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YESMUKHANBET SAIDAKHMETOVICH SMAILOV

Doctor of physical and mathematical sciences, Professor Smailov Esmuhan-
bet Saidakhmetovich passed away on May 24, 2024, at the age of 78 years.

Esmuhanbet Saidakhmetovich was well known to the scienti�c community
as a high quali�ed specialist in science and education, and an outstanding
organizer. Fundamental scienti�c articles and textbooks written in various
�elds of the theory of functions of several variables and functional analysis,
the theory of approximation of functions, embedding theorems, and harmonic
analysis are a signi�cant contribution to the development of mathematics.

E.S. Smailov was born on October 18, 1946, in the village of Kyzyl Kesik,
Aksuat district, Semipalatinsk region. In 1963, he graduated from high school
with a silver medal, and in the same year he entered the Faculty of Mechanics

and Mathematics of the Kazakh State University (Almaty) named after Kirov (now named after Al-
Farabi). In 1971 he graduated from graduate school at the Institute of Mathematics and Mechanics.

He defended his PhD thesis in 1973 (supervisor was K.Zh. Nauryzbaev) and defended his doctoral
thesis �Fourier multipliers, embedding theorems and related topics� in 1997. In 1993 he was awarded
the academic title of professor.

E.S. Smailov since 1972 worked at the Karaganda State University named after E.A. Buketov as
an associate professor (1972-1978), the head of the department of mathematical analysis (1978-1986,
1990-2000), the dean of the Faculty of Mathematics (1983-1987) and was the director of the Institute
of Applied Mathematics of the Ministry of Education and Science of the Republic of Kazakhstan in
Karaganda (2004 -2018).

Professor Smailov was one of the leading experts in the theory of functions and functional analysis
and a major organizer of science in the Republic of Kazakhstan. He had a great in�uence on the
formation of the Mathematical Faculty of the Karaganda State University named after E.A. Buketov
and he made a signi�cant contribution to the development of mathematics in Central Kazakhstan.
Due to the e�orts of Y.S. Smailov, in Karaganda an actively operating Mathematical School on the
function theory was established, which is well known in Kazakhstan and abroad.

He published more than 150 scienti�c papers and 2 monographs. Under his scienti�c advice, 4
doctoral and 10 candidate theses were defended.

In 1999 the American Biographical Institute declared professor Smailov �Man of the Year� and
published his biography in the �Biographical encyclopedia of professional leaders of the Millennium�.

For his contribution to science and education, he was awarded the Order of �Kurmet� (=�Honour�).
The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the

family, relatives and friends of Esmuhanbet Saidakhmetovich Smailov.
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BARRIER COMPOSED OF PERFORATED RESONATORS
AND BOUNDARY CONDITIONS

I.Y. Popov, E.S. Trifanova, A.S. Bagmutov, I.V. Blinova
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Abstract. We consider the Laplace operator with the Neumann boundary condition in a two-
dimensional domain divided by a barrier composed of many small Helmholtz resonators coupled
with the both parts of the domain through small windows of diameter 2a. The main terms of the
asymptotic expansions in a of the eigenvalues and eigenfunctions are considered in the case in which
the number of the Helmholtz resonators tends to in�nity. It is shown that such a homogenization
procedure leads to some energy-dependent boundary condition in the limit. We use the method of
matching the asymptotic expansions of boundary value problem solutions.

DOI: https://doi.org/10.32523/2077-9879-2024-15-3-68-76

1 Introduction

Construction of unusual boundary conditions, particularly, energy-dependent (see, e.g., [2]), is im-
portant for many physical applications. A possible way for doing this is as follows. Let us take a
resonator with the boundary composed of many small resonators coupling to the main cavity. After
performing the limiting procedure when the number of these small resonators tends to in�nity one ob-
tains the system with a boundary condition as a result of homogenization. The problem of such type
was considered in [7]. Later it was investigated in the framework of the model of point-like windows
[16]. A number of works were devoted to the problem of homogenization [3, 4, 5, 6, 11, 20, 23]. As for
physical applications, the additional interest was recently excited by the problem of metamaterials
creation [13, 20, 12, 15].

In the present paper, we consider the two-dimensional system of two resonators Ω+ and Ω−

separated by a barrier composed of N identical small resonators ΩN coupled to each big resonator
through small windows of width 2a. The geometry of the domain is shown in Fig. 1a.

We consider the asymptotics of an eigenvalue and an eigenfunction close to some eigenvalue of Ω−.
We use the method of matching the asymptotic expansions of boundary value problems [10, 9, 14, 22,
18, 8]. Brie�y speaking, the scheme is as follows. We construct to circles of radii

√
a,
√

2a centered
at the center of each window (see Fig. 1b). One constructs the external asymptotic expansion in the
exterior of each small circle and the internal asymptotic expansion in the interior of each larger circle.
In the domain between the two circles we make matching of the asymptotic expansions. We obtain
the main terms of the asymptotic expansion of the eigenvalue and the corresponding eigenfunction.
We construct formal asymptotic expansion. The justi�cation of the matching method is, e.g., in [9].

The next step is performing the limiting procedure as N → ∞. We show that the limit of
the eigenfunction satis�es the integral equation at the boundary which corresponds to some energy-
dependent boundary condition analogous to delta-potential supported by line in R.
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a b

Figure 1: The geometry of the system: a � the whole system; b � construction of the domains for
matching the asymptotic expansions. The Green function (G+, GN or G−) which is used in the
corresponding domain is indicated.

2 Matching of asymptotic expansions

First, let us consider the spectral problem for the Neumann Laplacian in Ω = Ω+ ∪ΩN ∪Ω−, i.e. we
deal with the following boundary problem

∆u+ k2u = 0,
∂u

∂n
|∂Ω = 0, (2.1)

where ∂Ω is the domain boundary.

The Green functions for the upper (G+), intermediate (GN) and the lower (G−) resonators with
the Neumann boundary condition can be expressed using the corresponding eigenfunctions:

G+(X,X ′, k) =
∞∑
n=0

∞∑
m=0

4

ld+

cos(πnx
l

) cos(πnx
′

l
) cos(πmy

d+
) cos(πmy

′

d+
)(

k2 − π2n2

l2
− π2m2

d2
+

)
(δnm + 1)

, (2.2)

GN(X,X ′, k) =
∞∑
n=0

∞∑
m=0

4N2

l2
cos(πnNx

l
) cos(πnNx

′

l
) cos(πmNy

l
) cos(πmNy

′

l
)(

k2 − π2N2

l2
(n2 +m2)

)
(δnm + 1)

, (2.3)

G−(X,X ′, k) =
∞∑
n=0

∞∑
m=0

4

ld−

cos(πnx
l

) cos(πnx
′

l
) cos(πmy

d−
) cos(πmy

′

d−
)(

k2 − π2n2

l2
− π2m2

d2
−

)
(δnm + 1)

, (2.4)

where X = (x, y), X ′ = (x′, y′), δnm is the Kronecker symbol, (δnm = 1 for n2 +m2 = 0, otherwise
δnm = 0).

We will investigate the asymptotics in the small parameter a of the eigenvalues of the correspond-
ing operator in the case in which there are small coupling windows (of width 2a) connecting ΩN with
Ω− and Ω+. Naturally, we pose the Meixner condition at the windows edges. Let the considered
eigenvalue k2 be close to the following eigenvalue (λ11) of the lower resonator: k

2 ≈ λ11 = π2

l2
+ π2

d2
−
.
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We assume the following ansatz for the asymptotics:

γa := k2
a −

π2

l2
− π2

d2
−

= τ1 ln−1 a+ τ2 ln−2 a+ o(ln−2 a), a→ 0 + . (2.5)

In such a case, the term n = m = 1 in (2.4) has a singularity.
To �nd the coe�cients of asymptotic expansion (2.5), we use the conventional scheme of matching

the asymptotic expansions of boundary value problems (see, e.g., [10, 9, 14, 22, 18, 8, 17]. Brie�y
speaking, it is as follows. Let the coupling windows be centered at points (2jl+1

2N
, 0), (2jl+1

2N
, l
N

), j =

0, ...N − 1. For each point, let us form two circles of radii
√
a and

√
2a centered at these points (see

Fig. 1b). One constructs the internal asymptotic expansion of the solution inside the larger circle
and the external asymptotic expansion of the solution outside the smaller circle. Correspondingly,
in the ring between the two circles one has two asymptotic expansions. The proper expansion is
obtained by matching of these two expansions in each ring.

We search a solution to (2.1) near the i-th coupling window in the following form:
Near the line y = l/N we have ψ2(x):

ψ+
2 (x, l

N
) = −γa

∑N
j=1 βjG

+((x, l
N

), (xj,
l
N

), k); x ∈ Ω+,

ψ̃2(x), matching domain,

ψN2 = γa

[
αiG

N((x, l
N

), (xi, 0), k) + βiG
N((x, l

N
), (xi,

l
N

), k)
]
, x ∈ ΩN ;

(2.6)

near the line y = 0, ψ1(x):
ψN1 = γa

[
αiG

N((x, 0), (xi, 0), k) + βiG
N((x, 0), (xi,

l
N

), k)
]
, x ∈ ΩN ,

ψ̃1(x) matching domain,

ψ+
1 (x, 0) = −γa

∑N
j=1 αjG

−((x, 0), (xj, 0), k); x ∈ Ω−.

(2.7)

The asymptotics of the Green functions near the coupling windows are as follows (here ξ = x−xi
a
).

We have two small parameters: the width of window a and the distance between the neighbor
windows centers ε. Correspondingly, one has the following asymptotics.

Near the line y = l/N :

G+
(

(x,
l

N
), (xi,

l

N
), ka

)
= − 1

π
ln a+ g+

1 (x)− 1

π
ln |ξ|, a→ 0; (2.8)

G+
(

(x,
l

N
), (xi,

l

N
), ka

)
= − 1

π
ln ε+ h+(x)− 1

π
ln |ξ|, ε→ 0; (2.9)

GN
(

(x,
l

N
), (xi,

l

N
), ka

)
= − 1

π
ln a+ gN2 (x)− 1

π
ln |ξ|, a→ 0; (2.10)

GN
(

(x,
l

N
), (xi, 0), ka

)
= − 1

π
ln ε+ gN3 (x)− 1

π
ln |ξ|, ε→ 0; (2.11)

near the line y = 0:

G−
(

(x, 0), (xi, 0), ka

)
= − 1

π
ln a+

4

ld−

cos(πx
l

) cos(πxi
l

)

k2 − π2

l2
− π2

d2
−

+ g−4 (x)− 1

π
ln |ξ|, a→ 0; (2.12)

G−
(

(x, 0), (xi, 0), ka

)
= − 1

π
ln ε+

4

ld−

cos(πx
l

) cos(πxi
l

)

k2 − π2

l2
− π2

d2
−

+ h−(x)− 1

π
ln |ξ|, ε→ 0; (2.13)
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GN
(

(x, 0), (xi, 0), ka

)
= − 1

π
ln a+ gN5 (x)− 1

π
ln |ξ|, a→ 0; (2.14)

GN
(

(x, 0), (xi,
l

N
), ka

)
= − 1

π
ln ε+ gN6 (x)− 1

π
ln |ξ|, ε→ 0. (2.15)

Here g+
1 , h

+, gN2,3, g
−
4 , h

−, gN5,6 are regular functions in the corresponding domains.
Let us assume that there is a relation between the small parameters:

ε = maδ, ln ε = δ ln a+ const, δ ∈ (0, 1). (2.16)

Taking equal terms of zero order of ψ2(x) on the line y = l/N near the i-th window, one obtains
the following relation

−
[
βi
(
− τ1

π

)
+
∑
j 6=i

βj
(
− δτ1

π

)]
= αi

(
− δτ1

π

)
+ βi

(
− τ1

π

)
, (2.17)

or
δαi + 2βi + δ

∑
j 6=i

βj = 0. (2.18)

The analogous operation with zero order terms of ψ1(x) on the line y = 0 gives one the relation:

αi
(
− τ1

π

)
+ βi

(
− δτ1

π

)
= −αi

[
− τ1

π
+ 4

ld−
cos2(πxi

l
)
]
−∑

j 6=i αj

[
− δτ1

π
+ 4

ld−
cos(

πxj
l

) cos(πxi
l

)
] (2.19)

or
αi

[
cos2(πxi

l
)− τ1ld−

2π

]
+∑

j 6=i αj

[
cos(πxi

l
) cos(

πxj
l

)− δτ1ld−
4π

]
− βi · τ1ld−4π

= 0.
(2.20)

Let us denote for brevity

b =
τ1ld−

4π
, x̃i =

πxi
l
. (2.21)

Then
αi

[
cos2(x̃i)− 2b] +

∑
j 6=i

αj

[
cos(x̃i) cos(x̃j)− δb

]
− δbβi = 0. (2.22)

Incorporating (2.18) and (2.22), we come to the following theorem.

Theorem 2.1. If ε = maδ, δ ∈ (0, 1), then matching of terms of zero order in asymptotic ex-
pansion of a solution to (2.1) leads to the following system of equations for the coe�cients αi, βi of
representations (2.7), (2.6):



cos2 x̃1 − 2b cos x̃1 cos x̃2 − δb ... cos x̃1 cos x̃N − δb −δb 0 ... 0
cos x̃2 cos x̃1 − δb cos2 x̃2 − 2b ... cos x̃2 cos x̃N − δb 0 −δb ... 0

... ... ... ... 0 ... ... 0
cos x̃N cos x̃1 − δb cos x̃N cos x̃2 − δb ... cos2 x̃N − 2b 0 0 ... −δb

δ 0 ... 0 2 δ ... δ
0 δ ... 0 δ 2 ... δ
... ... ... ... δ δ ... δ
0 0 ... δ δ δ ... 2





α1

α2
...
αN
β1

β2
...
βN


= 0.

(2.23)
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A necessary and su�cient condition for the existence of non-trivial solutions to (2.23) is vanishing
of the system determinant. The determinant can be exactly calculated [19]. This gives one the
expression for b:

b =
N

8
· 2− δ

1− δ
. (2.24)

Taking into account (2.21), one obtains the expression for τ1. This is resulted in the following
theorem.

Theorem 2.2. If ε = maδ, δ ∈ (0, 1), then the coe�cient τ1 of the main term of asymptotic
expansion (2.5) of the eigenvalue close to π2

l2
+ π2

d2
−
is as follows:

τ1 =
πN

2ld−
· 2− δ

1− δ
. (2.25)

3 Integral equation

Let us consider the limiting case N → ∞. Our goal is obtaining the integral equation for the limit
of the eigenfunction corresponding to eigenvalue k2

a.
Using asymptotics of the Green functions (2.8), (2.9), (2.12), (2.13) and expansion (2.5), one can

obtain the asymptotic expansion for the eigenfunction at the upper and lower sides of the barrier:

ψ−1 (xi, 0) = αi

(τ1

π
− 4

ld−
cos2 xi

)
+
∑
j 6=i

αj

(τ1

π
δ − 4

ld−
cosxi cosxj

)
+ o(1), (3.1)

ψ+
2 (xi,

l

N
) =

τ1

π
βi +

τ1

π
δ
∑
j 6=i

βj + o(1). (3.2)

It is convenient to return from τ1 to b: τ1 = 4π
ld−
b. Then, one rewrites the equations:

− ld−
4
ψ−1 (xi, 0) = αi(cos2 xi − b) +

∑
j 6=i

αj(cosxi cosxj − δb) + o(1), (3.3)

ld−
4b
ψ+

2 (xi,
l

N
) = βi + δ

∑
j 6=i

βj + o(1). (3.4)

Let us join (2.18), (2.22), (3.3) and (3.4) into the system:
δαi + 2βi + δ

∑
j 6=i βj = 0,

αi(cos2(xi)− 2b)− δbβi +
∑

j 6=i αj(cosxi cosxj − δb) = 0,

αi(cos2 xi − b) +
∑

j 6=i αj(cosxi cosxj − δb) = − ld−
4
ψ−1 (xi, 0),

βi + δ
∑

j 6=i βj = ld−
4b
ψ+

2 (xi,
l
N

).

(3.5)

Solving (3.5) with respect to αi and βi, one obtains:

αi =
ld−

4(1− δ2)b

[
δψ+

2 (xi,
l

N
)− ψ−1 (xi, 0)

]
, (3.6)

βi =
ld−

4(1− δ2)b

[
δψ−1 (xi, 0)− ψ+

2 (xi,
l

N
)
]
. (3.7)

Note that if one poses ψ−1 (xi, 0) = ψ+
2 (xi,

l
N

) then αi = βi.



Barrier composed of perforated resonators and boundary condition 73

Let us substitute the obtained expressions in (2.6) and (2.7), summarize them and use expression
(2.24) for b. Then one obtains

ψ−1 (x, 0) + ψ+
2 (x,

l

N
) =

2d−
(1 + δ)(2− δ)

γa×

N∑
i=1

l

N

[
G−(x, xi)ψ

−
1 (xi, 0) +G+(x, xi)ψ

+
2 (xi,

l

N
)
]
+

l

N
δ
[
G−(x, xi)ψ

+
2 (xi,

l

N
) +G+(x, xi)ψ

−
1 (xi, 0)

]
. (3.8)

We assume that ψ−1 (x, 0) = ψ+
2 (x, l

N
) = ψ(x). It leads to simplifying the expression:

2ψ(x) =
2d−(1− δ)

(1 + δ)(2− δ)
γa

N∑
i=1

l

N

(
G−(x, xi) +G+(x, xi)

)
ψ(xi). (3.9)

One can see that the sum in the right hand side is the integral sum which turns in the integral over
Γ, i.e. over segment [0, l] in our case. Correspondingly, we come to the integral equation. As a result,
we obtain the following theorem.

Theorem 3.1. If ε = maδ, δ ∈ (0, 1), then the eigenfunction corresponding to the eigenvalue close
to π2

l2
+ π2

d2
−
tends as N →∞ to the function satisfying the following integral equation:

ψ(x) =
d−(1− δ)

(1 + δ)(2− δ)
γa

l∫
0

(
G−(x, x′, ka) +G+(x, x′, ka)

)
ψ(x′)dx′. (3.10)

4 Boundary condition and integral equation

After performing the limiting procedure N →∞, one comes to a rectangle Ω+ ∪ Ω− divided by line
Γ = {(x, y), y = 0}. Let us consider the following boundary problem for u = u(x, y):

∆u+ k2u = 0, (x, y) ∈ Ω+ ∪ Ω−,
∂u
∂n

∣∣∣
+

= α
2
u
∣∣∣
Γ
, ∂u

∂n

∣∣∣
−

= α
2
u
∣∣∣
Γ
, ∂u

∂n

∣∣∣
∂Ω±\Γ

= 0,

u(x, 0+) = u(x, 0−).

(4.1)

Here n is the inward normal for the corresponding domain.
Remark. Note that boundary conditions (4.1) on Γ correspond to the jump of the derivative at Γ:

∂u

∂y

∣∣∣
+
− ∂u

∂y

∣∣∣
−

= αu
∣∣∣
Γ
,

i.e. to 1D delta-potential at y = 0 in the transverse direction.

Theorem 4.1. A solution u to boundary problem (4.1) satis�es the following integral equation:

u(x) =
α

2

∫
Γ

(
G−(x, x′, ka) +G+(x, x′, ka)

)
u(x′)dx′, x′ ∈ Γ. (4.2)
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Proof. Let us multiply the normal derivative of u by the Green function for the Neumann Laplacian
G±((x, y), (x′, y′), k) in Ω± and integrate over the boundary of ∂Ω− ∪ ∂Ω+. Due to the properties of
the Green function, one obtains the value of u in Ω±

u(x) =

∫
∂Ω±

G±(x, x′, ka)
∂u

∂n
(x′)dx′, x ∈ Ω±. (4.3)

Note that ∂u
∂n

∣∣∣
∂Ω±\Γ

= 0. Correspondingly, only the integral over Γ is non-zero in the right hand side

of (4.3). Considering the limiting value of u at ∂Ω± and taking into account boundary conditions
(4.1), one comes to the following integral equation:

u(x) =
α

2

∫
Γ

(
G−(x, x′, ka) +G+(x, x′, ka)

)
u(x′)dx′, x′ ∈ Γ. (4.4)

One can see that equation (4.4) coincides with equation (3.10) if

α = 2
d−(1− δ)

(1 + δ)(2− δ)
γa.

Remark. Numerical results for resonator with a boundary composed of many Helmholtz resonators
[1] show that the ratio of the eigenfunction normal derivative and the eigenfunction value stabilizes
near a value depending on energy but independent of the point position at the boundary. It is in
agreement with the results obtained above.
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