EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879 Volume 1, Number 2 (2010), 99 – 109

ON ASYMPTOTIC DECAY OF THE EIGENFUNCTIONS OF ELLIPTIC OPERATORS

V.G. Kurbatov

Communicated by T.V. Tararykova

Key words: eigenfunctions of elliptic operators, asymptotic decay.

AMS Mathematics Subject Classification: 35J10, 35P99.

Abstract. It is known that eigenfunctions of many elliptic operators such as Schrödinger operators decrease exponentially. It this paper we suggest a different idea of the proof of this fact. This idea is based on a special transformation Ψ_{ε} .

1 Introduction

We consider the operator

$$(Au)(x) = -\operatorname{div}(p(x)\operatorname{grad} u) + q(x)u(x), \qquad x \in \mathbb{R}^n.$$

We assume that the function $p: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and satisfies the estimates $0 < p_0 \le p(x) \le P_0 < \infty$, $x \in \mathbb{R}^n$, and $\| \operatorname{grad} p(x) \| \le P_0$, $x \in \mathbb{R}^n$, for some p_0 and P_0 ; the function $q: \mathbb{R}^n \to \mathbb{R}$ belongs to $L_{\infty}(\mathbb{R}^n)$ if n > 3 and q belongs to $L_{2\infty}(\mathbb{R}^3)$ if n = 1, 2, 3 (the space $L_{2\infty}$ is defined in Section 2).

The main result is Theorem 2. It states that the eigenfunctions of A associated with isolated eigenvalues of finite multiplicity decrease exponentially. Similar results were proved by many authors (see, e. g., [2, 1, 5]). It this paper we present a different idea of the proof. It is based on a simple special transformation Ψ_{ε} , described is Section 4. Sections 2 and 3 contain some general auxiliary statements.

2 Spaces and operators

In this section we describe the operator (1), which is the main object of our investigation. We also introduce notation and define some function spaces.

For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ we set

$$|x| = |x_1| + |x_2| + \dots + |x_n|, \qquad ||x|| = \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2}.$$

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$, where $\alpha_1, \alpha_2, \dots, \alpha_n = 0, 1, 2, \dots$ For a function (or a distribution) $u \colon \mathbb{R}^n \to \mathbb{C}$ we denote by $D^{\alpha}u$ the partial derivative $D_1^{\alpha_1} D_2^{\alpha_2} \dots D_n^{\alpha_n} u$, where $D_j = \frac{\partial}{\partial x_j}$.

We denote by \mathcal{D} the space of all infinitely continuously differentiable functions $u: \mathbb{R}^n \to \mathbb{C}$, and we denote by \mathcal{D}' the adjiont of \mathcal{D} , i. e. the space of distributions, see, e. g., [12, 11, 15] for details.

We denote by $L_2 = L_2(\mathbb{R}^n)$ the space of all measurable functions $u \colon \mathbb{R}^n \to \mathbb{C}$ with the finite norm

$$|u||_{L_2} = \sqrt{\int_{\mathbb{R}^n} |u(x)|^2 \, dx}.$$

We denote by $L_{2\infty} = L_{2\infty}(\mathbb{R}^n)$ the space of all measurable functions $u \colon \mathbb{R}^n \to \mathbb{C}$ with the finite norm

$$||u||_{L_{2\infty}} = \sup_{k \in \mathbb{Z}^n} \sqrt{\int_{k+[0,1]^n} |u(x)|^2 dx}.$$

We denote by $L_{\infty 2} = L_{\infty 2}(\mathbb{R}^n)$ the space of all measurable functions $u \colon \mathbb{R}^n \to \mathbb{C}$ with the finite norm

$$|u||_{L_{\infty 2}} = \sqrt{\sum_{k \in \mathbb{Z}^n} (\mathrm{ess\,sup}_{x \in k+[0,1]^n} |u(x)|)^2}.$$

We note that L_2 , $L_{2\infty}$, and $L_{\infty 2}$ can be considered as subspaces of \mathcal{D}' , and \mathcal{D} is contained in L_2 , $L_{2\infty}$, and $L_{\infty 2}$. See [4, 8] for further information about the spaces L_{pq} .

Let $m = 0, 1, 2, \ldots$ We denote by $H^m = H^m(\mathbb{R}^n)$ the Sobolev space of all functions $u \colon \mathbb{R}^n \to \mathbb{C}$ such that $D^{\alpha}u$ (considered as a distribution), $|\alpha| \leq m$, belongs to L_2 , with the norm

$$||u|| = ||u||_{H^m} = \sqrt{\sum_{|\alpha| \le m} \int_{\mathbb{R}^n} |D^{\alpha}u(x)|^2 dx}.$$

For $s \ge 0$ the space H^s is defined as the space of all functions $u \in L_2$ such that the function $\xi \mapsto (1 + |\xi|)^s \hat{u}(\xi)$, where \hat{u} is the Fourier transform of u, belongs to L^2 , with the norm

$$||u|| = ||u||_{H^s} = \sqrt{\int_{\mathbb{R}^n} (1+|\xi|)^{2s} |\hat{u}(\xi)|^2 d\xi}$$

Clearly, $H^0 = L_2$. It is easy to see that \mathcal{D} is a dense subspace in H^s . Clearly, $H^{s+\varepsilon} \subset H^s$, $\varepsilon > 0$. See, e. g., [15, 13, 9, 14, 3] for more details about the spaces H^s . We denote by H^s_{loc} (in particular, by $L_{2,\text{loc}}$) the subspace of distributions that on any open bounded set coincide with a function belonging to H^s . Let m be a non-negative integer. We say that a sequence $u_n \in H^m_{\text{loc}}$ converges to $u \in H^m_{\text{loc}}$ if u_n converges to uin the norm

$$||u||_{H^m(\Omega)} = \sqrt{\sum_{|\alpha| \le m} \int_{\Omega} |D^{\alpha}u(x)|^2 dx}$$

for any bounded open set $\Omega \subset \mathbb{R}^n$. Clearly, $H^2_{\text{loc}} \subset H^1_{\text{loc}} \subset L_{2,\text{loc}}$, and D_j , $j = 1, 2, \ldots, n$ continuously acts from H^2_{loc} to H^1_{loc} and from H^1_{loc} to $L_{2,\text{loc}}$, i. e. D_j maps convergent sequences to convergent ones.

Proposition 1. For any $u, v \in H^1_{loc}$ and j = 1, 2, ..., n one has

$$D_j(uv) = D_j u \cdot v + u \cdot D_j v.$$

For any $u, v \in H^2_{loc}$ and $i, j = 1, 2, \dots, n$ one has

$$D_i D_j (uv) = D_i D_j u \cdot v + D_i u \cdot D_j v + D_j u \cdot D_i v + u \cdot D_i D_j v.$$

Here the dot means the multiplication of measurable functions.

Corollary 1. The subspace H^m is dense in H^m_{loc} , m = 0, 1, 2. Consequently, the subspace \mathcal{D} is dense in H^m_{loc} , m = 0, 1, 2, as well.

Corollary 2. Let $\vartheta \colon \mathbb{R}^n \to \mathbb{R}$ be an infinitely continuously differentiable function. Then the operator

$$(\Theta u)(x) = \vartheta(x)u(x)$$

acts continuously from H_{loc}^m to H_{loc}^m , m = 0, 1, 2.

In this article we consider the operator

$$(Au)(x) = -\operatorname{div}(p(x)\operatorname{grad} u) + q(x)u(x), \tag{1}$$

where $p, q: \mathbb{R}^n \to \mathbb{R}$. We assume that the following assumption holds.

(H) The function $p: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and satisfies the estimates $0 < p_0 \leq p(x) \leq P_0 < \infty, x \in \mathbb{R}^n$, and $\| \operatorname{grad} p(x) \| \leq P_0, x \in \mathbb{R}^n$, for some p_0 and P_0 . The function $q: \mathbb{R}^n \to \mathbb{R}$ belongs to $L_{\infty}(\mathbb{R}^n)$ if n > 3 and qbelongs to $L_{2\infty}(\mathbb{R}^3)$ if n = 1, 2, 3.

By Proposition 1 formula (1) defines a measurable function Au for $u \in H^2_{loc}$ and the representation

$$(Au)(x) = -p(x)\Delta u(x) - \left\langle \operatorname{grad} p(x), \operatorname{grad} u(x) \right\rangle + q(x)u(x), \quad u \in H^2_{\operatorname{loc}}, \quad (2)$$

holds.

3 Self-adjoint operators

In this section we recall some results of the theory of self-adjoint operators and prove that the operator (1) is self-adjoint.

Let *H* be a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and $T: D(T) \subset H \to H$ be a linear operator with the *domain* D(T). The operator *T* is called *closed* if its graph $\Gamma(T) = \{ (u, Tu) \in H \times H : u \in D(T) \}$ is a closed subspace of $H \times H$.

Let the domain D(T) be dense in H. In this case the domain $D(T^*)$ of the adjoint operator T^* is the set of all $v \in H$ such that the functional $u \mapsto \langle Tu, v \rangle$ is continuous in the norm of H. For such v the *adjoint operator* T^* is defined uniquely by the identity $\langle Tu, v \rangle = \langle u, T^*v \rangle$.

A linear operator $T: D(T) \subset H \to H$ is called *symmetric* if $\langle Tu, v \rangle = \langle u, Tv \rangle$ for all $u, v \in D(T)$. Equivalently, T is symmetric if $T \subset T^*$, i. e., T^* is an extension of T. A linear operator $T: D(T) \subset H \to H$ is called *self-adjoint* if $T^* = T$. **Proposition 2 ([11, Theorem 13.8]).** Let $T: D(T) \subset H \to H$ be a linear operator, and D(T) be dense in H. Then the graph $\Gamma(T^*)$ of T^* is the orthogonal complement of $V\Gamma(T)$ in $H \times H$, where $V: H \times H \to H \times H$ is defined by the formula V(u, v) =(-v, u). Consequently, the adjoint operator is closed. In particular, any self-adjoint operator is closed.

Proposition 3 ([7, Ch. 5, § 5.2]). The operator $-\Delta : H^2 \subset L_2 \to L_2$ is self-adjoint.

Let H be a Hilbert space and $T: D(T) \subset H \to H$ and $B: D(B) \subset H \to H$ be linear operators. The operator B is called *bounded with respect to* T if $D(B) \subset D(T)$ and

$$||Bu|| \le \varepsilon ||Tu|| + M ||u||$$

for some $\varepsilon > 0$ and M > 0. We say that B is completely bounded with respect to T if for each $\varepsilon > 0$ there exists M > 0 such that this inequality holds.

Proposition 4 ([7, Ch. 4, Theorem 1.1]). Let H be a Hilbert space, and $T: D(T) \subset H \to H$ and $B: D(B) \subset H \to H$ be linear operators. Let B be completely bounded with respect to T. If T is closed, then T + B is also closed.

Proposition 5. Let $0 \le s < 2$. Then for any $\varepsilon > 0$ there exists M such that for any $u \in H^s$

$$||u||_{H^s} \le \varepsilon || - \Delta u ||_{L_2} + M ||u||_{L_2}.$$

The following Proposition is known as the Sobolev embedding theorem.

Proposition 6 ([15, Ch. 4, Proposition 1.3]). If s > n/2, then each $u \in H^s(\mathbb{R}^n)$ is equivalent to a continuous bounded function v. Moreover $|v(x)| \leq M ||u||_{H^s}$, $x \in \mathbb{R}^n$, for some M independent of u and x.

Corollary 3 ([7, Ch. 5, § 5.3]). Let s > n/2. Then $H^s \subset L_{\infty 2}$, and the natural imbedding of H^s into $L_{\infty 2}$ is continuous.

Proof. For the sake of completeness we give the proof. Let $\chi \colon \mathbb{R}^n \to [0, 1]$ be an infinitely continuously differentiable function such that

$$\chi(x) = \begin{cases} 1, & \text{for } x \in [0,1]^n, \\ 0, & \text{for } x \notin [-1,2]^n. \end{cases}$$

We set $\chi_k(x) = \chi(x-k), k \in \mathbb{Z}^n$. For $k \in \mathbb{Z}^n$ one has

$$\operatorname{ess\,sup}_{x \in k+[0,1]^n} |u(x)| \le \operatorname{ess\,sup}_{x \in k+[0,1]^n} |\chi_k(x)u(x)|$$
$$\le \operatorname{ess\,sup}_{x \in \mathbb{R}^n} |\chi_k(x)u(x)| \le M \|\chi_k u\|_{H^4}$$

(the last inequality follows by Proposition 6). Therefore

$$||u||_{L_{\infty 2}} = \sqrt{\sum_{k \in \mathbb{Z}^n} \left(\operatorname{ess\,sup}_{x \in k+[0,1]^n} |u(x)| \right)^2} \le M \sqrt{\sum_{k \in \mathbb{Z}^n} ||\chi_k u||_{H^s}^2}.$$

We denote by $l_2^s = L_2(\mathbb{Z}^n, H^s)$ the space of all families $v = \{v_k \in H^s : k \in \mathbb{Z}^n\}$ with the finite norm $||v|| = \sqrt{\sum_{k \in \mathbb{Z}^k} ||v_k||_{H^s}^2}$. We consider the operator $Tu = \{\chi_k u\}$. It is easy to verify that for $s = 0, 1, 2, \ldots$ the operator T continuously acts from H^s to l_2^s . From the method of complex interpolation [6, p. 116], [14, Ch. 1, § 4] it follows that the operator T continuously acts from H^s to l_2^s for all $s \in \mathbb{R}$, i. e.

$$\sqrt{\sum_{k\in\mathbb{Z}^n} \|\chi_k u\|_{H^s}^2} \le N \|u\|_{H^s}$$

for some N. Combining the obtained estimates one arrives at the desirable inequality

$$|u||_{L_{\infty 2}} \le MN ||u||_{H^s}.$$

Proposition 7. Let n be arbitrary and $q \in L_{\infty}$. Then the operator

$$(Qu)(x) = q(x)u(x) \tag{3}$$

is completely bounded with respect to the operator $-\Delta \colon H^2 \subset L_2 \to L_2$.

Proof. Clearly for all $\varepsilon > 0$

$$\|Qu\|_{L_2} = \|qu\|_{L_2} \le \|q\|_{L_\infty} \cdot \|u\|_{L_2} \le \varepsilon \|-\Delta u\|_{L_2} + \|q\|_{L_\infty} \cdot \|u\|_{L_2}.$$

Proposition 8. Let n = 1, 2, 3 and $q \in L_{2\infty}$. Then the operator (3) is completely bounded with respect to the operator $-\Delta : H^2 \subset L_2 \to L_2$.

Proof. Let $u \in H^2$. Let s = 7/4, thus 3/2 < s < 2. By Proposition 5

$$||u||_{H^s} \le \varepsilon ||-\Delta u||_{L_2} + M ||u||_{L_2}.$$

By Corollary 3 one has

 $||u||_{L_{\infty 2}} \leq N ||u||_{H^s}$

for some N. Finally, it is easy to see that

$$||qu||_{L_2} \le ||q||_{L_{2\infty}} \cdot ||u||_{L_{\infty 2}}$$

Combining all these estimates one obtains the desirable inequality

$$\|Qu\|_{L_2} \le \|q\|_{L_{2\infty}} N(\varepsilon\| - \Delta u\|_{L_2} + M\|u\|_{L_2}).$$

Example 1. Let n = 3. Then the operator

$$(Qu)(x) = \frac{u(x)}{\sqrt{x_1^2 + x_2^2 + x_3^2}},$$

where $x = (x_1, x_2, x_3)$ (which is a part of the simplest Schrödinger operator), is completely bounded with respect to the operator $-\Delta \colon H^2 \subset L_2 \to L_2$, because the coefficient $q(x) = \frac{1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$ belongs to $L_{2\infty}$.

Proposition 9. Let $p: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function satisfying the estimate $\| \operatorname{grad} p(x) \| \leq P_0, x \in \mathbb{R}^n$, for some P_0 . Then the operator

$$(Gu)(x) = \langle \operatorname{grad} p(x), \operatorname{grad} u(x) \rangle$$

is completely bounded with respect to the operator $-\Delta \colon H^2 \subset L_2 \to L_2$.

Proof. Let $u \in H^2$. By Proposition 5

$$||u||_{H^1} \le \varepsilon ||-\Delta u||_{L_2} + M ||u||_{L_2}$$

It is easy to see that

$$||Gu||_{L_2} \leq N \cdot ||u||_{H^1}$$

for some N. Combining these estimates one obtains the desirable inequality

$$||Gu||_{L_2} \le N(\varepsilon || - \Delta u ||_{L_2} + M ||u||_{L_2}).$$

Proposition 10. The operator $A: H^2 \to L_2$ defined by the formula (1) is bounded. Namely, for some M

$$\|A\colon H^2 \to L_2\| \le M\Big(\|p\|_{L_{\infty}} + \sum_{j=1}^n \Big\|\frac{\partial p}{\partial x_j}\Big\|_{L_{\infty}} + \|q\|_{L_{\infty}}\Big)$$

or

$$\|A\colon H^2 \to L_2\| \le M\Big(\|p\|_{L_{\infty}} + \sum_{j=1}^3 \Big\|\frac{\partial p}{\partial x_j}\Big\|_{L_{\infty}} + \|q\|_{L_{\infty}^2}\Big)$$

provided that n = 1, 2, 3 and $q \in L_{\infty 2}$.

Proof. The estimate of the norm follows by representation (2). We also recall that by the proof of Proposition 8 that

$$\|qu\|_{L_2} \le \|q\|_{L_{2\infty}} \cdot \|u\|_{L_{\infty}}$$

and by Corollary 3 $H^2(\mathbb{R}^3) \subset L_{\infty 2}(\mathbb{R}^3)$.

Corollary 4. Operator (1) continuously maps H^2_{loc} into $L_{2, loc}$, *i. e. it maps convergent sequences to convergent ones.*

Proof. The proof is evident.

Proposition 11. The operator $A: H^2 \subset L_2 \rightarrow L_2$ defined by the formula (1) is symmetric.

Proposition 12. ([11, Theorem 13.16]) Let T be a symmetric operator on a Hilbert space H. Then T is a closed operator if and only if $\text{Im}(T \pm i\mathbf{1})$ is closed, where $\mathbf{1}$ is the identity operator.

Proposition 13. ([10, Theorem VIII.3]) Let T be a symmetric operator on a Hilbert space H. Then the operator T is self-adjoint if and only if $\text{Im}(T \pm i\mathbf{1}) = H$.

Theorem 1. Let assumption (H) hold. Then the operator $A: H^2 \subset L_2 \to L_2$ defined by formula (1) is self-adjoint.

Proof. By Proposition 3 the operator $-\Delta \colon H^2 \subset L_2 \to L_2$ is self-adjoint. Hence $-\Delta \colon H^2 \subset L_2 \to L_2$ is closed. By the assumption $0 < p_0 \le p(x) \le P_0 < \infty, x \in \mathbb{R}^n$, it follows that the operator $p \Delta \colon H^2 \subset L_2 \to L_2$, where $(p \Delta u)(x) = p(x)\Delta u(x)$, is closed as well.

We represent the operator A in the form (2) or, more briefly, $A = -p \Delta + G + Q$, where

$$(Gu)(x) = \langle \operatorname{grad} p(x), \operatorname{grad} u(x) \rangle, \qquad (Qu)(x) = q(x)u(x), \qquad u \in H^2.$$

We recall that by Propositions 7, 8, and 9 the operators Q and G are completely bounded with respect to Δ . By Proposition 4 this implies that A is a closed operator for any p and q satisfying assumption (H).

Next, we consider the homotopy

$$(A\{t\}u)(x) = -\operatorname{div}((1-t+tp(x))\operatorname{grad} u) + tq(x)u(x), \qquad u \in H^2, t \in [0,1].$$

Clearly, $A\{0\} = -\Delta$ and $A\{1\} = A$. By the above $A\{t\} \colon H^2 \subset L_2 \to L_2$ is a closed operator for all $t \in [0, 1]$.

By Proposition 10 it follows that $A\{t\}: H^2 \to L_2$ is continious for all $t \in [0, 1]$. By Proposition 12 Im $(A\{t\} \pm i\mathbf{1})$ is closed for all t. At the same time by Propositions 3 and 13 Im $(A\{0\} \pm i\mathbf{1}) = L_2$. By [8, Theorem 1.3.2(b) and Proposition 1.3.5] it follows that Im $(A\{t\} \pm i\mathbf{1}) = L_2$ for all t. By Proposition 11 $A\{t\}: H^2 \subset L_2 \to L_2$ is symmetric. Finally, by Proposition 13, this implies that $A\{t\}$ is self-adjoint. In particular, $A\{1\} = A$ is self-adjoint. \Box

4 The transformation Ψ_{ε}

We denote by $\eta \colon \mathbb{R}^n \to \mathbb{R}$ a fixed infinitely continuously differentiable function satisfying the property

$$\eta(x) = ||x|| \quad \text{for } ||x|| \ge 1.$$
 (4)

For any $\varepsilon \in \mathbb{R}$ we consider the operator

$$(\Psi_{\varepsilon}u)(x) = e^{\varepsilon\eta(x)}u(x).$$

105

By Corollary 2 Ψ_{ε} acts in H_{loc}^m , m = 0, 1, 2. It is interesting to note that Ψ_{ε} forms a representation of the group \mathbb{R} , i. e. $\Psi_{\varepsilon}\Psi_{\delta} = \Psi_{\varepsilon+\delta}$.

For any $\varepsilon \in \mathbb{R}$ and $s \geq 0$ we denote by $H^s_{\varepsilon} = H^s_{\varepsilon}(\mathbb{R}^n)$ the space of all functions of the form $\Psi_{\varepsilon} u$, where $u \in H^s$. In particular, $(L_2)_{\varepsilon} = (L_2)_{\varepsilon}(\mathbb{R}^n)$ is the space of all functions of the form $\Psi_{\varepsilon} u$, where $u \in L_2$. It is easy to see that the definition of H^2_{ε} does not depend on the choice of a function η with the property (4). Evidently, H^2_0 coincides with H^2 and $(L_2)_0$ coincides with L_2 . Obviously, $H^2_{\varepsilon} \subset H^2_{\text{loc}}$ for all $\varepsilon \in \mathbb{R}$.

We set

$$A[\varepsilon] = \Psi_{\varepsilon} A \Psi_{-\varepsilon}, \qquad \varepsilon \in \mathbb{R}.$$

By Corollary 4 the operator $A[\varepsilon]$ acts from H^2_{loc} to $L_{2,\text{loc}}$.

Proposition 14. Let assumption (H) hold. Then for $u \in H^2_{loc}$ one has

$$(A[\varepsilon]u)(x) = -\operatorname{div}(p(x)\operatorname{grad} u(x)) + q(x)u(x) + \varepsilon \langle u(x)\operatorname{grad} p(x) + 2p(x)\operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle$$
(5)
+ $\varepsilon p(x)u(x)\Delta\eta(x) - \varepsilon^2 p(x)u(x) \|\operatorname{grad} \eta(x)\|.$

Proof. For $u \in \mathcal{D}$ one has

$$(\operatorname{grad} \Psi_{-\varepsilon} u)(x) = \operatorname{grad}(e^{-\varepsilon\eta(x)}u(x)) = u(x)\operatorname{grad} e^{-\varepsilon\eta(x)} + e^{-\varepsilon\eta(x)}\operatorname{grad} u(x)$$

and

$$\begin{aligned} \operatorname{div}(p(x) \operatorname{grad} \Psi_{-\varepsilon}u)(x) &= \operatorname{div}(p(x)(u(x) \operatorname{grad} e^{-\varepsilon \eta(x)} + e^{-\varepsilon \eta(x)} \operatorname{grad} u(x))) \\ &= \operatorname{div}(p(x)u(x) \operatorname{grad} e^{-\varepsilon \eta(x)} + e^{-\varepsilon \eta(x)}p(x) \operatorname{grad} u(x)) \\ &= u(x) \langle \operatorname{grad} p(x), \operatorname{grad} e^{-\varepsilon \eta(x)} \rangle + p(x) \langle \operatorname{grad} u(x), \operatorname{grad} e^{-\varepsilon \eta(x)} \rangle \\ &+ p(x)u(x) \operatorname{div} \operatorname{grad} e^{-\varepsilon \eta(x)} + p(x) \langle \operatorname{grad} e^{-\varepsilon \eta(x)}, \operatorname{grad} u(x) \rangle \\ &+ e^{-\varepsilon \eta(x)} \operatorname{div}(p(x) \operatorname{grad} u(x)) \\ &= \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} e^{-\varepsilon \eta(x)} \rangle \\ &+ p(x)u(x) \operatorname{div} \operatorname{grad} e^{-\varepsilon \eta(x)} + e^{-\varepsilon \eta(x)} \operatorname{div}(p(x) \operatorname{grad} u(x)) \\ &= -\varepsilon e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &- \varepsilon p(x)u(x) \operatorname{div}(e^{-\varepsilon \eta(x)} \operatorname{grad} \eta(x)) + e^{-\varepsilon \eta(x)} \operatorname{div}(p(x) \operatorname{grad} u(x)) \\ &= -\varepsilon e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &- \varepsilon p(x)u(x) \langle \operatorname{grad} e^{-\varepsilon \eta(x)}, \operatorname{grad} \eta(x) \rangle - \varepsilon e^{-\varepsilon \eta(x)}p(x)u(x)\Delta \eta(x) \\ &+ e^{-\varepsilon \eta(x)} \operatorname{div}(p(x) \operatorname{grad} u(x)) \\ &= -\varepsilon e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &+ e^{-\varepsilon \eta(x)} \operatorname{div}(p(x) \operatorname{grad} u(x)) \\ &= -\varepsilon e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &+ e^{-\varepsilon \eta(x)} \operatorname{div}(p(x) \operatorname{grad} n(x)) \\ &+ \varepsilon^2 e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &+ \varepsilon^2 e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &+ \varepsilon^2 e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &+ \varepsilon^2 e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &+ \varepsilon^2 e^{-\varepsilon \eta(x)} \langle u(x) \operatorname{grad} p(x) + 2p(x) \operatorname{grad} u(x), \operatorname{grad} \eta(x) \rangle \\ &+ \varepsilon^2 e^{-\varepsilon \eta(x)} \operatorname{grad} u(x) \| \operatorname{grad} \eta(x) \| - \varepsilon e^{-\varepsilon \eta(x)} p(x) u(x) \Delta \eta(x) \\ &+ \varepsilon^{-\varepsilon \eta(x)} \operatorname{div}(p(x) \operatorname{grad} u(x)). \end{aligned}$$

Consequently,

$$\begin{aligned} \left(A[\varepsilon]u\right)(x) &= -\Psi_{\varepsilon}\operatorname{div}\left(p(x)\operatorname{grad}\Psi_{-\varepsilon}u\right)(x) + q(x)u(x) \\ &= -\operatorname{div}\left(p(x)\operatorname{grad}u(x)\right) + q(x)u(x) \\ &+ \varepsilon \langle u(x)\operatorname{grad}p(x) + 2p(x)\operatorname{grad}u(x),\operatorname{grad}\eta(x) \rangle \\ &+ \varepsilon p(x)u(x)\Delta\eta(x) - \varepsilon^2 p(x)u(x) \|\operatorname{grad}\eta(x)\|. \end{aligned}$$

Clearly (cf. Proposition 10), the right-hand side of the last formula defines a continuous operator, acting from H^2_{loc} to $L_{2,loc}$. By Corollary 1 it coincides with $A[\varepsilon]: H^2_{loc} \to L_{2,loc}$.

Proposition 15. The operator $A[\varepsilon]$ continuously acts from H^2 to L_2 for all $\varepsilon \in \mathbb{R}$. The operator $A[\varepsilon]: H^2 \to L_2$ continuously depends on the parameter ε .

Proof. The proof is similar to that of Proposition 10.

Corollary 5. The operator A maps H^2_{ε} to $(L_2)_{\varepsilon}$ for all $\varepsilon \in \mathbb{R}$.

Proof. The proof is evident.

5 Exponential decay of eigenfunctions

Proposition 16. Let X and Y be Banach spaces and $A, B: X \to Y$ be bounded linear operators. If the operator A is invertible and

 $\|B\| \cdot \|A^{-1}\| < 1$

then the operator A - B is also invertible. Moreover

$$||(A - B)^{-1}|| \le \frac{||A^{-1}||}{1 - ||B|| \cdot ||A^{-1}||}.$$

Proof. The proof follows by the representation

$$(A - B)^{-1} = A^{-1} + A^{-1}BA^{-1} + A^{-1}BA^{-1}BA^{-1} + \dots$$

Theorem 2. Let assumption (H) hold. Let λ_0 be an isolated eigenvalue of the operator A defined by formula (1), and the eigenspace E_{λ_0} associated with λ_0 be finite dimensional. Then $E_{\lambda_0} \subset H_{\varepsilon}^2$ for some $\varepsilon < 0$.

Proof. Let Γ be a circumference with the centre λ_0 oriented anticlockwise. We assume that the radius of the circumference Γ is sufficiently small, so it does not surround points of the spectrum of A different from λ_0 . We consider the resolvent $R(\lambda, A) = (\lambda \mathbf{1} - A)^{-1} \colon L_2 \to H^2$, where $\mathbf{1}$ is the identity operator. By Proposition 16 the resolvent $R(\lambda, A)$ continuously depends on $\lambda \in \Gamma$. Hence the maximum of $||R(\lambda, A) \colon L_2 \to H^2||$ over $\lambda \in \Gamma$ is finite.

By Propositions 15 and 16 the operator $\lambda \mathbf{1} - A[\varepsilon]$ is invertible for $\lambda \in \Gamma$ and $|\varepsilon|$ small enough and the inverse operator $R(\lambda, A[\varepsilon]) = (\lambda \mathbf{1} - A[\varepsilon])^{-1} \colon L_2 \to H^2$ continuously depends on ε .

For sufficiently small $|\varepsilon|$ we consider the Riesz projector

$$P[\varepsilon] = \frac{1}{2\pi i} \int_{\Gamma} (\lambda \mathbf{1} - A[\varepsilon])^{-1} d\lambda.$$

It acts from L_2 to H^2 and continuously depends on ε . The image of $P[\varepsilon]$ is the eigenspace associated with the part of the spectrum of $A[\varepsilon]$ surrounded by Γ . In particular, the image of P[0] is E_{λ_0} . Since E_{λ_0} is finite-dimensional and $P[\varepsilon]$ continuously depends on ε , the dimension of the image of $P[\varepsilon]$ does not depend on ε .

We consider the operator

$$A\{\varepsilon\} = \Psi_{-\varepsilon}A[\varepsilon]\Psi_{\varepsilon}.$$

It acts from H_{ε}^2 to $(L_2)_{\varepsilon}$ (cf. Corollary 5). Clearly, it coincides with the restriction of the operator A to H_{ε}^2 . We notice that the operator $\lambda \mathbf{1} - A\{\varepsilon\} : H_{\varepsilon}^2 \to (L_2)_{\varepsilon}$ coincides with $\Psi_{-\varepsilon} (\lambda \mathbf{1} - A[\varepsilon]) \Psi_{\varepsilon}$. Therefore the spectrum of $A\{\varepsilon\} : H_{\varepsilon}^2 \subset (L_2)_{\varepsilon} \to (L_2)_{\varepsilon}$ coincides with the spectrum of $A[\varepsilon] : H^2 \subset L_2 \to L_2$. Next we consider the operator

$$P\{\varepsilon\} = \Psi_{-\varepsilon}P[\varepsilon]\Psi_{\varepsilon} = \frac{1}{2\pi i} \int_{\Gamma} \Psi_{-\varepsilon} (\lambda \mathbf{1} - A[\varepsilon])^{-1} \Psi_{\varepsilon} d\lambda$$
$$= \frac{1}{2\pi i} \int_{\Gamma} (\Psi_{-\varepsilon} (\lambda \mathbf{1} - A[\varepsilon]) \Psi_{\varepsilon})^{-1} d\lambda$$
$$= \frac{1}{2\pi i} \int_{\Gamma} (\lambda \mathbf{1} - A\{\varepsilon\})^{-1} d\lambda.$$

By this representation it follows that $P\{\varepsilon\}$ is the spectral projector associated with the part of the spectrum of $A\{\varepsilon\}$ surrounded by Γ . Since $P[\varepsilon]$ and $P\{\varepsilon\}$ are similar projectors (namely, $P\{\varepsilon\} = \Psi_{-\varepsilon}P[\varepsilon]\Psi_{\varepsilon}$), their images are isomorphic spaces and the dimensions of their images are the same.

Let ε be less than zero. In this case the operator $A\{\varepsilon\}: H^2_{\varepsilon} \to (L_2)_{\varepsilon}$ is a restriction of the operator $A: H^2 \to L_2$ to the subspace $H^2_{\varepsilon} \subset H^2$. Consequently, the operator $(\lambda \mathbf{1} - A\{\varepsilon\})^{-1}: (L_2)_{\varepsilon} \to H^2_{\varepsilon}$ is the restriction of the operator $(\lambda \mathbf{1} - A)^{-1}: L_2 \to H^2$. Therefore by the representation

$$P\{\varepsilon\} = \frac{1}{2\pi i} \int_{\Gamma} (\lambda \mathbf{1} - A\{\varepsilon\})^{-1} d\lambda$$

it follows that the operator $P\{\varepsilon\}: (L_2)_{\varepsilon} \to H_{\varepsilon}^2$ is the restriction of the operator $P\{0\} = P[0]: L_2 \to H^2$. The operators $P\{\varepsilon\}$ and P[0] are projectors and dimensions of their images coincide. This implies that the images of $P\{\varepsilon\}$ and P[0] coincide. But the image of $P\{\varepsilon\}$ is contained in H_{ε}^2 . Therefore the image of P[0] is also a subspace of H_{ε}^2 with $\varepsilon < 0$.

Acknowledgements. The author would like to thank V.I. Burenkov for his helpful comments and suggestions.

References

- S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. Mathematical Notes 29, Princeton University Press, Princeton, N.J., 1982.
- [2] C. Bardos, M. Merigot, Asymptotic decay of the solutions of a second order elliptic equation in an unbounded domain. Applications to the spectral propreties of a Hamiltonian. Proc. Royal Soc. Edinburg, 76 A (1977), 323 – 344.
- [3] V.I. Burenkov, Sobolev Spaces on Domains. B.G. Teubner, Stuttgart-Leipzig, 1998.
- [4] J.J.F. Founier, J. Stewart, Amalgams of L^p and l^q . Bull. Amer. Math. Soc., 13 (1985), 1-21.
- [5] R. Froese, I. Herbst, M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, L²-exponential lower bounds to solutions of the Schrödinger equation. Commun. Math. Phys., 87 (1982), 265 – 286.
- [6] Functional Analysis. Ed. S.G. Krein, Wolters-Noordhooff Publishing, Groningen, 1972.
- [7] T. Kato, Perturbation Theory of Linear Operators. Springer Verlag, Berlin-Heidelberg-New York, 1966.
- [8] V.G. Kurbatov, Functional Differential Operators and Equations. Kluwer Academic, Dordrecht–Boston–London, 1999.
- [9] J.-L. Lions, E. Magenes, Problèmes aux Limites non Homogènes et applications. Vol. 1. Dunod, Paris, 1968.
- [10] M. Reed, B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York–London, 1972.
- [11] W. Rudin, Functional Analysis. McGraw-Hill Book Company, New York, 1990.
- [12] L. Schwartz, Théorie des Distributions. Vol. I, II. Hermann, Paris, 1966.
- [13] S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics. Nauka, Moscow, 1988 (in Russian). English translation in "Translations of Mathematical Monographs", AMS, 90, 1991.
- [14] M.E. Taylor, *Pseudodifferential Operators*. Prinseton Univ. Press, Prinseton, New Jersey, 1981.
- [15] M.E. Taylor, Partial Differential Equations I. Basic Theory. Springer, New York–Berlin, 1996.

V.G. Kurbatov Lipetsk State Technical University 30 Moskovskaya St, 398030 Lipetsk, Russia E-mail: kv51@inbox.ru

Received: 07.01.2010