λ)λn−1dλ,



20 E.G. Bakhtigareeva, M.L. Goldman

with Cn =

( ∫
Sn−1

dω

)
= 2πn/2Γ(n/2)−1. These estimates show that

α−2C−1
n u2 ≤

|x|/2∫
0

F (|x|+ λ)G(λ)λn−1dλ ≤ α−2C−1
n u2. (3.22)

For the further consideration, let us recall the notation and properties (2.19)–(2.21). We
consider here (see estimates (2.18)– (2.21))

A(x) := u1
∼=

R∫
0

F (λ)G(|x|+ λ)λn−1dλ, (3.23)

B(x) := u2
∼=
|x|/2∫
0

F (|x|+ λ)G(λ)λn−1dλ, (3.24)

C(x) :=

R−|x|∫
|x|/2

F (|x|+ λ)G(λ)λn−1dλ. (3.25)

For |x|/2 ≤ λ ≤ R− |x| we have |x| ≤ 2λ, so that

λ ≤ |x|+ λ ≤ min {3λ,R} ≤ min
{

22λ,R
}
.

Now, for F ∈ Jα(R), α ∈ (1,∞) we can apply estimate (2.3) with ξ = λ, m = 2. Then

F (|x|+ λ) ≤ α2F (λ).

For G ∈ Jβ(∞), β ∈ (1,∞) we will apply analogue of Remark 3 with ξ = λ, m = 2 and β
instead of α, and obtain:

G(λ) ≤ β4G(|x|+ λ).

Therefore,

0 ≤ C(x) ≤ α2β4
R−|x|∫
|x|/2

F (λ)G(|x|+ λ)λn−1dλ

≤ α2β4
R∫
0

F (λ)G(|x|+ λ)λn−1dλ ≤ c3A(x). (3.26)

Let us consider ũ(x) defined in (3.11) We see from (3.23) -(3.25) that

ũ(x) ∼= A(x) +B(x) + C(x).

Estimates (3.20) –(3.21), (3.26) show that here

A(x) +B(x) + C(x) ∼= A(x) +B(x).

Therefore,
ũ(x) ∼= A(x) +B(x) = u1 + u2 = u(x).

This completes the proof of estimate (3.14) in the case |x| < 2R/3.
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2. Now we consider the case 2R/3 ≤ |x| ≤ 4R/3. Introduce the ball Ω0 = B(x/2, |x|/4) with the
center x/2 and the radius r = |x|/4. Note that Ω0 ⊂ BR = B(0, R). As in (3.15), (3.16) we
have

u(x) =

∫
BR

F (|y|)G(|x− y|)dy = u1,0(x) + u2,0(x), x ∈ Ṙn, (3.27)

where
u1,0(x) =

∫
BR\Ω0

F (|y|)G(|x− y|)dy, u2,0(x) =

∫
Ω0

F (|y|)G(|x− y|)dy.

For y ∈ BR \ Ω0 we have |x| < 4|x− y|, |y| ≤ |x|+ |x− y| < 5|x− y|; so

|x− y| ≤ |x|+ |y| ≤ 4|x− y|+ 5|x− y| = 9|x− y|.

For G ∈ Jβ(∞) this implies that

G(|x− y|) ∼= G(|x|+ |y|), y ∈ BR \ Ω0,

and, therefore,

u1,0(x) ∼=
∫

BR\Ω0

F (|y|)G(|x|+ |y|)dy.

As in (3.16) - (3.21) we obtain from here that

u1,0
∼=

R∫
0

F (τ)G(|x|+ τ)τn−1dτ. (3.28)

But, for 2R/3 ≤ |x| ≤ 4R/3, 0 < τ ≤ R we have 2R/3 ≤ |x| + τ ≤ 7R/3 < 22(2R/3), and for
G ∈ Jβ(∞) according to the analogue of Remark 3 with ξ = 2R/3, m = 2 and β instead of α
we obtain G(|x|+ τ) ∼= G(R). Therefore,

u1,0(x) ∼= G(R)

R∫
0

F (τ)τn−1dτ. (3.29)

For y ∈ Ω0 we have |x/2−y| ≤ r = |x|/4, so that |y| ≤ |x|/2+r = 3|x|/4 ≤ R, |y| ≥ |x|/2−r =
|x|/4. Thus, we have

|x|/4 ≤ |y| ≤ 3|x|/4; 2R/3 ≤ |x| ≤ 4R/3.

For F ∈ Jα(R) it implies that

F (|y|) ∼= F (|x|/4) ∼= F (R), y ∈ Ω0.

Therefore,

u2,0(x) ∼= F (R)

∫
Ω0

G(|x− y|)dy.

In Ω0 we introduce the spherical system of coordinates with the center at the point x/2 and
the spherical radius λ = |x− y|. Then,

u2,0(x) ∼= F (R)

|x|/4∫
0

G(λ)λn−1dλ. (3.30)
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For 2R/3 ≤ |x| ≤ 4R/3 we apply several times estimate (3.5) with related choose of ξ ∈ R+,
and obtain that

|x|/4∫
0

G(λ)λn−1dλ ∼=
R∫

0

G(λ)λn−1dλ. (3.31)

The constants in estimate (3.31) depend only on β, n (estimates of such type were proved in
Lemma 3.1). Together with (3.27) and (3.29) this gives desired estimates (3.12), (3.14).

Remark 6. Under the assumptions of Theorem 3.1 let 2R/3 ≤ |x| ≤ R. Then, we have the
equivalence

ũ(x) ∼= F (|x|)
|x|∫

0

G(λ)λn−1dλ+G(|x|)
|x|∫

0

F (λ)λn−1dλ. (3.32)

To show this let us note that for 2R/3 ≤ |x| ≤ R and for functions F ∈ Jα(R), G ∈ Jβ(∞)
we have F (R) ∼= F (|x|), G(R) ∼= G(|x|). Moreover, an application of Corollary of Lemma 3.1
gives

|x|∫
0

G(λ)λn−1dλ ∼=
R∫

0

G(λ)λn−1dλ,

|x|∫
0

F (λ)λn−1dλ ∼=
R∫

0

F (λ)λn−1dλ.

This means that estimates (3.12), (3.14) imply estimate (3.32).

3. Consider the case |x| > 4R/3. We have the equality

u(x) =

∫
BR

F (|y|)G(|x− y|)dy.

Note that |y| ≤ R, |x| > 4R/3 ⇒ |x|/4 ≤ |x − y| ≤ 7|x|/4, and for G ∈ Jβ(∞) we obtain
G(|x− y|) ∼= G(|x|), y ∈ BR. Therefore,

u(x) ∼= G(|x|)
∫
BR

F (|y|)dy = CnG(|x|)
R∫

0

F (τ)τn−1dτ.

4 Two–sided estimates for decreasing rearrangements of convolutions

4.1 Estimates for decreasing and symmetrical rearrangements

Here we consider estimates for decreasing and symmetrical rearrangements of convolutions. The
books by S.G. Krein, Yu.I. Petunin and E.M. Semenov [12], C. Bennett and R. Sharpley [3] contain
the main definitions and basic facts related to this topic. We recall some formulas.

Let h : Rn → R be a Lebesgue measurable function such that its distribution function

λh(y) = µn

{
x ∈ Ṙn : |h(x)| > y

}
, y ∈ [0,∞),

is not identically equal to infinity. Then, 0 ≤ λh(y) ↓ on [0,∞). The decreasing rearrangement of
the function h is defined by the formula

h∗(τ) = inf {y ∈ [0,∞) : λh(y) ≤ τ} , τ ∈ (0,∞). (4.1)
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Note that 0 ≤ h∗ ↓ on (0,∞). The symmetrical rearrangement h# is a radially symmetrical
function related to the decreasing rearrangement by the formulas

h#(ρ) = h∗(Vnρ
n), h∗(τ) = h#((τ/Vn)1/n); ρ, τ ∈ (0,∞). (4.2)

Here Vn is the volume of the unit ball in Rn.
Moreover,

h(x) = H(|x|), 0 ≤ H ↓ on (0,∞)⇒ h#(ρ) = H(ρ), ρ ∈ (0,∞). (4.3)

Theorem 4.1. Under the assumptions of Theorem 2.1 let additionally F,G be decreasing. Then,
there exist constants ci = ci(α, β, n), i = 1, 2, such that 0 < c1 ≤ c2 < ∞ and for the symmetrical
rearrangement of convolution (2.7) the following estimates hold

c1u
#(ρ) ≤

∞∫
0

[F (ρ+ τ)G(τ) + F (τ)G(ρ+ τ)] τn−1dτ ≤ c2u
#(ρ), ρ ∈ (0,∞). (4.4)

Moreover,

u#(ρ) ∼= F (ρ)

ρ∫
0

G(τ)τn−1dτ +G(ρ)

ρ∫
0

F (τ)τn−1dτ +

∞∫
ρ

F (τ)G(τ)τn−1dτ (4.5)

with understanding ∼= as in (2.18).

Proof. From (2.9) it follows that

c1u
#(ρ) ≤ ũ#(ρ) ≤ c2u

#(ρ), ρ ∈ (0,∞).

Note that the function ũ defined by (2.8) is radially symmetrical and decreases as a function of
ρ = |x|. Thus, according to (4.3) it coincides with its symmetrical rearrangement, and we can apply
definition (2.8) with ρ = |x|. By Theorem 2.1 this proves estimate (4.4).

Let us deduce (4.5) from (4.4). We have

∞∫
0

F (ρ+ τ)G(τ)τn−1dτ =

ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ +

∞∫
ρ

F (ρ+ τ)G(τ)τn−1dτ.

For τ ∈ [0, ρ] we have ρ+ τ ∈ [ρ, 2ρ], so that for the function F ∈ Jα(∞) there is the estimate:

α−1F (ρ+ τ) ≤ F (ρ) ≤ αF (ρ+ τ).

Therefore,

α−1

ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ ≤ F (ρ)

ρ∫
0

G(τ)τn−1dτ ≤ α

ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ.

For τ > ρ we have ρ+ τ ∈ [τ, 2τ ], so that for the function F ∈ Jα(∞) there is the estimate:

α−1F (ρ+ τ) ≤ F (τ) ≤ αF (ρ+ τ).



24 E.G. Bakhtigareeva, M.L. Goldman

Therefore,

α−1

∞∫
ρ

F (ρ+ τ)G(τ)τn−1dτ ≤
∞∫
ρ

F (τ)G(τ)τn−1dτ ≤ α

∞∫
ρ

F (ρ+ τ)G(τ)τn−1dτ.

So, we have the two–sided estimate

∞∫
0

F (ρ+ τ)G(τ)τn−1dτ ∼= F (ρ)

ρ∫
0

G(τ)τn−1dτ +

∞∫
ρ

F (τ)G(τ)τn−1dτ.

Analogously, for G ∈ Jβ(∞), we obtain

∞∫
0

F (τ)G(ρ+ τ)τn−1dτ ∼= G(ρ)

ρ∫
0

F (τ)τn−1dτ +

∞∫
ρ

F (τ)G(τ)τn−1dτ.

As a result,
∞∫
0

[F (ρ+ τ)G(τ) + F (τ)G(ρ+ τ)] τn−1dτ

∼= F (ρ)
ρ∫
0

G(τ)τn−1dτ +G(ρ)
ρ∫
0

F (τ)τn−1dτ +
∞∫
ρ

F (τ)G(τ)τn−1dτ.

We put this estimate into (4.4) and obtain (4.5).

Remark 7. Note that the right–hand–side inequality in (4.4) follows immediately from Remark 5
and Corollary 2.2 (see estimate (2.27)) without restrictions F ∈ Jα, G ∈ Jβ.

Corollary 4.1. Under the assumptions of Theorem 4.1 we define

ϕ(λ) = F
(
(λ/Vn)1/n

)
, ψ(λ) = G

(
(λ/Vn)1/n

)
, λ ∈ (0,∞). (4.6)

Then, the following estimate holds for the decreasing rearrangement of the convolution u:

u∗(t) ∼= ϕ(t)

t∫
0

ψ(λ)dλ+ ψ(t)

t∫
0

ϕ(λ)dλ+

∞∫
t

ϕ(λ)ψ(λ)dλ, t ∈ (0,∞), (4.7)

with understanding ∼= as in (2.18).

Proof. We introduce the new variable λ = Vnτ
n for integrals in (4.5). Then,

τ = (λ/Vn)1/n, τn−1dτ = dλ/(nVn),

and we obtain from (4.5)–(4.6)

u#(ρ) ∼= F (ρ)

Vnρn∫
0

ψ(λ)dλ+G(ρ)

Vnρn∫
0

ϕ(λ)dλ+

∞∫
Vnρn

ϕ(λ)ψ(λ)dλ.

We put here ρ = (t/Vn)1/n and take into account notation (4.6) and the equality: u#
(
(t/Vn)1/n

)
=

u∗(t) (see (4.2)). Thus, we come to (4.7).
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Corollary 4.2. Under the assumptions of Theorem 4.1 the following estimate holds for the decreasing
rearrangement of the convolution:

u∗(t) ∼= f ∗(t)

t∫
0

g∗(λ)dλ+ g∗(t)

t∫
0

f ∗(λ)dλ+

∞∫
t

f ∗(λ)g∗(λ)dλ, t ∈ (0,∞), (4.8)

with understanding ∼= as in (2.18).

Proof. Indeed, formula (4.8) follows from (4.7) and from the equalities

f(x) = F (|x|), 0 ≤ F ↓⇒ f#(ρ) = F (ρ)⇒ f ∗(t) = F
(
(t/Vn)1/n

)
= ϕ(t),

g(x) = G(|x|), 0 ≤ G ↓⇒ g#(ρ) = G(ρ)⇒ g∗(t) = G
(
(t/Vn)1/n

)
= ψ(t).

Remark 8. Note that under the assumptions of Theorem 4.1

2−nt1 ≤ t2 ≤ t1 ⇒ f ∗(t1) ≤ f ∗(t2) ≤ α2f ∗(t1). (4.9)

Indeed,
1

2

(
t1
Vn

)1/n

≤
(
t2
Vn

)1/n

≤
(
t1
Vn

)1/n

,

and for F ∈ Jα(∞) we have by application of Remark 3

α−2F

((
t1
Vn

)1/n
)
≤ F

((
t2
Vn

)1/n
)
≤ α2F

((
t1
Vn

)1/n
)
.

Moreover, the function F decreases and for t2 ≤ t1 in the left–hand–side of this estimate we can

replace α−2 < 1 by 1. Therefore, for the function f ∗(t) = F

((
t
Vn

)1/n
)

we obtain (4.9).

Analogously,
2−nt1 ≤ t2 ≤ t1 ⇒ g∗(t1) ≤ g∗(t2) ≤ β2g∗(t1). (4.10)

Corollary 4.3. Under the assumptions of Theorem 4.1 for ξ ∈ (0,∞) the following estimates hold
for the decreasing rearrangement of a function f (see (2.7)):

ξ ≤ η ≤ 2ξ ⇒ f ∗(2ξ) ≤ f ∗(η) ≤ α2f ∗(2ξ); (4.11)

ξ ≤ η ≤ 2ξ ⇒ g∗(2ξ) ≤ g∗(η) ≤ β2g∗(2ξ); (4.12)

Proof. Indeed, we put t1 = 2ξ in (4.9) and obtain

ξ ≤ η ≤ 2ξ ⇔ 2−1t1 ≤ η ≤ t1 ⇒ 2−nt1 ≤ η ≤ t1 ⇒ f ∗(2ξ) ≤ f ∗(η) ≤ α2f ∗(2ξ).

Analogously, we obtain (4.12) from (4.10).

Corollary 4.4. Under the assumptions of Theorem 4.1 the following estimate holds for the decreasing
rearrangement of the convolution u:

u∗(t) ∼=
∞∫

0

[f ∗(t+ λ)g∗(λ) + f ∗(λ)g∗(t+ λ)] dλ, t ∈ (0,∞), (4.13)

with understanding ∼= as in (2.18).
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Proof. We must show that estimate (4.13) is equivalent to (4.8). We have the equality

I :=

∞∫
0

[f ∗(t+ λ)g∗(λ) + f ∗(λ)g∗(t+ λ)] dλ =

t∫
0

[. . .] dλ+

∞∫
t

[. . .] dλ.

Note that, according to (4.11), (4.12), the following estimates hold:

0 < λ ≤ t⇒ t < t+ λ ≤ 2t⇒ f ∗(t+ λ) ∼= f ∗(t); g∗(t+ λ) ∼= g∗(t);

λ > t⇒ λ < t+ λ ≤ 2λ⇒ f ∗(t+ λ) ∼= f ∗(λ); g∗(t+ λ) ∼= g∗(λ).

Therefore,

t∫
0

[f ∗(t+ λ)g∗(λ) + f ∗(λ)g∗(t+ λ)] dλ ∼= f ∗(t)

t∫
0

g∗(λ)dλ+ g∗(t)

t∫
0

f ∗(λ)dλ;

∞∫
t

[f ∗(t+ λ)g∗(λ) + f ∗(λ)g∗(t+ λ)] dλ ∼=
∞∫
t

f ∗(λ)g∗(λ)dλ.

This shows that

I ∼= f ∗(t)

t∫
0

g∗(λ)dλ+ g∗(t)

t∫
0

f ∗(λ)dλ+

∞∫
t

f ∗(λ)g∗(λ)dλ.

Now, we apply (4.8) and obtain (4.13).

4.2 Estimates for integral mean values of rearrangements

We move on to estimating the integral mean value for the decreasing rearrangement of the convolu-
tion. Let

0< ν(τ), τ ∈ (0,∞); 0<V (t) :=

t∫
0

ν(τ)dτ <∞, t ∈ (0,∞);

u∗∗ν (t) =
1

V (t)

t∫
0

u∗(τ)ν(τ)dτ, t ∈ (0,∞). (4.14)

Such variant of the mean value for the decreasing rearrangement was introduced in [1].

Theorem 4.2. Under the assumptions of Theorem 4.1 the following estimate holds

u∗∗ν (t) ∼= I1(t) + I2(t) + I3(t), t ∈ (0,∞); (4.15)

I1(t) = V (t)−1

t∫
0

f ∗(τ)

τ∫
0

g∗(λ)dλ+ g∗(τ)

τ∫
0

f ∗(λ)dλ

 ν(τ)dτ ; (4.16)

I2(t) = V (t)−1

t∫
0

f ∗(λ)g∗(λ)V (λ)dλ; I3(t) =

∞∫
t

f ∗(λ)g∗(λ)dλ. (4.17)
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Proof. By (4.13) we have

u∗∗ν (t) ∼= Î1(t) + Î2(t) + Î3(t), t ∈ (0,∞); (4.18)

Î1(t) = V (t)−1

t∫
0

 τ∫
0

[f ∗(τ + λ)g∗(λ) + f ∗(λ)g∗(τ + λ)] dλ

 ν(τ)dτ ;

Î2(t) = V (t)−1

t∫
0

 t∫
τ

[f ∗(τ + λ)g∗(λ) + f ∗(λ)g∗(τ + λ)] dλ

 ν(τ)dτ ;

Î3(t) = V (t)−1

t∫
0

 ∞∫
t

[f ∗(τ + λ)g∗(λ) + f ∗(λ)g∗(τ + λ)] dλ

 ν(τ)dτ.

Let us recall inequalities (4.11), (4.12). Thus, we have estimates

0 < λ ≤ τ ⇒ τ < τ + λ ≤ 2τ ⇒ f ∗(τ + λ) ∼= f ∗(τ); g∗(τ + λ) ∼= g∗(τ);

λ > τ ⇒ λ < τ + λ ≤ 2λ⇒ f ∗(τ + λ) ∼= f ∗(λ); g∗(τ + λ) ∼= g∗(λ).

Therefore, for t ∈ (0,∞)

Î1(t) ∼= V (t)−1

t∫
0

f ∗(τ)

τ∫
0

g∗(λ)dλ+ g∗(τ)

τ∫
0

f ∗(λ)dλ

 ν(τ)dτ = I1(t);

Î2(t) ∼= V (t)−1

t∫
0

 t∫
τ

f ∗(λ)g∗(λ)dλ

 ν(τ)dτ = V (t)−1

t∫
0

f ∗(λ)g∗(λ)

λ∫
0

ν(τ)dτdλ = I2(t);

Î3(t) ∼= V (t)−1

t∫
0

 ∞∫
t

f ∗(λ)g∗(λ)dλ

 ν(τ)dτ = V (t)−1

∞∫
t

f ∗(λ)g∗(λ)dλ

t∫
0

ν(τ)dτ = I3(t).

Thus, (4.18) implies (4.15) - (4.17).

In some special cases we can simplify the general answer.

Remark 9. Under the assumptions of Theorem 4.1 we assume additionally that there exists a
constant c0 ∈ (0,∞), such that

ν(τ)τ ≥ c0V (τ), τ ∈ (0,∞). (4.19)

Then,
u∗∗ν (t) ∼= I1(t) + I3(t), t ∈ (0,∞). (4.20)

Moreover, here

I1(t) ≥ 2c0V (t)−1

t∫
0

f ∗(τ)g∗(τ)V (τ)dτ. (4.21)
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Proof. We put estimate (4.19) into (4.16) and obtain

I1(t) ≥ 2c0V (t)−1

t∫
0

f ∗(τ)
1

τ

τ∫
0

g∗(λ)dλ+ g∗(τ)
1

τ

τ∫
0

f ∗(λ)dλ

V (τ)dτ.

Functions f ∗, g∗ decrease, so that we have inequalities

1

τ

τ∫
0

g∗(λ)dλ ≥ g∗(τ),
1

τ

τ∫
0

f ∗(λ)dλ ≥ f ∗(τ).

Therefore,

I1(t) ≥ 2c0V (t)−1

t∫
0

[f ∗(τ)g∗(τ)]V (τ)dτ = 2c0I2(t).

This means that in the right–hand side of (4.15) the second term is covered by the first one, and we
come to estimates (4.20), (4.21).

Note that inequality (4.19) holds with the constant c0 = 1 in the case of the increasing weight
ν.

Remark 10. The non-weighted case, where ν(τ) ≡ 1, is of special interest. Thus,

ν(τ) ≡ 1⇒ V (τ) = τ ⇒ u∗∗ν (t) = u∗∗(t) :=
1

t

t∫
0

u∗(τ)dτ, t ∈ (0,∞). (4.22)

In this case we have the estimate

u∗∗(t) ∼= t−1

t∫
0

f ∗(λ)dλ

t∫
0

g∗(λ)dλ+

∞∫
t

f ∗(λ)g∗(λ)dλ. (4.23)

Indeed, in the non–weighted case we have

I1(t) = t−1

t∫
0

f ∗(τ)

τ∫
0

g∗(λ)dλ+ g∗(τ)

τ∫
0

f ∗(λ)dλ

 dτ
= t−1

t∫
0

d

dτ

 τ∫
0

f ∗(λ)dλ

τ∫
0

g∗(λ)dλ

 dτ = t−1

t∫
0

f ∗(λ)dλ

t∫
0

g∗(λ)dλ. (4.24)

We put this equality into (4.20), take into account equality (4.17) for I3(t) and obtain (4.23).

5 One useful lemma

The following lemma may be useful in many considerations related to the subject of this paper. The
proof of this lemma is related to the proofs of Theorems in Sections 2–4.
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Lemma 5.1. Let functions F,G ≥ 0 be measurable on (0,∞), let

G ∈ Jβ(∞), (5.1)

R ∈ (0,∞], F ∈ Jα(R), (5.2)

Denote

D∞(ρ) =

∞∫
0

[F (ρ+ τ)G(τ) + F (τ)G(ρ+ τ)] τn−1dτ, ρ ∈ (0,∞); (5.3)

DR(ρ) =

R−ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ +

R∫
0

F (τ)G(ρ+ τ)τn−1dτ, R <∞, ρ ∈ (0, R]; (5.4)

DR(ρ) =

R∫
0

F (τ)G(ρ+ τ)τn−1dτ, R <∞, ρ > R. (5.5)

1. Then, for R =∞ we have the estimate:

D∞(ρ)∼=F (ρ)

ρ∫
0

G(τ)τn−1dτ+G(ρ)

ρ∫
0

F (τ)τn−1dτ+

∞∫
ρ

F (τ)G(τ)τn−1dτ, ρ∈(0,∞). (5.6)

2. For R <∞ we have the estimates:

(a) if ρ ∈ (0, R/2], then

DR(ρ)∼=F (ρ)

ρ∫
0

G(τ)τn−1dτ+G(ρ)

ρ∫
0

F (τ)τn−1dτ+

R∫
ρ

F (τ)G(τ)τn−1dτ ; (5.7)

(b) if ρ ∈ (R/2, R], then

DR(ρ) ∼= F (ρ)

R−ρ∫
0

G(τ)τn−1dτ +G(ρ)

R∫
0

F (τ)τn−1dτ ; (5.8)

(c) if ρ > R, then

DR(ρ) ∼= G(ρ)

R∫
0

F (τ)τn−1dτ. (5.9)

In these formulas A ∼= B means that for each formula there exist constants 0 < d1 ≤ d2 < ∞,
depending only on α, β, such that d1 ≤ A/B ≤ d2.

Proof. 1. For R =∞ we have
D∞(ρ) = A1(ρ) + A2(ρ); (5.10)

A1(ρ) =

ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ +

∞∫
ρ

F (ρ+ τ)G(τ)τn−1dτ,
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A2(ρ) =

ρ∫
0

F (τ)G(ρ+ τ)τn−1dτ +

∞∫
ρ

F (τ)G(ρ+ τ)τn−1dτ.

For 0 ≤ τ ≤ ρ we have ρ+ τ ∈ [ρ, 2ρ]⇒ α−1F (ρ) ≤ F (ρ+ τ) ≤ αF (ρ).

For ρ ≤ τ we have ρ+ τ ∈ [τ, 2τ ]⇒ α−1F (τ) ≤ F (ρ+ τ) ≤ αF (τ), (see (5.2)). Therefore,

A1(ρ) ∼= F (ρ)

ρ∫
0

G(τ)τn−1dτ +

∞∫
ρ

F (τ)G(τ)τn−1dτ.

Analogously, for 0 ≤ τ ≤ ρ we have β−1G(ρ) ≤ G(ρ + τ) ≤ βG(ρ); for ρ ≤ τ we have
β−1G(τ) ≤ G(ρ+ τ) ≤ βG(τ), (see (5.1)). Thus,

A2(ρ) ∼= G(ρ)

ρ∫
0

F (τ)τn−1dτ +

∞∫
ρ

F (τ)G(τ)τn−1dτ.

As a result, we come to estimate (5.6).

2. Let R <∞, ρ ∈ (0, R/2]. Then, ρ ≤ R− ρ and

DR(ρ) = B1(ρ) +B2(ρ);

B1(ρ) =

ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ +

R−ρ∫
ρ

F (ρ+ τ)G(τ)τn−1dτ,

B2(ρ) =

ρ∫
0

F (τ)G(ρ+ τ)τn−1dτ +

R∫
ρ

F (τ)G(ρ+ τ)τn−1dτ.

As in Step 1 we have

F (ρ+ τ) ∼= F (ρ), G(ρ+ τ) ∼= G(ρ), 0 ≤ τ ≤ ρ;

F (ρ+ τ) ∼= F (τ) for ρ < τ ≤ R− ρ, G(ρ+ τ) ∼= G(τ) for τ > ρ,

so that

B1(ρ) ∼= F (ρ)

ρ∫
0

G(τ)τn−1dτ +

R−ρ∫
ρ

F (τ)G(τ)τn−1dτ ; (5.11)

B2(ρ) ∼= G(ρ)

ρ∫
0

F (τ)τn−1dτ +

R∫
ρ

F (τ)G(τ)τn−1dτ. (5.12)

We take into account that the second term in (5.11) is majored by the second term in (5.12)
and obtain

DR(ρ)=B1(ρ) +B2(ρ)∼=F (ρ)

ρ∫
0

G(τ)τn−1dτ +G(ρ)

ρ∫
0

F (τ)τn−1dτ +

R∫
ρ

F (τ)G(τ)τn−1dτ.

It gives estimate (5.7).
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3. Now, let R ∈ (0,∞), ρ ∈ (R/2, R]. Then, R− ρ < R/2 < ρ, and

DR(ρ) = E1(ρ) + E2(ρ),

E1(ρ) =

R−ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ, E2(ρ) =

R∫
0

F (τ)G(ρ+ τ)τn−1dτ.

For 0 ≤ τ ≤ R− ρ we have ρ < ρ+ τ ≤ R < 2ρ, so that

F (ρ+ τ) ∼= F (ρ)⇒
R−ρ∫
0

F (ρ+ τ)G(τ)τn−1dτ ∼= F (ρ)

R−ρ∫
0

G(τ)τn−1dτ.

For 0 < τ ≤ R we have ρ < ρ+ τ ≤ ρ+R ≤ ρ+ 2ρ = 3ρ, so that

G(ρ+ τ) ∼= G(ρ)⇒
R∫

0

F (τ)G(ρ+ τ)τn−1dτ ∼= G(ρ)

R∫
0

F (τ)τn−1dτ.

As a result,

DR(ρ) = E1(ρ) + E2(ρ) ∼= F (ρ)

R−ρ∫
0

G(τ)τn−1dτ +G(ρ)

R∫
0

F (τ)τn−1dτ.

4. It remains to consider the case R ∈ (0,∞), ρ > R. Then, G(ρ + τ) ∼= G(ρ) for 0 < τ ≤ R, so
that (see (5.5))

DR(ρ) =

R∫
0

F (τ)G(ρ+ τ)τn−1dτ ∼= G(ρ)

R∫
0

F (τ)τn−1dτ.

This estimate coincides with (5.9).

Acknowledgments

The results of Sections 2, 4.1, 5 were obtained by E.G. Bakhtigareeva at the Steklov Mathematical
Institute of the Russian Academy of Sciences and her work was financially supported by the Russian
Science Foundation under grant no. 24-11-00170, https://rscf.ru/project/24-11-00170/. The results
of Sections 1, 3, 4.2 were obtained by M.L. Goldman.



32 E.G. Bakhtigareeva, M.L. Goldman

References

[1] C. Aykol, A. Gogatishvili, V. Guliyev, Associated spaces on generalized classical Lorentz space GΛp,ψ;ϕ. arXiv
1310. 1169 (2013), no. 2, 1–11.

[2] A.N. Bashirova, A.K. Kalidolday, E.D. Nursultanov, Interpolation methods for anisotropic net spaces. Eurasian
Math. J., 15 (2024), no. 2, 33–41.

[3] C. Bennett, R. Sharpley, Interpolation of operators. Pure Appl. Math. 129. Acad. Press, Boston, 1988.

[4] N.A. Bokayev, A. Gogatishvili, A.N. Abek, On estimates of non-increasing rearrangement of generalized fractional
maximal function. Eurasian Math. J., 14 (2023), no. 2, 13вЂ“23.

[5] N.A. Bokayev, M.L. Goldman, G.Zh. Karshygina, Cones of functions with monotonicity conditions for generalized
Bessel and Riesz potentials. Math. Notes. 104 (2018), no. 3, 356–373.

[6] N.A. Bokayev, M.L. Goldman, G.Zh. Karshygina, Criteria for embeddings of generalized Bessel and Riesz poten-
tial spaces in rearrangement invariant spaces. Eurasian Math. Journal. 10 (2019), no. 2, 8–29.

[7] G.M. Fikhtengolts, Course of differential and integral calculus. V.3, Fizmatlit, Moscow, 1963 (in Russian).

[8] M.L. Goldman, On optimal embedding of generalized Bessel and Riesz potentials. Proc. Steklov Inst. Math. 269
(2010), 101–123.

[9] M.L. Goldman, On the cones of rearrangements for generalized Bessel and Riesz potentials. Complex Variables
and Elliptic Equations. 55 (2010), no. 8–10, 817–832.

[10] M.L. Goldman, Estimates for decreasing rearrangements of convolutions and coverings of cones. Journal of
mathematical sciences. 266 (2022), 944–958.

[11] A.K. Kalidolday, E.D. Nursultanov, Marcinkiewicz’s interpolation theorem for linear operators on net spaces.
Eurasian Math. J., 13 (2022), no. 4, 61–69.

[12] S.G. Krein, Yu.I. Petunin, E.M. Semenov, Interpolation of linear operators. Amer. Math. Soc., Providence, 1981.

[13] V.G. Maz’ya, Sobolev spaces. Springer-Verlag, Berlin, 1985.

[14] S.M. Nikol’skii, Approximation of functions of several variables and imbedding theorems. Springer-Verlag, Berlin,
1975.

[15] E. Nursultanov, S. Tikhonov, Convolution inequalities in Lorentz spaces. J. Fourier Anal. and Appl. 17 (2011),
486–505.

[16] R. O’Neil, Convolution operators and L(p, q) spaces. Duke Math. J. (1979), 129–142.

[17] E.M. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, N.J.,
1970.

Elza Gizarovna Bakhtigareeva
Department of Function Theory
Steklov Mathematical Institute of the Russian Academy of Sciences
8 Gubkin St,
119991 Moscow, Russian Federation
E-mail: bakhtigareeva-eg@rudn.ru.

Mikhail L’vovich Goldman
is now retired
E-mail: seulydia@yandex.ru.

Received: 03.06.2024


	Introduction
	Two–sided estimates for convolutions. The case R=
	Two–sided estimates for convolutions. The case R<
	Two–sided estimates for decreasing rearrangements of convolutions
	Estimates for decreasing and symmetrical rearrangements
	Estimates for integral mean values of rearrangements

	One useful lemma

