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Abstract. In this paper, a new scale of necessary and sufficient conditions for the
validity of the Hardy and reverse Hardy inequalities in the cases

O<%<1, p € (—00,0) U (1,00),
and
0<®<1, q€(0,1)

is found and estimates for the best constants are derived.

1 Introduction

The “classical” Hardy inequality

FAVELDRED

b
<c ( / fp(:r)v(:r)dfr) 1)
and the reverse Hardy inequality

< / b ( / y <t)dt)qu(a:)dx> >C ( / b fp(a:)v(a:)dyc> @)

for f > 0 with given weight functions u,v are completely characterized for all real

values of p,q, p # 0, ¢ # 0 (see, e.g., [5], [4], [2]).
Moreover, for the case

=

Q|
]

Q=
Q=

l<p<g<oo

we have about 15 scales of (equivalent) conditions starting with the classical necessary
and sufficient Muckenhoupt condition

Api= sup Ay(x) < o0
z€(a,b)
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where

with
b T
U(x):/ u(t)dt, V(x):/ o P (t)dt. (3)

For the case ¢ < p we have less conditions. The (again classical) Maz’ja—Rozin
condition

b r
Bug = (/ UZ(x)w(x)dV(a:)) < 00
for the case ]
O<g<p<oo, p>1, q#1, ;::

Q| =
==

was extended by the (Persson-Stepanov) condition

Bpg == (/b Uaru@)vm)dt} ' VZ(x)dV(x)y <00

and both conditions have been extended to the scales (with s € (0, 00))

r

Burn(s) = < / ’ [ /t bu<7)vq<1/f>’—s>(7)d7} ‘ vM(t)dV(t))i < o0,

Bps(s) = ( / b { / tu(T)qup’*S)(T)dT] % 1/’“51(t)cu/(t)>i < 00

which are mutually equivalent (see [6] for details; notice that By r and Bpg coincide
with BMR(Z%) and BPS(%), respectively).
The case of negative values of the parameters p, ¢ and the reverse Hardy inequality
is completely described in [7] and in [1]; for the case I € (0,1), i.e.
—c0o<p<qg<O

the corresponding (Prokhorov) condition reads

Bp = ( / ’ ﬁ;(x)Vf:’(x)dU(xO_i < o0 (4)

with U(z) := L7 u(t)de.
In this paper, we extend these conditions for the region

0<l<1l,  pé€(-00,0)U(l,00),
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introducing the new scale

where s € (0,00), and for the region
p
0<®<l, q€(0,1)

using the (dual) scale

Biu(s) = ( / b ([ o v U“(x)d(—U(x)))

2 Main results

3

In the first main result we consider the case p € (—00,0) U (1,00). Then we can

rewrite the two inequalities (1) and (2) as one single inequality:

/ab </am f(t)dt)qu(x)dx < 1 (/ab fp(w)v(x)d;p>g |

and the main result reads:

Theorem 1. Let p € (—00,0) U (1, 00),
(6) holds if and only if

q

p
Bk (s) < o0,

and for the best constant we have the following estimates:

e ifp € (—00,0), then

,
where
.
1 s €[l —p,00)
o ifpe (1,00), then
1g
(%r+ 1)qBK(S) < O < Cy(s)Bi (),

where

(6)

€ (0,1) and s € (0,00). Then inequality
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Remark. The result mentioned above can be reformulated for the case of the in-
equalities

(/( /jf@dt)zw); cof [ Ponn) weno

and

(/ab (/: f(t)dt)q“(x)dl"); 20 (/b fp(l‘)v(x)dx); (p € (—00,0) U (0,1))

by the usual way, replacing, roughly speaking, the funct1ons U and V by the functions
U and V, respectively, where U(z) = [ u(t)dt, V(z) = [, ® 0177 (t)dt. The counterpart
of Bk (s) will have the form:

and the theorem will be same.

As far as concerns the case 0 < g <1, q € (0,1), we can use the duality principle.
By Theorem 3 in [7], inequality (2) is equivalent to the following inequality

</ab (/:f(t)dt)p/ vl‘p/(x)da:> ’ >0 (/ab fq/(x)ul—q/@)da;) % |

where —oo < ¢’ < p’ < 0. Then our second main result, Theorem 2, follows immedi-
ately from Remark.

Theorem 2. Let p,q € (0,1), £ € (0,1) and s € (0,00). Then incquality (2) holds if
and only if

/
p

Bi(s) = (/ab </:UI—P’(Z)UP’<$—$ (z)dz);/ Us_l(x)d(—U(x))> T < o0.

Moreover, for the best possible constant we have

/

Ci(s)Bi(s) < 07 < (1= 1) " % Bie(s)

r

where
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If we suppose that p > 1 and ¢/p € (0,1) then Bg(s) = Bygr(s/r) for all s > 0.
In this sense the condition Bg(s) < oo extends the Maz’ja-Rozin scale condition
Barr(s/r) < oo to negative parameters p, ¢. By the same point of view, if we consider
Bps(s/r) < oo as an extension of Persson—-Stepanov scale condition, then these two
extended conditions are in the following relations:

Proposition. Letp € (—00,0)U(1,00), 1 € (0,1) and s € (0,00). Then the following
estimates hold:

1 S S
55‘}35( ) < Bﬁm(;) <J+ 25}25(;)7 (10)

s | W»

where J = ( I ( K uvq(i+?>) ‘ V81(t)dV(t)) Tyt
Consequently, if we additionally suppose that V(b) = oo then (10) takes the form:

1 S

S S
55%5( ) < B?MR(;) < 28%(;)-

-
3 Proofs

Proof of Theorem 1.
(Necessity) First, let us denote

[ = /ab (/;f(t)dt)qu(x)dx,
7= [

then (6) takes the form:
I1<CJr, (11)

Let us choose the test function in the form:

1
v

flx) = ( / bu(z)v% i>(z)dz) Vo (2)or T ().

Then we have

J= / ’ ( / bu(z)Vq(Pl’_j)(z)dz> "V (@)dV () (12)

and

Since 7 > 0, we have that for ¢ € (a, z)

bu(z)Vq(p “(2)dz 2 >
(f )
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and supposing % +1 >0 we get

where we used Fubini’s theorem in the last step. Consequently, we have

q

I > ?j_l)q/b (/b () V=9 (z)dz)gvs_l(x)d‘/(x)—%l

This implies together with (11) and (12) that (g =t J < (C]% or =t fil)q Jr < C1,
ie. ,
28 s e ’
—_—t u(z)V5® N (2)dz ) VI (x)dV (x < (Y,
= ([ <>) @av(a)) <
ie.
1s
—r B < (1. 13
ey P < (13)

To get the last estimate we supposed that % + 1 > 0, which holds for all p € (1, 00)
and s € (0,00). This is true also for negative values of p if s € (0,1 — p). To prove
the necessity for parameters p negative and s € [1 — p,00) we proceed as follows:
First we use (13) for s = 1, which implies the necessity of B (1), and by using the
monotonicity of the function V(¢) we estimate B (1) by Bk(s) from below, i.e.

By(1) = (/b (/:u(z)Vq_l(z)dz) g dV(m))Z
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This estimate and (13) imply

IBic(s) < 1Bx(1) < O,

where s € [1 — p, 00). The necessity part is completed.

(Sufficiency) Let be p € (—00,0)U(1,00) and « a real positive parameter such that

/

1- 2 . (14)
T

Then the left hand side of inequality (11) can be estimated as follows:

[ = / ’ ( / ' [v—%(t)v*%@)} [v%(t)v%(t) f(t)} dt)qu(x)dx

< /ab (/: Vaf/(t)vlp/(t)dt)q :

' ( / V() fp(t)dt) " ula)da
- (1—“—]“)_’“ /ab (/:vi”(t)v(t)fp(t)dt)gu(x)v“—"‘r’“)ﬁ(x)dx
_ <1—O‘7p/>_p’ (/b (/jv“f’(t)v@)fp(t)dt)zu<x)v<1—“/>§(x)dx>q p
(1 - %) ot By () (/b fp(t)v(t)dt)g . (15)

Hence, it follows that the best constant satisfies:

bS]

IN

4
7

C7 < <1 - O‘—p'> " ot Bgla). (16)

r

To get (15) we denote g(t) = V5 (t)u(t) f7(t) and use the following inequality:

(/ab (/:g(t)dt>zv(larpl)f'(x)u(x)dx>g < C’/abg(t)v—af(t)dt_ (17)

Let us show that this inequality holds, and investigate the constant C.

Inequality (17) is a special case of the Hardy inequality and its validity is charac-
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terized by the finiteness of the following integral As (see Theorem 5 in [3]):

— (%)f </ab </: Va—l(t)dV(t)) d{_ (/:u(t)v(l“f’):,(t)dt)q}>
- () </b (/:“(t)v(”’"'%)dt) g val(@dv(x))f
= () Bilo)

and for the constant C' we have the estimate:

= q.1_2 q._»,qop p
€<= DA< (O H Bl () = ot B

(@).

So, we have the condition B (a) < oo with « satisfying (14). If p is negative then
(14) holds for all positive a’s and in this case we have the sufficient condition if we
replace a in (15) by s. In the case p > 1 the condition (14) holds if o € (0, 7).
Again replacing « by s we get the sufficient condition for (0, ]%) In the remaining
case where s € [, 00) we choose a = s — ¢, with arbitrary € € (s — 7, 5). By these
choice of parameters we have condition (14) for « and

By(a)=B(s—¢) = ( / b ( / bu(t)V(l_STZ/)zf”L?(t)dt)gVSE1(x)dV(yc)) 2(18)

Now we show that

=l

B(s—¢) < CB(s),

where C is a constant which depends on s and e. To this aim we first estimate the
inner integral in (18) in the following form:

b ! q £q
/ w® VI (ydt

xT

-/ Vb (- buv)v“i”"é"(ﬂw)
= [vEma (- [ v ar
[reon(-] )

) / (VD (a1 54 : ( /t bu(r)v<1—si’>5<7)d7> L1y (1)

= L)+ D). (19)
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Let us denote v = ((s — )% +1)Z. Using Holder’s inequality with exponents © and £
we estimate [o(z) in the form:
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which together with (19) implies

b ’
(-4 4z &
/2 u(t)V (t)dt < L) + = e 1)%13@).
q

Using this estimate, we obtain

B(s—¢) = ( / ’ ( / bu(t)V(l_srﬂ):’Jr?(t)dt) g vs—s—lmmvm)

S

T

b €q 1 g s—e—1
< /a<[1(x)+?wfi%($)) 4 (z)dV(z)

’ Ly s—e—1 T T - 6_(] 1 ’ T 151 T T ’
< ([ rrvewan) S ([ v wre)
< Bgl(s 4 7 ! Bg(s

S Er T E e B
_ 14 _ Brc(s), 20

( +T(%_1)p(§_7§+3_8>3) (s) (20)

where we used the triangle inequality for the norm. From (20), (16) and from the
definition of v we get the estimate for the best constant:

4
7

1 < (1 - @) (s—e)* By (s —¢)

< (1_M)5’(5_5)3(1+ — B )Br(s)
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Consequently, we have that

_4q
inf (1 _ %> Ty
ac(0, 5) r

where s € [%, o0). The proof of sufficiency is completed. O

1<

sBic(s) = (1)) 5B (s)

Proof of Proposition. Let s € (0,00) be a real parameter and ¢ = (1 — Is). To
prove the assertion we first show that

Bis(>) < 2Bl(>). (21)

For this aim, we estimate the inner integral of B} ¢(%) as follows, where we first use
integration by parts and then the Holder inequality with exponents g and § :

t g gs r % t ep %
/uVQ(pl’_T)dz] VO (1)av (r )) (/ v—q(T)dV(T))

2E t b 1 s g qs r % EP\ 4
. wV i dz| VETTL(mav () | v (@)
(1 — 52)5 a T

q

[\

DO
ok
VRS
s\ﬁ

IN

Using this result we can estimate B¢(s) in the form:

3

B%s(s) (/abll() V_S_l(t)dV(t)> <

94 b ; 24s
_ (/ Ig(t)qV51(t)dV(t)> < Tt x

_ P\
(1—¢E)

x </b< at Mbuvq(é—ﬁdzrv(?—“%( v (r )) V=il )dV(t)) =
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QE b b 1 s g gs r
= —r wV I dz | VT TG (1)
(1—82); a T
q
b .
( / v“—%)p—s—l(t)dvu)) dV(T)) <

2£ b b 1 s g
. 3 / [/ qu(p/_r)dz] Vo (r)dV(r)
(1—55) <€5+S_5)T a T

This estimate and the definition of € imply (21).
Now we show the second part, i.e.

3k

X

3k

IA

LSRSY

Biia(>) < J +2Bjs(2).

Using integration by parts we easily estimate the inner integral of B]q\/IR(f) in the
form:

Ti(t) = /t WAV ()dr

b T
= / V=2 (r)d </ qu(pl’Jr")dz)
t t

gs b (H+2) qs b T (£+2) as
= V72 (b) ( / uV T dz) + 2% / { / uV Iy dz] V2N (0)dV (r)
t t t

Denoting ¢ = %(%s + %) and using Holder’s inequality we have:

J5(t) = /t b [v?qflﬂ(f) / ' uvq(zﬁ*i)dz} Ve (r)dV (7)

(/tb [/;uvq(éﬁ)dz];v(ﬂ:1+a);(7)dv(7)>2 </tbv—sg(7)dv(7))5

q

1 b T 1L g o . po "
— uv‘](pl/"‘r)dz V(_27—1+€)E (T)dV(T) V(I_EE); (t)
(8§ — 1)5 t a

R A

P _1)»
(et —1)

IN

IN

Consequently, we have
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From this estimate we obtain:

Sk

B = ([ niv-wa)

3

b 24s .
_ / T+ 10| VT 0V

’ 1751 % 2‘1T_5 ’ g s—1 '
< (/ BtV (t)dV(t)) e (/ Ji()iV (t)dV(t))
IR

6%—1)13

where

J = < / ’ ( /t buvq@*i)) g vs—l(t)dV(t)> % V27 (b)

and by Fubini’s theorem we rewrite J; in the form:

q

b b T 1 s 2 qs r EPN\T "
J = ( / ( / { / qu(p’ﬂ)dz} v<-2r-1+f>q<f>dv<7>> V<1‘q>p+5‘1<t>dV<t>>
a t a
1 b T 1 s g %
- — / { / qu(p’J”)dz} V= (r)dV(T)
((l—ga)g‘l's)" a a

Bhs(2)
(1—<2)t +5)F

From these and from the definition of € we have:
s s
B?\/[R(;) <J+ 215’%5(;)

O
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