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Abstract. It is known that eigenfunctions of many elliptic operators such as
Schrödinger operators decrease exponentially. It this paper we suggest a different
idea of the proof of this fact. This idea is based on a special transformation Ψε.

1 Introduction

We consider the operator(
Au
)
(x) = − div

(
p(x) gradu

)
+ q(x)u(x), x ∈ Rn.

We assume that the function p : Rn → R is continuously differentiable and satisfies
the estimates 0 < p0 ≤ p(x) ≤ P0 < ∞, x ∈ Rn, and ‖ grad p(x)‖ ≤ P0, x ∈ Rn, for
some p0 and P0; the function q : Rn → R belongs to L∞(Rn) if n > 3 and q belongs
to L2∞(R3) if n = 1, 2, 3 (the space L2∞ is defined in Section 2).

The main result is Theorem 2. It states that the eigenfunctions of A associated
with isolated eigenvalues of finite multiplicity decrease exponentially. Similar results
were proved by many authors (see, e. g., [2, 1, 5]). It this paper we present a different
idea of the proof. It is based on a simple special transformation Ψε, described is
Section 4. Sections 2 and 3 contain some general auxiliary statements.

2 Spaces and operators

In this section we describe the operator (1), which is the main object of our investi-
gation. We also introduce notation and define some function spaces.

For x = (x1, x2, . . . , xn) ∈ Rn we set

|x| = |x1|+ |x2|+ · · ·+ |xn|, ‖x‖ =
√
|x1|2 + |x2|2 + · · ·+ |xn|2.

Let α = (α1, α2, . . . , αn), where α1, α2, . . . , αn = 0, 1, 2, . . . . For a function (or a
distribution) u : Rn → C we denote by Dαu the partial derivative Dα1

1 Dα2
2 . . . Dαn

n u,

where Dj =
∂

∂xj
.
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We denote by D the space of all infinitely continuously differentiable functions
u : Rn → C, and we denote by D′ the adjiont of D, i. e. the space of distributions,
see, e. g., [12, 11, 15] for details.

We denote by L2 = L2(Rn) the space of all measurable functions u : Rn → C with
the finite norm

‖u‖L2 =

√∫
Rn

|u(x)|2 dx.

We denote by L2∞ = L2∞(Rn) the space of all measurable functions u : Rn → C with
the finite norm

‖u‖L2∞ = sup
k∈Zn

√∫
k+[0,1]n

|u(x)|2 dx.

We denote by L∞ 2 = L∞ 2(Rn) the space of all measurable functions u : Rn → C with
the finite norm

‖u‖L∞ 2 =

√∑
k∈Zn

(
ess supx∈k+[0,1]n|u(x)|

)2
.

We note that L2, L2∞, and L∞ 2 can be considered as subspaces of D′, and D is
contained in L2, L2∞, and L∞ 2. See [4, 8] for further information about the spaces
Lpq.

Let m = 0, 1, 2, . . . . We denote by Hm = Hm(Rn) the Sobolev space of all
functions u : Rn → C such that Dαu (considered as a distribution), |α| ≤ m, belongs
to L2, with the norm

‖u‖ = ‖u‖Hm =

√√√√∑
|α|≤m

∫
Rn

|Dαu(x)|2 dx.

For s ≥ 0 the space Hs is defined as the space of all functions u ∈ L2 such that the
function ξ 7→ (1 + |ξ|)sû(ξ), where û is the Fourier transform of u, belongs to L2,
with the norm

‖u‖ = ‖u‖Hs =

√∫
Rn

(1 + |ξ|)2s|û(ξ)|2 dξ.

Clearly, H0 = L2. It is easy to see that D is a dense subspace in Hs. Clearly,
Hs+ε ⊂ Hs, ε > 0. See, e. g., [15, 13, 9, 14, 3] for more details about the spaces Hs.
We denote by Hs

loc (in particular, by L2, loc) the subspace of distributions that on any
open bounded set coincide with a function belonging to Hs. Let m be a non-negative
integer. We say that a sequence un ∈ Hm

loc converges to u ∈ Hm
loc if un converges to u

in the norm

‖u‖Hm(Ω) =

√√√√∑
|α|≤m

∫
Ω

|Dαu(x)|2 dx

for any bounded open set Ω ⊂ Rn. Clearly, H2
loc ⊂ H1

loc ⊂ L2, loc, and Dj, j =
1, 2, . . . , n continuously acts from H2

loc to H1
loc and from H1

loc to L2, loc, i. e. Dj maps
convergent sequences to convergent ones.



On asymptotic decay of the eigenfunctions of elliptic operators 101

Proposition 1. For any u, v ∈ H1
loc and j = 1, 2, . . . , n one has

Dj(uv) = Dju · v + u ·Djv.

For any u, v ∈ H2
loc and i, j = 1, 2, . . . , n one has

DiDj(uv) = DiDju · v +Diu ·Djv +Dju ·Div + u ·DiDjv.

Here the dot means the multiplication of measurable functions.

Corollary 1. The subspace Hm is dense in Hm
loc, m = 0, 1, 2. Consequently, the

subspace D is dense in Hm
loc, m = 0, 1, 2, as well.

Corollary 2. Let ϑ : Rn → R be an infinitely continuously differentiable function.
Then the operator (

Θu
)
(x) = ϑ(x)u(x)

acts continuously from Hm
loc to Hm

loc, m = 0, 1, 2.

In this article we consider the operator(
Au
)
(x) = − div

(
p(x) gradu

)
+ q(x)u(x), (1)

where p, q : Rn → R. We assume that the following assumption holds.

(H) The function p : Rn → R is continuously differentiable and satisfies the esti-
mates 0 < p0 ≤ p(x) ≤ P0 < ∞, x ∈ Rn, and ‖ grad p(x)‖ ≤ P0, x ∈ Rn, for
some p0 and P0. The function q : Rn → R belongs to L∞(Rn) if n > 3 and q
belongs to L2∞(R3) if n = 1, 2, 3.

By Proposition 1 formula (1) defines a measurable function Au for u ∈ H2
loc and the

representation(
Au
)
(x) = −p(x)∆u(x)−

〈
grad p(x), gradu(x)

〉
+ q(x)u(x), u ∈ H2

loc, (2)

holds.

3 Self-adjoint operators

In this section we recall some results of the theory of self-adjoint operators and prove
that the operator (1) is self-adjoint.

Let H be a Hilbert space with the inner product 〈·, ·〉 and T : D(T ) ⊂ H → H be
a linear operator with the domain D(T ). The operator T is called closed if its graph
Γ(T ) = { (u, Tu) ∈ H ×H : u ∈ D(T ) } is a closed subspace of H ×H.

Let the domain D(T ) be dense in H. In this case the domain D(T ∗) of the adjoint
operator T ∗ is the set of all v ∈ H such that the functional u 7→ 〈Tu, v〉 is continuous
in the norm of H. For such v the adjoint operator T ∗ is defined uniquely by the
identity 〈Tu, v〉 = 〈u, T ∗v〉.

A linear operator T : D(T ) ⊂ H → H is called symmetric if 〈Tu, v〉 = 〈u, Tv〉 for
all u, v ∈ D(T ). Equivalently, T is symmetric if T ⊂ T ∗, i. e., T ∗ is an extension of
T . A linear operator T : D(T ) ⊂ H → H is called self-adjoint if T ∗ = T .
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Proposition 2 ([11, Theorem 13.8]). Let T : D(T ) ⊂ H → H be a linear operator,
and D(T ) be dense in H. Then the graph Γ(T ∗) of T ∗ is the orthogonal complement
of V Γ(T ) in H ×H, where V : H ×H → H ×H is defined by the formula V (u, v) =
(−v, u). Consequently, the adjoint operator is closed. In particular, any self-adjoint
operator is closed.

Proposition 3 ([7, Ch. 5, § 5.2]). The operator −∆: H2 ⊂ L2 → L2 is self-adjoint.

Let H be a Hilbert space and T : D(T ) ⊂ H → H and B : D(B) ⊂ H → H be
linear operators. The operator B is called bounded with respect to T if D(B) ⊂ D(T )
and

‖Bu‖ ≤ ε‖Tu‖+M‖u‖

for some ε > 0 and M > 0. We say that B is completely bounded with respect to T if
for each ε > 0 there exists M > 0 such that this inequality holds.

Proposition 4 ([7, Ch. 4, Theorem 1.1]). Let H be a Hilbert space, and
T : D(T ) ⊂ H → H and B : D(B) ⊂ H → H be linear operators. Let B be completely
bounded with respect to T . If T is closed, then T +B is also closed.

Proposition 5. Let 0 ≤ s < 2. Then for any ε > 0 there exists M such that for any
u ∈ Hs

‖u‖Hs ≤ ε‖ −∆u‖L2 +M‖u‖L2 .

The following Proposition is known as the Sobolev embedding theorem.

Proposition 6 ([15, Ch. 4, Proposition 1.3]). If s > n/2, then each u ∈ Hs(Rn)
is equivalent to a continuous bounded function v. Moreover |v(x)| ≤M‖u‖Hs, x ∈ Rn,
for some M independent of u and x.

Corollary 3 ([7, Ch. 5, § 5.3]). Let s > n/2. Then Hs ⊂ L∞ 2, and the natural
imbedding of Hs into L∞ 2 is continuous.

Proof. For the sake of completeness we give the proof. Let χ : Rn → [0, 1] be an
infinitely continuously differentiable function such that

χ(x) =

{
1, for x ∈ [0, 1]n,

0, for x /∈ [−1, 2]n.

We set χk(x) = χ(x− k), k ∈ Zn. For k ∈ Zn one has

ess supx∈k+[0,1]n|u(x)| ≤ ess supx∈k+[0,1]n|χk(x)u(x)|
≤ ess supx∈Rn|χk(x)u(x)| ≤M‖χku‖Hs

(the last inequality follows by Proposition 6). Therefore

‖u‖L∞ 2 =

√∑
k∈Zn

(
ess supx∈k+[0,1]n|u(x)|

)2 ≤M

√∑
k∈Zn

‖χku‖2
Hs .
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We denote by ls2 = L2(Zn, Hs) the space of all families v = { vk ∈ Hs : k ∈ Zn }

with the finite norm ‖v‖ =

√∑
k∈Zk

‖vk‖2
Hs . We consider the operator Tu = {χku}. It

is easy to verify that for s = 0, 1, 2, . . . the operator T continuously acts from Hs to
ls2. From the method of complex interpolation [6, p. 116], [14, Ch. 1, § 4] it follows
that the operator T continuously acts from Hs to ls2 for all s ∈ R, i. e.√∑

k∈Zn

‖χku‖2
Hs ≤ N‖u‖Hs

for some N . Combining the obtained estimates one arrives at the desirable inequality

‖u‖L∞ 2 ≤MN‖u‖Hs .

�

Proposition 7. Let n be arbitrary and q ∈ L∞. Then the operator(
Qu
)
(x) = q(x)u(x) (3)

is completely bounded with respect to the operator −∆: H2 ⊂ L2 → L2.

Proof. Clearly for all ε > 0

‖Qu‖L2 = ‖qu‖L2 ≤ ‖q‖L∞ · ‖u‖L2 ≤ ε‖ −∆u‖L2 + ‖q‖L∞ · ‖u‖L2 .

�

Proposition 8. Let n = 1, 2, 3 and q ∈ L2∞. Then the operator (3) is completely
bounded with respect to the operator −∆: H2 ⊂ L2 → L2.

Proof. Let u ∈ H2. Let s = 7/4, thus 3/2 < s < 2. By Proposition 5

‖u‖Hs ≤ ε‖ −∆u‖L2 +M‖u‖L2 .

By Corollary 3 one has

‖u‖L∞ 2 ≤ N‖u‖Hs

for some N . Finally, it is easy to see that

‖qu‖L2 ≤ ‖q‖L2∞ · ‖u‖L∞ 2 .

Combining all these estimates one obtains the desirable inequality

‖Qu‖L2 ≤ ‖q‖L2∞N
(
ε‖ −∆u‖L2 +M‖u‖L2

)
.

�
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Example 1. Let n = 3. Then the operator(
Qu
)
(x) =

u(x)√
x2

1 + x2
2 + x2

3

,

where x = (x1, x2, x3) (which is a part of the simplest Schrödinger operator), is
completely bounded with respect to the operator −∆: H2 ⊂ L2 → L2, because the
coefficient q(x) = 1√

x2
1+x2

2+x2
3

belongs to L2∞.

Proposition 9. Let p : Rn → R be a continuously differentiable function satisfying
the estimate ‖ grad p(x)‖ ≤ P0, x ∈ Rn, for some P0. Then the operator(

Gu
)
(x) = 〈grad p(x), gradu(x)〉

is completely bounded with respect to the operator −∆: H2 ⊂ L2 → L2.

Proof. Let u ∈ H2. By Proposition 5

‖u‖H1 ≤ ε‖ −∆u‖L2 +M‖u‖L2 .

It is easy to see that
‖Gu‖L2 ≤ N · ‖u‖H1

for some N . Combining these estimates one obtains the desirable inequality

‖Gu‖L2 ≤ N
(
ε‖ −∆u‖L2 +M‖u‖L2

)
.

�

Proposition 10. The operator A : H2 → L2 defined by the formula (1) is bounded.
Namely, for some M

‖A : H2 → L2‖ ≤M
(
‖p‖L∞ +

n∑
j=1

∥∥∥ ∂p
∂xj

∥∥∥
L∞

+ ‖q‖L∞
)

or

‖A : H2 → L2‖ ≤M
(
‖p‖L∞ +

3∑
j=1

∥∥∥ ∂p
∂xj

∥∥∥
L∞

+ ‖q‖L∞ 2

)
provided that n = 1, 2, 3 and q ∈ L∞ 2.

Proof. The estimate of the norm follows by representation (2). We also recall that
by the proof of Proposition 8 that

‖qu‖L2 ≤ ‖q‖L2∞ · ‖u‖L∞ 2

and by Corollary 3 H2(R3) ⊂ L∞ 2(R3). �

Corollary 4. Operator (1) continuously maps H2
loc into L2, loc, i. e. it maps conver-

gent sequences to convergent ones.
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Proof. The proof is evident. �

Proposition 11. The operator A : H2 ⊂ L2 → L2 defined by the formula (1) is
symmetric.

Proposition 12. ([11, Theorem 13.16]) Let T be a symmetric operator on a Hilbert
space H. Then T is a closed operator if and only if Im(T ± i1) is closed, where 1 is
the identity operator.

Proposition 13. ([10, Theorem VIII.3]) Let T be a symmetric operator on a Hilbert
space H. Then the operator T is self-adjoint if and only if Im(T ± i1) = H.

Theorem 1. Let assumption (H) hold. Then the operator A : H2 ⊂ L2 → L2 defined
by formula (1) is self-adjoint.

Proof. By Proposition 3 the operator −∆: H2 ⊂ L2 → L2 is self-adjoint. Hence
−∆: H2 ⊂ L2 → L2 is closed. By the assumption 0 < p0 ≤ p(x) ≤ P0 <∞, x ∈ Rn,
it follows that the operator p∆: H2 ⊂ L2 → L2, where

(
p∆u

)
(x) = p(x)∆u(x), is

closed as well.
We represent the operator A in the form (2) or, more briefly, A = −p∆ +G+Q,

where (
Gu
)
(x) = 〈grad p(x), gradu(x)〉,

(
Qu
)
(x) = q(x)u(x), u ∈ H2.

We recall that by Propositions 7, 8, and 9 the operators Q and G are completely
bounded with respect to ∆. By Proposition 4 this implies that A is a closed operator
for any p and q satisfying assumption (H).

Next, we consider the homotopy(
A{t}u

)
(x) = − div

(
(1− t+ tp(x)) gradu

)
+ tq(x)u(x), u ∈ H2, t ∈ [0, 1].

Clearly, A{0} = −∆ and A{1} = A. By the above A{t} : H2 ⊂ L2 → L2 is a closed
operator for all t ∈ [0, 1].

By Proposition 10 it follows that A{t} : H2 → L2 is continious for all t ∈ [0, 1]. By
Proposition 12 Im(A{t} ± i1) is closed for all t. At the same time by Propositions 3
and 13 Im(A{0} ± i1) = L2. By [8, Theorem 1.3.2(b) and Proposition 1.3.5] it
follows that Im(A{t} ± i1) = L2 for all t. By Proposition 11 A{t} : H2 ⊂ L2 → L2

is symmetric. Finally, by Proposition 13, this implies that A{t} is self-adjoint. In
particular, A{1} = A is self-adjoint. �

4 The transformation Ψε

We denote by η : Rn → R a fixed infinitely continuously differentiable function satis-
fying the property

η(x) = ‖x‖ for ‖x‖ ≥ 1. (4)

For any ε ∈ R we consider the operator(
Ψεu

)
(x) = eεη(x)u(x).
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By Corollary 2 Ψε acts in Hm
loc, m = 0, 1, 2. It is interesting to note that Ψε forms a

representation of the group R, i. e. ΨεΨδ = Ψε+δ.

For any ε ∈ R and s ≥ 0 we denote by Hs
ε = Hs

ε (Rn) the space of all functions
of the form Ψεu, where u ∈ Hs. In particular, (L2)ε = (L2)ε(Rn) is the space of all
functions of the form Ψεu, where u ∈ L2. It is easy to see that the definition of H2

ε

does not depend on the choice of a function η with the property (4). Evidently, H2
0

coincides with H2 and (L2)0 coincides with L2. Obviously, H2
ε ⊂ H2

loc for all ε ∈ R.

We set

A[ε] = ΨεAΨ−ε, ε ∈ R.

By Corollary 4 the operator A[ε] acts from H2
loc to L2, loc.

Proposition 14. Let assumption (H) hold. Then for u ∈ H2
loc one has(

A[ε]u
)
(x) = − div

(
p(x) gradu(x)

)
+ q(x)u(x)

+ ε
〈
u(x) grad p(x) + 2p(x) gradu(x), grad η(x)

〉
+ εp(x)u(x)∆η(x)− ε2p(x)u(x)‖ grad η(x)‖.

(5)

Proof. For u ∈ D one has(
grad Ψ−εu

)
(x) = grad

(
e−εη(x)u(x)

)
= u(x) grad e−εη(x) + e−εη(x) gradu(x)

and

div
(
p(x) grad Ψ−εu

)
(x) = div

(
p(x)

(
u(x) grad e−εη(x) + e−εη(x) gradu(x)

))
= div

(
p(x)u(x) grad e−εη(x) + e−εη(x)p(x) gradu(x)

)
= u(x)

〈
grad p(x), grad e−εη(x)

〉
+ p(x)

〈
gradu(x), grad e−εη(x)

〉
+ p(x)u(x) div grad e−εη(x) + p(x)

〈
grad e−εη(x), gradu(x)

〉
+ e−εη(x) div

(
p(x) gradu(x)

)
=
〈
u(x) grad p(x) + 2p(x) gradu(x), grad e−εη(x)

〉
+ p(x)u(x) div grad e−εη(x) + e−εη(x) div

(
p(x) gradu(x)

)
= −εe−εη(x)

〈
u(x) grad p(x) + 2p(x) gradu(x), grad η(x)

〉
− εp(x)u(x) div

(
e−εη(x) grad η(x)

)
+ e−εη(x) div

(
p(x) gradu(x)

)
= −εe−εη(x)

〈
u(x) grad p(x) + 2p(x) gradu(x), grad η(x)

〉
− εp(x)u(x)

〈
grad e−εη(x), grad η(x)

〉
− εe−εη(x)p(x)u(x)∆η(x)

+ e−εη(x) div
(
p(x) gradu(x)

)
= −εe−εη(x)

〈
u(x) grad p(x) + 2p(x) gradu(x), grad η(x)

〉
+ ε2e−εη(x)p(x)u(x)‖ grad η(x)‖ − εe−εη(x)p(x)u(x)∆η(x)

+ e−εη(x) div
(
p(x) gradu(x)

)
.
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Consequently,(
A[ε]u

)
(x) = −Ψε div

(
p(x) grad Ψ−εu

)
(x) + q(x)u(x)

= − div
(
p(x) gradu(x)

)
+ q(x)u(x)

+ ε
〈
u(x) grad p(x) + 2p(x) gradu(x), grad η(x)

〉
+ εp(x)u(x)∆η(x)− ε2p(x)u(x)‖ grad η(x)‖.

Clearly (cf. Proposition 10), the right-hand side of the last formula defines a con-
tinuous operator, acting from H2

loc to L2, loc. By Corollary 1 it coincides with
A[ε] : H2

loc → L2, loc. �

Proposition 15. The operator A[ε] continuously acts from H2 to L2 for all ε ∈ R.
The operator A[ε] : H2 → L2 continuously depends on the parameter ε.

Proof. The proof is similar to that of Proposition 10. �

Corollary 5. The operator A maps H2
ε to (L2)ε for all ε ∈ R.

Proof. The proof is evident. �

5 Exponential decay of eigenfunctions

Proposition 16. Let X and Y be Banach spaces and A,B : X → Y be bounded
linear operators. If the operator A is invertible and

‖B‖ · ‖A−1‖ < 1

then the operator A−B is also invertible. Moreover

‖(A−B)−1‖ ≤ ‖A−1‖
1− ‖B‖ · ‖A−1‖

.

Proof. The proof follows by the representation

(A−B)−1 = A−1 + A−1BA−1 + A−1BA−1BA−1 + . . . .

�

Theorem 2. Let assumption (H) hold. Let λ0 be an isolated eigenvalue of the op-
erator A defined by formula (1), and the eigenspace Eλ0 associated with λ0 be finite
dimensional. Then Eλ0 ⊂ H2

ε for some ε < 0.

Proof. Let Γ be a circumference with the centre λ0 oriented anticlockwise. We
assume that the radius of the circumference Γ is sufficiently small, so it does not
surround points of the spectrum of A different from λ0. We consider the resolvent
R(λ,A) = (λ1 − A)−1 : L2 → H2, where 1 is the identity operator. By Proposi-
tion 16 the resolvent R(λ,A) continuously depends on λ ∈ Γ. Hence the maximum
of ‖R(λ,A) : L2 → H2‖ over λ ∈ Γ is finite.



108 V.G. Kurbatov

By Propositions 15 and 16 the operator λ1 − A[ε] is invertible for λ ∈ Γ and
|ε| small enough and the inverse operator R(λ,A[ε]) = (λ1 − A[ε])−1 : L2 → H2

continuously depends on ε.
For sufficiently small |ε| we consider the Riesz projector

P [ε] =
1

2πi

∫
Γ

(λ1− A[ε])−1 dλ.

It acts from L2 to H2 and continuously depends on ε. The image of P [ε] is the
eigenspace associated with the part of the spectrum of A[ε] surrounded by Γ. In par-
ticular, the image of P [0] is Eλ0 . Since Eλ0 is finite-dimensional and P [ε] continuously
depends on ε, the dimension of the image of P [ε] does not depend on ε.

We consider the operator

A{ε} = Ψ−εA[ε]Ψε.

It acts from H2
ε to (L2)ε (cf. Corollary 5). Clearly, it coincides with the restriction of

the operator A to H2
ε . We notice that the operator λ1−A{ε} : H2

ε → (L2)ε coincides
with Ψ−ε

(
λ1 − A[ε]

)
Ψε. Therefore the spectrum of A{ε} : H2

ε ⊂ (L2)ε → (L2)ε
coincides with the spectrum of A[ε] : H2 ⊂ L2 → L2. Next we consider the operator

P{ε} = Ψ−εP [ε]Ψε =
1

2πi

∫
Γ

Ψ−ε(λ1− A[ε])−1Ψε dλ

=
1

2πi

∫
Γ

(
Ψ−ε(λ1− A[ε])Ψε

)−1
dλ

=
1

2πi

∫
Γ

(λ1− A{ε})−1 dλ.

By this representation it follows that P{ε} is the spectral projector associated with
the part of the spectrum of A{ε} surrounded by Γ. Since P [ε] and P{ε} are similar
projectors (namely, P{ε} = Ψ−εP [ε]Ψε), their images are isomorphic spaces and the
dimensions of their images are the same.

Let ε be less than zero. In this case the operator A{ε} : H2
ε → (L2)ε is a restriction

of the operator A : H2 → L2 to the subspace H2
ε ⊂ H2. Consequently, the operator

(λ1−A{ε})−1 : (L2)ε → H2
ε is the restriction of the operator (λ1−A)−1 : L2 → H2.

Therefore by the representation

P{ε} =
1

2πi

∫
Γ

(λ1− A{ε})−1 dλ

it follows that the operator P{ε} : (L2)ε → H2
ε is the restriction of the operator

P{0} = P [0] : L2 → H2. The operators P{ε} and P [0] are projectors and dimensions
of their images coincide. This implies that the images of P{ε} and P [0] coincide. But
the image of P{ε} is contained in H2

ε . Therefore the image of P [0] is also a subspace
of H2

ε with ε < 0. �
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