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Abstract. In this paper we present a simpler method of proving the correctness
and selfadjointtness of the operators of the form B2 corresponding to some boundary
value problems. We also give explict representations for the unique solution of these
problems.

1 Introduction

Correct selfadjoint operators arise naturally in many boundary value problems with
differential or integro-differential operator. Correct extensions of a densely defined
minimal, not necessarily symmetric, operator in a Hilbert and Banach space have
been investigated by M.I. Vishik [15], A.A. Dezin [3], B.K. Kokebaev, M. Otelbaev
and A.N. Shynibekov [8], T.Sh. Kalmenov [5], R. Oinarov and I.N. Parasidi [11],
R. Oinarov and S. Sagintaeva [12] and many others. Selfadjoint extensions of a
densely defined minimal symmetric operator A0 have been studied by a number of
authors, in particular by J. von Neumann [10], V.I. Gorbachuk and M.L. Gorbachuk
[4], E.A. Coddington, A. Dijksma [2], A.N. Kočubei [6], V.A. Mikhailets [9]. Selfad-
joint extensions of a nondensely defined symmetric operator have been investigated
by E.A. Coddington [1], A. N. Kočubei [7]. Often the above authors described the
extensions as restrictions of certain operators, mainly of the adjoint operator A∗

0.
Correct selfadjoint and positive extensions of a nondensely defined minimal symmet-
ric operators A0 have been considered in [13]. Correct restrictions B of a certain
maximal operator A defined in a Banach space, when B is a product of two correct
restrictions B1, B2 of A, have been investigated by A.N. Shynibekov [14].

Correct operators which we consider in general are not restrictions of maximal
operators and so Shynibekov’s method cannot be applied. In this paper we use the
operator B, defined in [13, Theorem 3.10] by

Bx = Âx− (ÂF )Cm〈Âx, F t〉Hm = f, D(B) = D(Â),

where Â is a given correct selfadjoint operator on H, F ∈ D(Â)m, Cm – is a m ×
m matrix. We investigate the correctness and selfadjointness of the operator BSG
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corresponding to the boundary value problem

BSGx = Â2x− S〈Âx, F t〉Hm −G〈Â2x, F t〉Hm = f, D(BSG) = D(Â2),

where the vectors

G = (ÂF )Cm ∈ D(Â)m, S = ÂG−G〈F t, ÂG〉Hm ∈ Hm.

We show that the operator BSG is quadratic, i.e. BSG = B2. For the correspond-
ing problem BSGx = f we prove a criterion of correctness and selfadjointness in terms
of the matrices Cm and solve the equation BSGx = f which is essentially simpler than
in the general case of non-quadratic operators.

We note that the selfadjointness of BSG can be proved by more general methods
developed in [1], [2], [7]. However, here we do not need the full strength of these
methods and prove selfadjointness in a simpler and straightforward way.

The paper is organized as follows. In Section 2 we recall some basic terminology
and notation about operators. In Section 3 we prove the main result. Finally, in
Section 4, we give three examples of integro-differential equations which show the
usefulness of this result.

2 Terminology and notation

By 〈x, f〉H we denote the inner product of elements x, f of a complex Hilbert space
H. For operators A : H → H we write D(A) and R(A) for the domain and the range
of A respectively.

An operator Â is called correct if R(Â) = H and the inverse Â−1 exists and is
continuous. Let A be an operator with domain D(A) dense in H.

The adjoint operator A∗ : H −→ H of A with domain D(A∗) is defined by the
equation 〈Ax, y〉H = 〈x,A∗y〉H for every x ∈ D(A) and every y ∈ D(A∗). The
domain D(A∗) of A∗ consists of all y ∈ H for which the functional x 7−→ 〈Ax, y〉H is
continuous on D(A). An operator A is called selfadjoint if A = A∗.

If an operator B : H → H is correct (selfadjoint respectively), then we say that
the problem Bx = f is correct (selfadjoint respectively).

Let Fi ∈ H, i = 1, . . . ,m. Then F = (F1, . . . , Fm) and AF = (AF1, . . . , AFm)

are vectors of Hm. We write F = (Â−1F, F ) = (Â−1F1, . . . , Â
−1Fm, F1, . . . , Fm)

and Â−2 = (Â−1)2. We also write F t and 〈Ax, F t〉Hm for the column vectors
col(F1, . . . , Fm) and col(〈Ax, F1〉H , . . . , 〈Ax, Fm〉H) respectively. We denote by M t

the transpose matrix of M and by 〈AF t, F 〉Hm the m×m matrix whose i, j-th entry
is the inner product 〈AFi, Fj〉H . We also denote by Im and [0]m the identity m ×m
and the zero m×m matrix respectively.

3 Correct and selfadjoint problems with quadratic operators

Throughout this paper we assume that the components of the vectors F =
(F1, . . . , Fm) and F = (Â−1F1, . . . , Â

−1Fm, F1, . . . , Fm) are linearly independent ele-

ments of D(Â) and D(Â2) respectively.
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Next theorem is Theorem 3.10 of [13] with the additional information that if
the operator B is selfadjoint, then the matrix Cm is Hermitian. This is a criterion of
correctness and selfadjointness of the equation Bx = f . Also an explict representation
of the unique solution to this problem is given. We shall make use of this theorem in
the sequel.

Theorem 1. Let B : H → H and

Bx = Âx− (ÂF )Cm〈Âx, F t〉Hm = f, D(B) = D(Â), (1)

where Â is correct and selfadjoint on H, Cm is an m×m matrix with rankCm = n ≤ m
and let F1, . . . , Fm be linearly independent elements of D(Â).

Then
(i) dimR(B − Â) = n.
(ii) B is correct if and only if

det
[
Im − 〈ÂF t, F 〉HmCm

]
6= 0. (2)

(iii) B is selfadjoint if and only if the matrix Cm is Hermitian.
(iv) If B is correct, then the unique solution of problem (1) for each f ∈ H is given
by the formula

x = B−1f = Â−1f + FCm
[
Im − 〈ÂF t, F 〉HmCm

]−1〈f, F t〉Hm . (3)

Proof of statement (iii). From (1) we have

B∗x = Âx− 〈x, ÂF 〉HmCm(ÂF t) = Âx− (ÂF )C t
m〈Âx, F t〉Hm .

Since the operator Â is correct and selfadjoint and F1, . . . , Fm are linearly indepen-
dent elements of D(Â), then, by (1), we have that B∗ = B if and only if Cm = C t

m.
�

Remark 1. It is useful to notice that the Hermitianess of the matrix Cm is equivalent
to the selfadjointness of B and that (2) implies the correctness of B and so it is a
solvability condition for the problem Bx = f .

By Theorem 1, since Â2 is a correct selfadjoint operator and the components of
F are linearly independent, the next theorem easily follows which is a criterion of
correctness and selfadjointness of the equation B1x = f with D(B1) = D(Â2) and

dimR(B1 − Â2) = n. A representation of the unique solution is also given.

Theorem 2. Let B1 : H → H and

B1x = Â2x− (Â2F)C2m〈Â2x,F t〉H2m = f, D(B1) = D(Â2), (4)

where Â is correct and selfadjoint on H, C2m is a (2m)×(2m) matrix with rank C2m =

n ≤ 2m and let the components of the vector F = (Â−1F1, . . . , Â
−1Fm, F1, . . . , Fm)

be linearly independent elements of D(Â2).
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Then
(i) dimR(B1 − Â2) = n.
(ii) B1 is correct if and only if

detL1 = det
[
I2m − 〈Â2F t,F〉H2mC2m

]
6= 0. (5)

(iii) B1 is selfadjoint if and only if C2m is Hermitian.
(iv) If B1 is correct, then the unique solution of (4) for each f ∈ H is given by the
formula

x = B−1
1 f = Â−2f + FC2m

[
I2m − 〈Â2F t,F〉H2mC2m

]−1〈f,F t〉H2m . (6)

Lemma 1. Let the operators B,B2 : H → H be defined by

Bx = Âx− (ÂF )Cm〈Âx, F t〉Hm = f, D(B) = D(Â), (7)

B2x =Â2x−
[
(Â2F )Cm − (ÂF )Cm〈ÂF t, ÂF 〉HmCm

]
〈Âx, F t〉Hm− (8)

−(ÂF )Cm〈Â2x, F t〉Hm = f, x ∈ D(B2) = D(Â2),

where Â is a selfadjoint operator on H, Cm is an m×m matrix and the components
of the vector F = (F1, . . . , Fm) belong to D(Â2). Then B2 = B2.

Proof. We put y = Bx. Then, by (8) and the selfadjointness of Â, for each x ∈
D(Â2), we have

B2x = Â2x− (Â2F )Cm〈Âx, F t〉Hm + (ÂF )Cm〈ÂF t, ÂF 〉HmCm〈Âx, F t〉Hm−

−(ÂF )Cm〈Â2x, F t〉Hm = Â
[
Âx− (ÂF )Cm〈Âx, F t〉Hm

]
− (ÂF )Cm

[
〈Â2x, F t〉Hm−

−〈Â2F t, F 〉HmCm〈Âx, F t〉Hm

]
= Ây − (ÂF )Cm〈Ây, F t〉Hm = By = B2x,

where after the second equality we used that

〈Â2x, F t〉Hm − 〈Â2F t, F 〉HmCm〈Âx, F t〉Hm = 〈Â2x, F t〉Hm−

−
〈
Â2F t, FCm〈Âx, F t〉Hm

〉
Hm = 〈Â2x, F t〉Hm −

〈
FCm〈Âx, F t〉Hm , Â2F t

〉
Hm =

〈Â2x, F t〉Hm −
〈
Â2FCm〈Âx, F t〉Hm , F t

〉
Hm =

〈
Â[Âx− (ÂF )Cm〈Âx, F t〉Hm ], F t

〉
Hm .

Now we show that D(B2) = D(Â2). Since

D(B2) = {x ∈ D(Â) : Âx− (ÂF )Cm〈Âx, F t〉Hm ∈ D(Â)}

and ÂFi ∈ D(Â), i = 1, . . . ,m it follows that D(B2) = D(Â2) and B2 = B2. �

We now present the main result of this paper.
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Theorem 3. Let the operators Â, BSG : H → H, where Â is a correct selfadjoint
operator and the operator BSG is defined by

BSG x = Â2x− S〈Âx, F t〉Hm −G〈Â2x, F t〉Hm = f, D(BSG) = D(Â2), (9)

the components of the vector F = (Â−1F, F )
(
ÂF = (F, ÂF ) respectively

)
are

linearly independent elements of D(Â2)
(
D(Â) respectively

)
, S = (s1, . . . , sm), G =

(g1, . . . , gm), si ∈ H, gi ∈ D(Â), i = 1, . . . ,m,

S = ÂG−G〈F t, ÂG〉Hm , G = (ÂF )Cm

and Cm is an m×m matrix with rank Cm = n(n ≤ m).
Then

(i) dimR(BSG − Â2) = 2n (n ≤ m).
(ii) BSG is a correct operator if and only if

detL = det
[
Im − 〈ÂF t, F 〉HmCm

]
6= 0. (10)

(iii) BSG is a selfadjoint operator if and only if the matrix Cm is Hermitian.
(iv) If the operator BSG is correct, then the unique solution of problem (9) for each
f ∈ H is given by the formula

x = B−1
2 =Â−2f +

[
Â−1F + FCmL

−1〈F t, F 〉Hm

]
CmL

−1〈f, F t〉Hm+

+FCmL
−1〈f, Â−1F t〉Hm . (11)

This theorem is useful in applications and gives a criterion of correctness and
selfadjointness of the equation BSGx = f . The operator BSG is equal, by Lemma 1,

to B2 = B2 if S = ÂG−G〈F t, ÂG〉Hm . Next we denote by B2 the operators defined
by (4) or by (9). Using (5) and (6) we shall prove (10) and (11) respectively. Formula
(11) can also be obtained by using the solution of equation (7).

Proof. Let

K = 〈ÂF t, ÂF 〉Hm , T = 〈F t, F 〉Hm , D = 〈ÂF t, F 〉Hm .

Then the matrix L in (10) is written as L = Im − DCm. Since G = (ÂF )Cm

and S = ÂG − G〈F t, ÂG〉Hm , equation (9) implies (8) and the equality BSG = B2.
Equation (9) can also be written in matrix notation as

B2x = Â2x− (ÂF, Â2F )

(
−CmKCm Cm

Cm [0]m

)(
〈Âx, F t〉Hm

〈Â2x, F t〉Hm

)
= f

or
B2x = Â2x− (Â2F)C2m〈Â2x,F t〉H2m = f, (12)

where

F = (Â−1F, F ), C2m =

(
−CmKCm Cm

Cm [0]m

)
.
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(i) It is evident, from the last equality, that rank C2m = 2n if and only if rank

Cm = n. From (12), since Â is correct and the components of F linearly independent,
follows that rank C2m = 2n, (n ≤ m).

(iii) It is also evident, from the last equality, that the matrix C2m is Hermitian if
and only if Cm is Hermitian. Hence, by Theorem 2, the operator B2 is selfadjoint if
and only if Cm is Hermitian.

(ii) By Theorem 2 the operator B2 is correct if and only if (5) holds true, where,
we remind, B1 is denoted by B2 and L1 by L2.

L2 = I2m − 〈Â2F t,F〉H2mC2m =

= I2m −
〈
col(ÂF t, Â2F t), (Â−1F, F )

〉
H2mC2m =

= I2m −

(
〈F t, F 〉Hm 〈ÂF t, F 〉Hm

〈ÂF t, F 〉Hm 〈Â2F t, F 〉Hm

)
C2m =

= I2m −
(
T D
D K

)(
−CmKCm Cm

Cm 0

)
=

=

(
Im [0]m
[0] Im

)
−
(
−TCmKCm +DCm TCm
−DCmKCm +KCm DCm

)
=

=

(
Im + TCmKCm −DCm −TCm
DCmKCm −KCm Im −DCm

)
=

=

(
L+ TCmKCm −TCm

(DCm − Im)KCm L

)
=

(
L+ TCmKCm −TCm
−LKCm L

)
,

i.e.

L2 = I2m − 〈Â2F t,F〉H2mC2m =

(
L −TCm

[0]m L

)(
Im [0]m

−KCm Im

)
(13)

and

detL2 = det

(
L −TCm

[0]m L

)
det

(
Im [0]m

−KCm Im

)
=

= (detL)2 6= 0 ⇔ detL 6= 0. (14)

So, by Theorem 2, because of (13) and (14), the operator B2 is correct if and only
if (10) holds true.

(iv) Now, using solution (6), we will find solution (11). From (13) we get

L−1
2 =

[
I2m − 〈Â2F t,F〉H2mC2m

]−1
=

=

(
Im [0]m

−KCm Im

)−1(
L −TCm

[0]m L

)−1

=

=

(
Im [0]m
KCm Im

)(
Im L−1TCm
[0]m Im

)(
L−1 [0]m
[0]m L−1

)
=
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=

(
Im [0]m
KCm Im

)(
L−1 L−1TCmL

−1

[0]m L−1

)
.

Then

FC2m

[
I2m − 〈Â2F t,F〉H2mC2m

]−1〈f,F t〉H2m = (Â−1F, F )·

·
(
−CmKCm Cm

Cm [0]m

)(
Im [0]m
KCm Im

)(
L−1 L−1TCmL

−1

[0]m L−1

)(
〈f, Â−1F t〉Hm

〈f, F t〉Hm

)
=

= 〈Â−1F, F )

(
[0]m Cm
Cm [0]m

)(
L−1 L−1TCmL

−1

[0]m L−1

)(
〈f, Â−1F t〉Hm

〈f, F t〉Hm

)
=

= FCmL
−1〈f, Â−1F t〉Hm +

[
(Â−1F ) + FCmL

−1T
]
CmL

−1〈f, F t〉Hm .

Replacing the above expression in (6), we get (11). �

4 Examples

In the following examples H1(0, 1), H2(0, 1) and H4(0, 1) denote the Sobolev spaces
of all complex functions in L2(0, 1) which have generalized derivatives up to the first,
second and fourth order respectively, belonging to L2(0, 1).

We recall [12, p. 780] that the operator Â : L2(0, 1) → L2(0, 1) defined by

Âu = iu′ = f, D(Â) = {u(t) ∈ H1(0, 1) : u(0) + u(1) = 0} (15)

is correct and selfadjoint and the unique solution u of the problem (15) is given by
the formula

Â−1f =
i

2

∫ 1

0

f(x)dt− i

∫ t

0

f(x)dx for all f ∈ H. (16)

Then it easily follows [12, p. 781] that the operator Â2 defined by

Â2u = −u′′ = f, D(Â2) = {u ∈ H2(0, 1) : u(0) + u(1) = 0, u′(0) + u′(1) = 0} (17)

is correct and selfadjoint and for every f ∈ L2(0, 1) the unique solution u of the
problem (17) is given by the formula

u = Â−2f = −
∫ t

0

(t− x)f(x)dx+
1

4

∫ 1

0

(2t− 2x+ 1)f(x)dx. (18)

Example 1. The operator B1 : L2(0, 1) → L2(0, 1) which corresponds to the problem

B1u = −u′′ + 12ic1(2t− 1)

∫ 1

0

u(x)(x2 − x)dx− 2

5
c21(t

2 − t)

∫ 1

0

u′(x)(4x3− (19)

− 6x2 + 1)dx− ic1(t
2 − t)

∫ 1

0

u′′(x)(4x3 − 6x2 + 1)dx = f(t), D(B1) = D(Â2)
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is correct and selfadjoint if and only if c1 is a real nonzero constant. The unique
solution of (19), for each f ∈ L2(0, 1), is given by the formula

u(t) = Â−2f(t) +
c1
48

[
i(4t4 − 8t3 + 4t) +

17c1
105

(4t3 − 6t2 + 1)
] ∫ 1

0

(4x3−

− 6x2 + 1)f(x)dx− ic1
12

(4t3 − 6t2 + 1)

∫ 1

0

(4x4 − 8x3 + 4x+ 1)f(x)dx. (20)

Proof. We refer to Theorem 3. If we compare equation (19) with equation (9) it is
natural to take

Â2u = −u′′ with D(Â2) = D(B1), m = 1, F = 4t3 − 6t2 + 1.

Then we can take Â defined by (15). It follows that F ∈ D(Â2). By simple
calculations we find

ÂF = 12i(t2 − t), Â2F = −12(2t− 1),

〈ÂF t, F 〉H = 0, 〈F t, F 〉H = 17/35, 〈Âu, F 〉H =

∫ 1

0

iu′(x)(4x3 − 6x2 + 1)dx,

〈Â2u, F 〉H = −
∫ 1

0

u′′(x)(4x3 − 6x2 + 1)dx.

Equation (19) can now be rewritten as follows:

B1u = −u′′ −
[
c1(2t− 1)− 2

5
ic21(t

2 − t)
] ∫ 1

0

iu′(x)(4x3 − 6x2 + 1)dx

−
[
− ic1(t

2 − t)
] ∫ 1

0

[−u′′(x)](4x3 − 6x2 + 1)dx = f(t). (21)

By comparing again (21) with (9) we take S = c1(2t − 1) − 2
5
ic21(t

2 − t) and G =

−ic1(t2−t). It is evident that G ∈ D(Â) and F, ÂF are linearly independent elements

of D(Â). Next

ÂG−G〈F t, ÂG〉Hm = (2t− 1)c1 −
2

5
ic21(t

2 − t) = S.

From G = (ÂF )Cm it follows −ic1(t2−t) = 12i(t2−t)Cm. This equation implies that
Cm = −c1/12. Therefore by Theorem 3 the operator BSG is correct and selfadjoint
if and only if c1 is a real number and

detL = det[Im − 〈ÂF t, F 〉HmCm] = 1 6= 0.

Hence L−1 = 1. So B1 is correct and selfadjoint if and only if c1 is a real nonzero
constant. If we substitute in (16) f = F = 4t3 − 6t2 + 1, then we get that Â−1F =
−i(t4 − 2t3 + t) and

〈f, Â−1F 〉H = −i
∫ 1

0

(x4 − 2x3 + x)f(x)dx.

From this and (11), (18) we obtain formula (20) for the solution of problem (19). �
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Example 2. The operator B1 : L2(0, 1) → L2(0, 1) which corresponds to the problem

B1u = u(4) +
[
12t− 6− 52c1

7
(2t3 − 3t2 + 1)

]
c1

∫ 1

0

(2x5 − 5x4 + 10x2 − 7)u′′dx+

+10c1(2t
3 − 3t2 + 1)

∫ 1

0

(x4 − 2x3 + 2x)u′′′dx = f(t) (22)

with

D(B1) = {u ∈ H4(0, 1) : u(1) = u′(0) = u′′(1) = u′′′(0) = 0},

is correct and selfadjoint if and only if c1 is a real constant such that c1 6= −126/367.
The unique solution of (22), for each f ∈ L2(0, 1), is given by the formula

u(t) =
1

6

∫ t

0

(t− x)3f(x)dx+
1

6

∫ 1

0

(1− x)(2 + 2x− x2 − 3t2)f(x)dx

+
[2t7 − 7t6 + 35t4 − 147t2 + 117

42
+

16301c1(2t
5 − 5t4 + 10t2 − 7)

110(126 + 367c1)

]
× 63c1

10(126 + 367c1)

∫ 1

0

(2x5 − 5x4 + 10x2 − 7)f(x)dx (23)

+
63c1(2t

5 − 5t4 + 10t2 − 7)

420(126 + 367c1)

∫ 1

0

(2x7 − 7x6 + 35x4 − 147x2 + 117)f(x)dx.

Proof. Now we refer to Theorem 3. If we compare equation (22) with equation (9)
it is natural to take

Â2u = u(4) with D(Â2) = D(B1), m = 1, F = 2t5 − 5t4 + 10t2 − 7.

Then we can take Â defined by

Âu = u′′(t) with D(Â) = {u ∈ H2(0, 1) : u(1) = u′(0) = 0}.

It is easy to verify that Â is a correct and selfadjoint operator and that

Â−1f =

∫ t

0

(t− x)f(x)dx−
∫ 1

0

(1− x)f(x)dx, (24)

Â−2f =
1

6

∫ t

0

(t− x)3f(x)dx+
1

6

∫ 1

0

(1− x)(2 + 2x− x2 − 3t2)f(x)dx, (25)

give the solutions of equations Âu = f and Â2u = f respectively. By simple
calculations we find

ÂF = 20(2t3 − 3t2 + 1) ∈ D(Â), 〈F t, F 〉H = 16301/693,

〈ÂF t, F 〉H = −3670/63, 〈Âu, F 〉H =

∫ 1

0

u′′(x)(2x5 − 5x4 + 10x2 − 7)dx.
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With integration by parts we find

〈Â2u, F 〉H =

∫ 1

0

u(4)(x)(2x5 − 5x4 + 10x2 − 7)dx = −10

∫ 1

0

u′′′(x)(x4 − 2x3 + 2x)dx.

Equation (22) can now be rewritten as follows

B1u =u(4) −
[
12t− 6− 52c1

7
(2t3 − 3t2 + 1)

]
c1

∫ 1

0

(2x5 − 5x4 + 10x2 − 7)u′′dx

−c1(2t3 − 3t2 + 1)

∫ 1

0

(2x5 − 5x4 + 10x2 − 7)u(4)dx = f(t). (26)

By comparing again (26) with (9) we take S =
[
12t− 6− 52c1

7
(2t3 − 3t2 + 1)

]
c1 and

G = c1(2t
3−3t2+1). It is evident that G ∈ D(Â) and F, ÂF are linearly independent

elements of D(Â). Then

ÂG−G〈F t, ÂG〉Hm = (12t− 6)c1 − (2t3 − 3t2 + 1)c152c1/7 = S.

From G = (ÂF )Cm it follows c1(2t
3 − 3t2 + 1) = 20(2t3 − 3t2 + 1)Cm. This equation

implies that Cm = c1/20. Then by Theorem 3 the operator BSG is correct and
selfadjoint if and only if c1 is a real number and

detL = det[Im − 〈ÂF t, F 〉HmCm] = (126 + 367c1)/126 6= 0,

i.e. if and only if c1 6= −126/367. Then L−1 = 126/(126 + 367c1). If we substitute in
(24) f = F = 2t5 − 5t4 + 10t2 − 7, we get

Â−1F = (2t7 − 7t6 + 35t4 − 147t2 + 117)/42

and

〈f, Â−1F 〉H =
1

42

∫ 1

0

(2x7 − 7x6 + 35x4 − 147x2 + 117)f(x)dx.

We also have

〈f, F 〉H =

∫ 1

0

(2x5 − 5x4 + 10x2 − 7)f(x)dx.

From this and (11), (25) we obtain formula (23) for the solution of problem (22). �

Let Ω = {x ∈ R2 : |x| = r < 1}, ∂Ω = γ and H2(Ω) – the Sobolev space of all
functions in L2(Ω) which have their partial generalized derivatives up to the second
order belonging L2(0, 1). The problem

4u = f, u|γ = 0, u ∈ H2(Ω), f ∈ L2(Ω), (27)

is the well known Dirichlet problem. It is known that the corresponding operator Â
is correct and self-adjoint and

u = Â−1f =

∫
Ω

G(x, y)f(y)dy, ∀f ∈ L2(Ω), (28)
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where G(x, y) – is Green’s function. Using (28) it is easy to verify that

Â−2f =

∫
Ω

G(x, y)

(∫
Ω

G(y, z)f(z)dz

)
dy. (29)

Example 3. The operator B1 : L2(Ω) → L2(Ω) which corresponds to the problem

B1u = 42u− 12c1[1− 4c1π(|x|2 − 1)]

∫
Ω

(|y|4 − 4|y|2 + 3)4udy − 48c1(|x|2 (30)

−1)

∫
Ω

(|y|2 − 1)4udy = f(x), D(B1) = {u ∈ H4(Ω) : u|γ = 0, 4u|γ = 0},

is correct and selfadjoint if and only if c1 is a real constant and c1 6= − 4
11π
. The

unique solution of (30), for every f ∈ L2(Ω), is given by the formula

u(x) = Â−2f +
3c1

4(4 + 11c1π)

[ ∫
Ω

G(x, y)(|y|4 − 4|y|2 + 3)dy+

19c1π(|x|4 − 4|x|2 + 3)

10(4 + 11c1π)

] ∫
Ω

(|y|4 − 4|y|2 + 3)f(y)dy+ (31)

3c1(|x|4 − 4|x|2 + 3)

4(4 + 11c1π)

∫
Ω

f(z)

(∫
Ω

G(z, y)(|y|4 − 4|y|2 + 3)dy

)
dz.

Proof. We again refer to Theorem 3 . If we compare equation (30) with equation
(9) it is natural to take

Â2u = 42u with D(Â2) = D(B1), m = 1, F = |x|4 − 4|x|2 + 3.

Then Â is defined by (27) and F ∈ D(Â). By simple calculations we find ÂF =

4F = 16(r2 − 1), Â2F = 42F = 64,

〈F t, F 〉H =

∫
Ω

(|y|4 − 4|y|2 + 3)2dy = 2π

∫ 1

0

(r4 − 4r2 + 3)2rdr = 38π/15,

〈ÂF t, F 〉H =

∫
Ω

16(|y|2 − 1)(|y|4 − 4|y|2 + 3)dy =

= 32π

∫ 1

0

(r2 − 1)(r4 − 4r2 + 3)rdr = −44π/3,

〈ÂF t, ÂF 〉H = 256π/3, 〈Âu, F 〉H =

∫
Ω

(|y|4 − 4|y|2 + 3)4udy,

and from the selfadjointness of Â we have

〈Â2u, F 〉H = 〈Âu, ÂF 〉H = 16

∫
Ω

(|y|2 − 1)4udy.

The equation (30) can now be rewritten as follows

B1u = 42u− S

∫
Ω

(|y|4 − 4|y|2 + 3)4udy − 16G

∫
Ω

(|y|2 − 1)4udy = f(x),
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where S = 12c1[1 − 4c1π(|x|2 − 1)], G = 3c1(|x|2 − 1). We find ÂG =

12c1, 〈F t, ÂG〉H = 16c1π and then ÂG − G〈F t, ÂG〉Hm = S. The equation G =

(ÂF )Cm implies that Cm = 3c1/16. From the above it follows that

detL = det[Im − 〈ÂF t, F 〉HmCm] = (4 + 11c1π)/4 6= 0

if and only if c1 6= −4/(11π). So L−1 = 4/(4+11c1π). It is evident that the components

of ÂF, F are linearly independent. Then, by Theorem 3, the operator BSG is correct
and selfadjoint if and only if c1 6= −4/(11π) and c1 is a real constant. If we substitute
f = F = |x|4 − 4|x|3 + 3 in (28), we get

Â−1F =

∫
Ω

G(x, y)(|y|4 − 4|y|2 + 3)dy

and

〈f, Â−1F 〉H =

∫
Ω

f(z)

(∫
Ω

G(z, y)(|y|4 − 4|y|2 + 3)dy

)
dz.

From the above and (11), (29) follows formula (31) for the solution of problem (30).
�

A comment from the first author. The second author passed away from a
heart attack in the autumn of 2009, at the age of 64. I would like to express my
deepest sorry for his sudden death.
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