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Abstract. For the equation(
ρ(t)|y′(t)|p−2y′(t)

)′
+ v(t)|y(t)|p−2y(t) = 0, t ∈ (a, b)

where 1 < p <∞, we establish the properties of oscillation and nonoscillation.

1 Introduction

For about last 50 years the weighted Hardy inequalities have been intensively inves-
tigated. There is a lot of papers and books devoted to this problem. The history of
this problem, results and their applications in various areas of Analysis can be found
in the monographs by A. Kufner and L.-E. Persson [7], and A. Kufner, L. Maligranda
and L.-E. Persson [6].

The main aim of this paper is to apply the results on the weighted Hardy inequal-
ities to the qualitative theory of half-linear second order differential equations.

On the interval I = (a, b), −∞ ≤ a < b ≤ +∞, we consider the following second
order differential equation:(

ρ(t)|y′(t)|p−2y′(t)
)′

+ v(t)|y(t)|p−2y(t) = 0, (1)

where 1 < p <∞, ρ and v are continuous functions on I. Moreover, ρ(t) > 0 for any
t ∈ I.

When p = 2 equation (1) becomes the linear Sturm–Liouville equation

(ρ(t)y′(t))
′
+ v(t)y(t) = 0,

the investigation of qualitative properties of which was started by J. Sturm in his
paper as early as 1836.
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When p 6= 2 equation (1) is called half-linear because the set of its solutions has
the property of homogeneity but not additivity.

A function y : I → R is said to be a solution of (1), if y(t) is continuously
differentiable together with ρ(t)|y′(t)|p−2y′(t) and satisfies equation (1) on I.

Systematic investigation of the half-linear equation (1) was started in the works
by D. Mirzov [10] in 1976 and A. Elbert [3] in 1979, where in particular the existence,
uniqueness and continuability of the solution of the initial-value problem were proved.
Basic facts and results for half-linear equations odtained by 2005 are exposed in the
fine book by O. Dosly and P. Rehak [1].

A nontrivial solution of equation (1) is called oscillatory at t = b, if it has infi-
nite number of zeros converging to b, otherwise it is called nonoscillatory at t = b.
Similarly we can give the definition of oscillatory and nonoscillatory of a solution at
t = a.

Equation (1) is called oscillatory (nonoscillatory), if all its nontrivial solutions are
oscillatory (nonoscillatory).

For equation (1) the Sturm theorem on separation of zeroes is valid, thus equa-
tion (1) is oscillatory (nonoscillatory), if one of its nontrivial solution is oscillatory
(nonoscillatory).

To investigate the oscillation properties of (1) it is proper to use the notions such
as conjugacy and disconjugacy of the equation (1).

Equation (1) is called disconjugate on the interval [α, β] ⊂ I, if of its any nontrivial
solution has no more than one zero on [α, β], otherwise it is called conjugate on [α, β].

The fundamental result in the qualitative theory of half-linear equations of form
(1) is the so-called “roundabout theorem” [1].

Roundabout theorem. The following statements are equivalent:
(i) Equation (1) is disconjugate on [α, β].
(ii) There exists a solution of equation (1) having no zeros in [α, β].
(iii) There exists a solution w of the generalized Riccati equation

w′ + v(t) + (p− 1)ρ1−p′(t)|w(t)|p′ = 0

on the whole interval [α, β], where p′ = p
p−1

.

(iv) The functional

F (f, α, β) =

β∫
α

(ρ(t)|f ′|p − v(t)|f |p) dt

is positive for any nontrivial f ∈ AC[α, β], such that f ′ ∈ Lp(α, β) and f(α) =
f(β) = 0.

“Roundabout theorem” gives two methods of investigation of equation (1). The
first one is based on the equivalence of (i) and (iii) and is called “Riccati technique”.
The second one is based on the equivalence of (i) and (iv) and can be investigated
by the variational method.

Main results in the qualitative theory of equation (1) were obtained by application
of “Riccati technique”.
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Our aim is to develop the variational method of studying equation (1) by applying
of achievements in the theory of weighted Hardy-type inequalities.

We would like to mention the pioneering work of M. Otelbaev [15] on application
of Muckenhoupt’s results on Hardy inequalities to the oscillation theory of the Sturm–
Liouville equation.

Denote byAC
◦

p (I) the set of all compactly supported locally absolutely continuous
functions f on I such that f ′ ∈ Lp(I).

From the equivalence of (i) and (iv) the following statements can be deduced [12].

Lemma 1. Equation (1) is disconjugate on I if and only if

F (f, a, b) ≡
b∫

a

(ρ(t)|f ′|p − v(t)|f |p) dt > 0 (2)

for all nontrivial f ∈ AC
◦

p (I).

Lemma 2. Equation (1) is nonoscillatory at t = b (t = a) if and only if there exists

c ∈ I such that F (f, c, b) > 0 (F (f, a, c) > 0) for all nontrivial f ∈ AC
◦

p (c, b)

(f ∈ AC
◦

p (a, c)).

Lemma 3. Equation (1) is oscillatory at t = b (t = a) if and only if for any c ∈ I

there exists f̃ ∈ AC
◦

p (c, b) (f̃ ∈ AC
◦

p (a, c)) such that F (f̃ , c, b) ≤ 0 (F (f̃ , a, c) ≤ 0).

2 Main results

In this section we suppose that v(t) > 0 for any t ∈ I. Then inequality (2) is
equivalent to the Hardy inequality b∫

a

v(t)|f(t)|pdt


1
p

< C

 b∫
a

ρ(t)|f ′(t)|pdt


1
p

, f ∈ AC
◦

p(I), f 6≡ 0, (3)

with C = 1.
Unfortunately, in the theory of weighted Hardy inequalities the exact values of

the best constants C were found only in some particular cases. However, in many
cases two-sided estimates for the best constants C were obtained.

For example, in [14, Theorem 8.8] it is proved that the best constants C in in-
equality (3) where “<” is replaced by “≤” satisfies the following estimate

C ≤ p
1
p (p′)

1
p′A(a, b),

where

A(a, b) = inf
a<c<b

max{AM(c, b), AM(a, c)},
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AM(c, b) = sup
c<x<b

 b∫
x

v(t)dt


1
p
 x∫

c

ρ1−p′(s)ds

 1
p′

,

AM(a, c) = sup
a<x<c

 x∫
a

v(t)dt

 1
p
 c∫

x

ρ1−p′(s)ds

 1
p′

.

This together with Lemma 2 gives

Theorem 1. If A(a, b) < (1
p
)

1
p ( 1

p′
)

1
p′ , then equation (1) is disconjugate on the whole

interval I.

Next, we will consider the oscillation and nonoscillation problem for equation (1)
only at t = b because at t = a the investigation is similar.

Let c ∈ I. We consider equation (1) on the interval (c, b).
Consider the case, when

b∫
c

v(t)dt <∞ and

b∫
c

ρ1−p′(t)dt <∞. (4)

It is easy to see that in this case lim
d→b

A(d, b) = 0. Then there exists c ∈ I

such that A(c, b) < (1
p
)

1
p ( 1

p′
)

1
p′ . Therefore, on the basis of Lemma 2 equation (1) is

nonoscillatory.
Now, suppose that

b∫
c

ρ1−p′(t)dt = ∞. (5)

Denote by W 1
p (ρ, Ic) the set of locally absolutely continuous on Ic = (c, b) func-

tions, for which the following semi-norm

‖f‖W 1
p (ρ,Ic) =

 b∫
c

ρ(t)|f ′(t)|pdt


1
p

(6)

is finite.
Let

W 1
p,L(ρ, Ic) = {f ∈ W 1

p (ρ, Ic) : lim
t→c+

f(t) = 0}.

The closure of the set AC
◦

p (Ic) with respect to semi–norm (6) we denote by

W 1
◦

p(ρ, Ic). By [13, Lemma 1.6] we have

Lemma 4. The equality W 1
◦

p(ρ, Ic) = W 1
p,L(ρ, Ic) holds if and only if condition (5)

holds.
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When (5) holds, due to Lemma 4, instead of inequality (3) it is proper to consider
the following weighted Hardy inequality b∫

c

v(t)|f(t)|pdt


1
p

≤ C

 b∫
c

ρ(t)|f ′(t)|pdt


1
p

, f ∈ W 1
p,L(ρ, Ic). (7)

By efforts of many mathematicians there were obtained necessary and sufficient
conditions of the validity of (7). Moreover, there are numerous estimates for the best
constant C in (7) of the form

kpAp(ρ, v, c, b) ≤ C ≤ KpAp(ρ, v, c, b), (8)

where positive constants kp and Kp depend only on p, and Ap(ρ, v, c, b) does not
increase with respect to c ∈ I.

Theorem 2. If for the best constant C in (7) the estimate of form (8) holds, then
the condition

lim
c→b−

Ap(ρ, v, c, b) ≤
1

kp

is necessary and the condition

lim
c→b−

Ap(ρ, v, c, b) <
1

Kp

is sufficient for equation (1) to be nonoscillatory at t = b.

Proof. If equation (1) is nonoscillatory at t = b, then by Lemma 1.2 there exists

c ∈ I such that F (f, c, b) > 0 for all nontrivial f ∈ W 1
◦

p(ρ, Ic) ≡ W 1
p,L(p, Ic) that is

equivalent to the validity of (7) with C = 1. Then by (8) we have kpAp(ρ, v, c, b) ≤ 1

hence lim
c→b−

Ap(ρ, v, c, b) ≤
1

kp
.

Conversely, let lim
c→b−

Ap(ρ, v, c, b) <
1
Kp

. Then there exists c ∈ I and Ap(ρ, v, c, b) <

1
Kp

, i.e., KpAp(ρ, v, c, b) < 1. Therefore, due to (8) the best constant C in (7) satisfies

C < 1 that means that F (f, c, b) > 0 for all nontrivial f ∈ W 1
p,L(ρ, Ic) ≡ W 1

◦

p(ρ, Ic)

and in particular, for all nontrivial f ∈ AC
◦

p (Ic). Hence by Lemma 2 equation (1) is
nonoscillatory at t = b. �

Theorem 3. If for the best constant C in (7) the estimate of form (8) holds, then the
condition lim

c→b−
Ap(ρ, v, c, b) ≥ 1

Kp
is necessary and the condition lim

c→b−
Ap(ρ, v, c, b) >

1
kp

is sufficient for equation (1) to be oscillatory at t = b.

Proof. Let equation (1) be oscillatory at t = b. By Lemma 3 for any c ∈ I there

exists a nontrivial f̃ ∈ AC
◦

p (c, b) ⊂ W 1
p,L(p, Ic) such that F (f̃ , c, b) ≤ 0, i.e.,

b∫
c

ρ(t)|f̃ ′(t)|pdt ≤
b∫
c

v(t)|f(t)|pdt.
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This gives that the best constant C (finite or not) in (7) is such that C ≥ 1. Hence by
(8) we have that KpAp(ρ, v, c, b) ≥ 1 for all c ∈ I. Therefore, lim

c→b−
Ap(ρ, v, c, b) ≥ 1

Kp
.

Conversely, if lim
c→b−

Ap(ρ, v, c, b) >
1
kp

, then due to the fact that Ap(ρ, v, c, b) is non-

increasing with respect to c ∈ I we have that Ap(ρ, v, c, b) >
1
kp

for all c ∈ I. Hence,

from (8) the best constant C (finite or not) in (7) is such that C > 1 for all c ∈ I.

Hence for any c ∈ I there exists a nontrivial function f̂ ∈ W 1
◦

p(ρ, Ic) ≡ W 1
p,L(ρ, Ic) such

that F (f̂ , c, b) ≤ 0. However, from the density of AC
◦

p (Ic) in W 1
◦

p(ρ, Ic) for any f̂ there

exists f̃ ∈ AC
◦

p (Ic) such that F (f̃ , c, b) ≤ 0. Therefore, by Lemma 3 equation (1) is
oscillatory. �

Let a = 0 and b = +∞. Suppose that functions ρ and v are continuous on
[0,+∞).

Consider the estimates of form (8) of Muckenhoupt [11] and Tomaselli–Persson–
Stepanov [16, 17]

AM(c,∞) ≤ C ≤ p
1
p (p′)

1
p′AM(c,∞), (9)

where

AM(c,∞) = sup
x>c

 ∞∫
x

v(t)dt

 1
p
 x∫

c

ρ1−p′(s)ds

 1
p′

,

and

ATPS(c,∞) ≤ C ≤ p′ATPS(c,∞), (10)

where

ATPS(c,∞) = sup
x>c

 x∫
c

ρ1−p′(t)dt

− 1
p
 x∫

c

v(t)

 t∫
c

ρ1−p′(s)ds

p

dt


1
p

.

In 1992 V.M. Manakov [9] showed that the coefficient Kp = p
1
p (p′)

1
p′ in (9) is

exact when the condition (5) holds.
By (9) and (10) on the basis of Theorems 2 and 3 we have

Theorem 4. Suppose that condition (5) holds. If one of the following two conditions

lim
z→∞

sup
x>z

 x∫
z

ρ1−p′(s)ds

p−1 ∞∫
x

v(t)dt <
1

p

(
p− 1

p

)p−1

(11)

or

lim
z→∞

sup
x>z

 x∫
z

ρ1−p′(s)ds

−1 x∫
z

v(t)

 t∫
z

ρ1−p′(s)ds

p

dt <

(
p− 1

p

)p
(12)

holds, then equation (1) is nonoscillatory at t = ∞.
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Theorem 5. Suppose that condition (5) holds. If one of the following two conditions

lim
z→∞

sup
x>z

 x∫
z

ρ1−p′(s)ds

p−1 ∞∫
x

v(t)dt > 1 (13)

or

lim
z→∞

sup
x>z

 x∫
z

ρ1−p′(s)ds

−1 x∫
z

v(t)

 t∫
z

ρ1−p′(s)ds

p

dt > 1 (14)

holds, then equation (1) is oscillatory at t = ∞.

From Theorem 5 it follows as corollary the Hille criterion [1].

Corollary 1. If together with (5) the following condition

∞∫
0

v(t)dt = ∞ (15)

holds, then the equation (1) is oscillatory.

In the oscillation theory of equation (1) the conditions of types (11) – (14) are
obtained by a modified method of “Riccati technique” [1, Theorems 3.1.2, 3.1.3, and
3.1.6].

At present numerous necessary and sufficient conditions for the validity of (7) are
known, they can be found in the papers [4, 8].

However, in order to apply the estimate of form (7) to oscillation theory of equa-
tion (1) we need to have more exact estimates for C.

A. Wedestig [18] obtained the following estimate for the best constant C in (7)

sup
1<s<p

(
pp(s− 1)

pp(s− 1) + (p− s)p

) 1
p

AW (s, c,∞) ≤

≤ C ≤ inf
1<s<p

(
p− 1

p− s

) 1
p′

AW (s, c,∞), (16)

where
AW (s, c,∞) =

= sup
x>c

 x∫
c

ρ1−p′(t)dt

 s−1
p
 ∞∫

x

v(τ)

 τ∫
c

ρ1−p′(t)dt

p−s

dτ


1
p

.

By (16) we have
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Theorem 6. Suppose that condition (5) holds. If for some s ∈ (1, p) we have that

lim
c→∞

sup
x>c

 x∫
c

ρ1−p′(t)dt

s−1 ∞∫
x

v(τ)

 τ∫
c

ρ1−p′(t)dt

p−s

dτ <

(
p− s

p− 1

)p−1

, (17)

then equation (1) is nonoscillatory at t = ∞. However, if for some s ∈ (1, p) we have
that

lim
c→∞

sup
x>c

 x∫
c

ρ1−p′(t)dt

s−1 ∞∫
x

v(τ)

 τ∫
c

ρ1−p′(t)dt

p−s

dτ > 1 +

(
1− s

p

)p
s− 1

, (18)

then equation (1) is oscillatory at t = ∞.

Proof. Indeed, if for some σ ∈ (1, p) inequality (17) holds, then there exists c > 0

such that ApW (σ, c,∞) <
(
p−σ
p−1

)p−1

. Hence inf
1<s<p

(
p−1
p−s

) 1
p′
AW (s, c,∞) < 1 and by

(16) the best constant C in (7) is such that C < 1 that implies to the validity of the

inequality F (f, c,∞) > 0 for all nontrivial f ∈ W 1
p,L(ρ, Ic) ≡ W 1

◦

p(ρ, Ic). Therefore,
equation (1) is nonoscillatory at t = ∞.

If for some σ ∈ (1, p) condition (18) is valid, then because of the fact that
AW (σ, c,∞) is non-increasing with respect to c > 0 we get thut ApW (σ, c,∞) >

1 +
(1−σ

p
)p

σ−1
for all c > 0. This gives that

sup
1<s<p

(
pp(s− 1)

pp(s− 1) + (p− s)p

)
AW (s, c,∞) > 1

for all c > 0. Hence by (16) it follows that for all c > 0 the best constant C in (7) is
such that C > 1. Therefore, equation (1) is oscillatory. �

Now, let
b∫
c

v(t)dt = ∞ and

b∫
c

ρ1−p′(t)dt <∞. (19)

In the oscillation theory of equation (1) for ρ > 0 and v > 0 the “reciprocity
principle” holds, which states that the equation (1) and the equation(

v1−p′(t)|y′(t)|p′−2y′(t)
)′

+ ρ1−p′(t)|y(t)|p′−2y(t) = 0 (20)

are simultaneously either oscillatory or nonoscillatory.

By (19) and Lemma 4 we have that W 1
◦

p′(v
1−p′ , Ic) = W 1

p′,L(v1−p′ , Ic). Instead of
(7) for equation (20) consider the inequality b∫

c

ρ1−p′(t)|f(t)|p′dt


1
p′

≤ C

 b∫
c

v1−p′(t)|f ′(t)|p′dt


1
p′

, (21)
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for f ∈ W 1
p′,L(v1−p′ , Ic).

From the estimate of form (8) for inequality (21) we get new conditions of os-
cillation and nonoscillation of equation (1) that are different from the conditions in
Theorems 2 and 3.

Two-sided estimates for the best constant of (21) in the terms of Muckenhoupt
and Tomaselli–Persson–Stepanov have the following form

AM(c,∞) ≤ C ≤ p
1
p (p′)

1
p′AM(c,∞),

where

AM(c,∞) = sup
x>c

 x∫
c

v(t)dt

 1
p
 ∞∫

x

ρ1−p′(s)ds

 1
p′

,

and
ATPS(c,∞) ≤ C ≤ pATPS(c,∞),

where

ATPS(c,∞) = sup
x>c

 x∫
c

v(t)dt

− 1
p′
 x∫

c

ρ1−p′(t)

 t∫
c

v(s)ds

p′

dt


1
p′

.

Therefore, we can formulate the following

Theorem 7. Suppose that condition (19) hold. If one of the following two conditions

lim
z→∞

A
p′

M(z,∞) <
1

p′

(
1

p

)p′−1

or

lim
z→∞

A
p′

TPS(z,∞) <

(
1

p

)p′
holds, then equation (1) is nonoscillatory.

However, if one of the following two conditions

lim
z→∞

A
p′

M(z,∞) > 1

or
lim
z→∞

A
p′

TPS(z,∞) > 1

holds, then equation (1) is oscillatory.

In this and in the previous theorems there are sufficiently large gaps between
conditions for oscillation and nonoscillation. To have more exact conditions we need
to have exact values of coefficients kp and Kp. The pointed out gap would be “zero”,
if we have exact values of the best constants in (7) and (21).
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As an example let us consider the following equation(
tα|y′(t)|p−2y′(t)

)′
+ γt−(p−α)|y(t)|p−2y(t) = 0, γ > 0, t > 0. (22)

At α 6= p − 1 we have that
∞∫
1

tα(1−p′)dt = ∞ or
∞∫
1

t−(p−α)dt = ∞, i.e., one of the

conditions (5) or (19) is holds. Therefore, if α < p−1 inequality (7) for equation (22)
has the form [5, Theorem 330] ∞∫

0

γt−(p−α)|f(t)|pdt

 1
p

<
γ

1
pp

|p− α− 1|

 ∞∫
0

xα|f ′(x)|pdx

 1
p

, (23)

when f ∈ W 1
p,L(I). However, if α > p−1 the inequality (21) is equivalent to inequality

(23) when f ∈ W 1
p,R(I). In (23) the constant γ

1
p p

|p−α−1| is the best possible. Hence, if

α 6= p− 1 equation (22) is disconjugate on (0,∞) if and only if γ ≤
(
|p−α−1|

p

)p
or it

is conjugate on (0,∞) if and only if γ >
(
|p−α−1|

p

)p
. Since the inequality (21) is valid

on any interval (c,∞), c > 0, with the same constant, equation (20) is oscillatory if

and only if γ >
(
|p−α−1|

p

)p
. This last statement is proved by another method in the

book [1, Theorem 1.4.4].
Finally we would like to note that some spectral properties of the differential

operator entering equation (1) were derived, again with the help of the Hardy-type
inequalities, in the paper of P. Drabek and A. Kufner [2].
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