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YESMUKHANBET SAIDAKHMETOVICH SMAILOV

Doctor of physical and mathematical sciences, Professor Smailov Esmuhan-
bet Saidakhmetovich passed away on May 24, 2024, at the age of 78 years.

Esmuhanbet Saidakhmetovich was well known to the scienti�c community
as a high quali�ed specialist in science and education, and an outstanding
organizer. Fundamental scienti�c articles and textbooks written in various
�elds of the theory of functions of several variables and functional analysis,
the theory of approximation of functions, embedding theorems, and harmonic
analysis are a signi�cant contribution to the development of mathematics.

E.S. Smailov was born on October 18, 1946, in the village of Kyzyl Kesik,
Aksuat district, Semipalatinsk region. In 1963, he graduated from high school
with a silver medal, and in the same year he entered the Faculty of Mechanics

and Mathematics of the Kazakh State University (Almaty) named after Kirov (now named after Al-
Farabi). In 1971 he graduated from graduate school at the Institute of Mathematics and Mechanics.

He defended his PhD thesis in 1973 (supervisor was K.Zh. Nauryzbaev) and defended his doctoral
thesis �Fourier multipliers, embedding theorems and related topics� in 1997. In 1993 he was awarded
the academic title of professor.

E.S. Smailov since 1972 worked at the Karaganda State University named after E.A. Buketov as
an associate professor (1972-1978), the head of the department of mathematical analysis (1978-1986,
1990-2000), the dean of the Faculty of Mathematics (1983-1987) and was the director of the Institute
of Applied Mathematics of the Ministry of Education and Science of the Republic of Kazakhstan in
Karaganda (2004 -2018).

Professor Smailov was one of the leading experts in the theory of functions and functional analysis
and a major organizer of science in the Republic of Kazakhstan. He had a great in�uence on the
formation of the Mathematical Faculty of the Karaganda State University named after E.A. Buketov
and he made a signi�cant contribution to the development of mathematics in Central Kazakhstan.
Due to the e�orts of Y.S. Smailov, in Karaganda an actively operating Mathematical School on the
function theory was established, which is well known in Kazakhstan and abroad.

He published more than 150 scienti�c papers and 2 monographs. Under his scienti�c advice, 4
doctoral and 10 candidate theses were defended.

In 1999 the American Biographical Institute declared professor Smailov �Man of the Year� and
published his biography in the �Biographical encyclopedia of professional leaders of the Millennium�.

For his contribution to science and education, he was awarded the Order of �Kurmet� (=�Honour�).
The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the

family, relatives and friends of Esmuhanbet Saidakhmetovich Smailov.
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1 Introduction

At a �rst glance the title of the paper is not correct. Pfa�ans usually are connected with determinants
of skew-symmetric matrices. If ai,j = −aj,i, for any 1 ≤ i, j ≤ 2n, then the determinant of a skew-
symmetric matrix A = (ai,j) is a complete square and the square root of the determinant is a pfa�an,
so

detA = (pf2nA)2.

In fact, the pfa�an polynomial is de�ned by using not the whole matrix A. To construct pfa�ans it
su�ces to know the upper triangular part of A.

The connection between determinants of skew-symmetric matrices and pfa�ans was �rst noted
in [2]. For details of pfa�an constructions see also [1] and [3].

Let S2n be set the of all permutations of the set [2n] = {1, 2, . . . , 2n} and S2n,pf its subset of all
permutations called Pfa� permutations,

S2n,pf = {σ = (i1, j1, . . . , in, jn) ∈ S2n|i1 < i2 < · · · < in, is < js, 1 ≤ s ≤ n}.

For any σ ∈ S2n,pf we de�ne Pfa� aggregates aσ by

aσ = ai1,j1 · · · ain,jn .

We see that the Pfa� aggregates are de�ned for any triangular array Ā = (ai,j)1≤i<j≤2n. Then the
pfa�an of order 2n is the polynomial de�ned as the alternating sum of Pfa� aggregates

pfn =
∑

σ∈S2n,pf

sign σ aσ.

Here sign σ is the signature of the permutation σ,

sign σ = (−1)k(σ),

where k(σ) is the number of inversions

k(σ) = |{ (i, j) | σ(i) > σ(j), 1 ≤ i < j ≤ n }|.
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Suppose now that {ai,j, 1 ≤ i, j ≤ 2n} are n2 generators and endow the space of polynomials
K[ai,j|1 ≤ i, j ≤ n] with the structure of S2n-module by the following action on generators

σai,j = aσ−1(i),σ−1(j).

In particular, if A = (ai,j) has a skew-symmetric set of generators, ai,j = −aj,i then this action induces
the structure of S2n-module on the space of polynomials with

(
n
2

)
generators K[ai,j|1 ≤ i < j ≤ n].

Similarly, we obtain one more structure of S2n-module on this space if generators are symmetric,
ai,j = aj,i. In both cases natural questions appear about invariants under these actions of permutation
groups. In particular, we can ask about symmetry and skew-symmetry groups of a given polynomial
f ∈ K[ai,j],

Sym f = {σ ∈ Sn|σ f = f},

SSym f = {σ ∈ Sn|σ f = sign σ f}.

For example, the determinant polynomial detA for A = (aij)1≤i,j≤n is a polynomial of degree n
and its symmetry group is isomorphic to Sn.

Another example: if a matrix A is skew-symmetric, then the pfa�an polynomial pf2n = pf2nA is
a polynomial of degree n and

SSym pf2n
∼= S2n.

Let the characteristic of the main �eld be p 6= 2 and

g2n(x1, . . . , x2n) = (x1 − x2)(x2 − x3) · · · (x2n−1 − x2n)(x2n − x1).

Theorem 1.1. Let Ā = (ai,j)1≤i<j≤2n be the triangular array with components ai,j = (xi − xj)2 for
1 ≤ i < j ≤ 2n. Then

pf2n Ā = −(−2)n−1 g2n.

Theorem 1.2. The symmetry group of the polynomial g2n is isomorphic to the dihedral group D2n.

Based on these two results our main result is as follows.

Theorem 1.3. If generators ai,j are symmetric, ai,j = aj,i, then the symmetry group of the pfa�an
polynomial pf2n = pf2nĀ is isomorphic to the dihedral group

Sym pf2n
∼= D2n.

Recall that the dihedral group Dn is the symmetry group of a regular n-gon. It can be generated
by n rotations and n re�ections,

Dn = 〈a, b | an = e, b2 = e, bab = an−1 〉.

In our paper we use the following notation for permutations. The standard notation for a per-
mutation is a two row notation

σ =

(
1 2 · · · n
i1 i2 · · · in

)
∈ Sn.

The one row notation of σ is i1i2 · · · in. If σ is a cycle on the set i1, i2, . . . , ik, i.e., σ(i1) = i2, σ(i2) =
i3, . . . , σ(ik−1) = ik, σ(ik) = i1, then we will write σ = (i1, i2, . . . , ik). For example,

σ =

(
1 2 3 4 5 6 7 8
3 5 4 1 6 2 8 7

)
∈ S8 ⇒ σ = 35416287 = (1, 3, 4)(2, 5, 6)(7, 8).
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2 Pfa�an of (xi − xj)2

If A = (ai,j) is skew-symmetric, then

detA = (pf2nĀ)2.

If a matrix A is not skew-symmetric, say if A is symmetric, then the determinant polynomial detA
and the pfa�an polynomial pf2n(Ā) have no such connection. For example, if An = ((xi−xj)2)1≤i,j≤n,
then

detAn =


−(x1 − x2)4, if n = 2,
2((x2 − x2)(x2 − x3)(x3 − x1))2, if n = 3,
0, otherwise,

while, by Theorem 1.1, pfa�ans are non-trivial for any even n.

Proof of Theorem 1.1. Let ψ(x, y) = (x − y)2 and ai,j = ψ(xi, xj) = (xi − xj)
2. Note that the

pfa�an pf2nA is a polynomial in the variables x1, . . . , x2n. We have to prove that

pf2n = −(−2)n−1g2n.

Since ψ(x, x) = 0, the polynomial pf2n(x1, . . . , xs, xs+1, . . . , x2n) is divisable by xs− xs+1 for any
1 ≤ s ≤ 2n. Here we set x2n+1 = x1. Note that the degree of the polynomial g2n(x1, . . . , x2n) is 2n
and the degree of pf2n((xi − xj)2) is also 2n. Therefore,

pf2n(x1, x2, . . . , x2n) = c g2n(x1, x2, . . . , x2n),

for some constant c. Take xi = i. It is easy to see that

g2n(1, 2, . . . , 2n) = (1− 2)(2− 3) · · · (2n− 1− 2n)(2n− 1) = −(2n− 1).

It remains to prove that

pf2n(1, 2, . . . , 2n) = (−2)n−1(2n− 1) (2.1)

to obtain that c = −(−2)n−1.
By induction on n we will prove that

pf2n(x1, x2, . . . , x2n) = −(−2)n−1g2n(x1, x2, . . . , x2n).

For n = 1 our statement is evident:

pf2Ā = a1,2 = −(x1 − x2)(x2 − x1).

Suppose that our statement is true for n− 1,

pf2n−2Ā = −(−2)n−2(x1 − x2)(x2 − x3) · · · (x2n−3 − x2n−2)(x2n−2 − x1).

Let us prove it for n.
Let us decompose the pfa�an along the �rst row

pf2nĀ =
2n∑
i=2

(−1)ia1,i pf2n−2A1̂,̂i.

We see that
pf2nĀ = R1 +R2 +R3,
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where

R1 = a1,2 pf2nĀ1̂2̂,

R2 =
2n−1∑
i=3

(−1)ia1,i pf2n−2Ā1̂,̂i,

R3 = a1,2n pf2n−2Ā1̂,2̂n.

By the inductive suggestion

R1 = −(−2)n−2(x1 − x2)2(x3 − x4) · · · (x2n−1 − x2n)(x2n − x3).

Hence,

R1|xi→i = −(−2)n−2(1− 2)2(3− 4) · · · (2n− 1− 2n)(2n− 3) = (−2)n−2(2n− 3),

R3|xi→i = −(−2)n−2(1− 2n)2(2− 3)(3− 4) · · · (2n− 2− 2n+ 1)(2n− 1− 2) =

−(−2)n−2(2n− 1)2(−1)2n−3(2n− 3) = (−2)n−2(2n− 3)(2n− 1)2.

Further, if 2 < i < 2n, then

(−1)ia1,i pf2nĀ1̂,̂i|xj→j =

(−1)i(−(−2)n−2)(x1 − xi)2(x2 − x3)(x3 − x4) · · · (xi−1 − xi+1)(xi+1 − xi+2)× · · ·

×(x2n−1 − x2n)(x2n − x2)|xj→j =

(−1)i(−(−2)n−2)(i− 1)2(−2)(2n− 2) = (−1)i(i− 1)2(−2)n−24(n− 1).

Hence,

R2|xi→i = −(−2)n−2

2n−1∑
i=3

−(−1)i(i− 1)24(n− 1) = (−2)n−24(n− 1)(2n2 − 3n+ 2).

So, we see that (2.1) is true for n,

f2n(1, 2, . . . , 2n) = R1 +R2 +R3 =

(−2)n−2[(2n− 3)− 4(n− 1)(2n2 − 3n+ 2) + (2n− 3)(2n− 1)2] =

−(−2)n−22(2n− 1) = (−2)n−1(2n− 1).
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3 Symmetry group of the polynomial g2n

Proof of Theorem 1.2. First, we check that any dihedral permutation σ ∈ D2n is a symmetry of
the polynomial g2n.

Let us take the realization of a dihedral group as the symmetry group of the regular n-gon whose
vertices are clockwise labelled by 1, 2, . . . , 2n. Elements of a dihedral group might have:

I. one up-run: σ =

(
1 2 · · · 2n
1 2 · · · 2n

)
,

II. one down-run: σ =

(
1 2 · · · 2n

2n 2n− 1 · · · 1

)
,

III. two up-run

σ(1) = s < σ(2) = s+ 1 < · · · < σ(2n− s+ 1) = 2n, σ(2n− s+ 2) = 1 < · · · < σ(2n) = s− 1,

for some 1 < s ≤ 2n,

IV. or two down-run

σ(1) = s > σ(2) = s− 1 > · · · > σ(s) = 1, σ(s+ 1) = 2n > · · · > σ(2n) = s+ 1.

for some 1 ≤ s < 2n.

In cases I and II our statement is evident.
In case III we have

g2n(xσ(1), . . . , xσ(2n)) =

(xs − xs+1)(xs+1 − xs+2) · · · (x2n−1 − x2n)(x2n − x1) (x1 − x2) · · · (xs−2 − xs−1)(xs−1 − xs) =

(x1 − x2) · · · (x2n−1 − x2n)(x2n − x1) = g2n(x1, . . . , x2n).

In case IV
g2n(xσ(1), . . . , xσ(2n)) =

(xs − xs−1)(xs−1 − xs−2) · · · (x2 − x1)(x1 − x2n) (x2n − x2n−1) · · · (xs+1 − xs) =

(−1)s(xs−1 − xs)(xs−2 − xs−1) · · · (x1 − x2)(x2n − x1) (−1)2n−s(x2n−1 − x2n) · · · (xs − xs+1) =

(x1 − x2) · · · (x2n−1 − x2n) = g2n(x1, . . . , x2n).

So,
D2n ⊆ Sym(g2n).

Now we will prove that any σ ∈ Sym(g2n) is a dihedral permutation.
Let M2n = {1, 2, . . . , 2n}. For i, j ∈ M2n we say that they are connected, if |i − j| = 1 or

|i − j| = 2n − 1. So, if i < j < 2n, then i, j are connected i� j = i + 1. If j = 2n, and i, j are
connected, then i = 2n− 1 or i = 1. It is clear that this relation is symmetric: i, j are connected i�
j, i are connected. So, i, j ∈M2n are connected, if |i− j| = 1 or (i, j) = (1, 2n) or (i, j) = (2n, 1).

Note that the polynomial g2n(x1, . . . , x2n) is a product of polynomials xi − xj, i < j, where i and
j are connected. Therefore, any symmetry σ ∈ Sym(g2n) has the following property: if i and j are
connected, then σ(i) and σ(j) are also connected.
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Let σ ∈ Sym(g2n) and σ(1) = i1. The following possibilities may arise.
Case A. Suppose that σ(1) = i1 < σ(2). Take k > 1, such that σ(k − 1) < σ(k) and σ(k + 1) <

σ(k). Since σ(1) and σ(2) are connected and σ(2) > σ(1), then σ(2) = i1 + 1. By similar arguments,

σ(3) = i1 + 2, . . . , σ(k) = i1 + k − 1,

but σ(k+1) 6= i1 +k. Such situation is possible only in one case: i1 = 2n− k+ 1 and σ(k+ 1) = 1.
So,

σ(k + 1) = 1, σ(k + 2) = 2, . . . , σ(2n) = i1 − 1.

In other words,
σ = i1 (i1 + 1) . . . (2n) 1 2 . . . (i1 − 1).

We obtained a permutation σ that has exactly one up-run if i1 = 1, or two up-runs if i1 > 1. So, we
obtain permutations of type I or III. Therefore, σ ∈ D2n.

Case B. Now consider the case σ(1) = i1 > σ(2). Take k > 1, such that σ(k − 1) > σ(k) and
σ(k + 1) > σ(k).

Since σ(1) and σ(2) are connected and σ(2) < σ(1), then σ(2) = i1 − 1. By similar arguments,

σ(3) = i1 − 2, . . . , σ(k) = i1 − k + 1.

but σ(k + 1) 6= i1 − k. Such situation is possible only in one case: i1 = k, σ(k + 1) = 2n. So,

σ(k + 1) = 2n, σ(k + 2) = 2n− 1, . . . , σ(2n) = i1 + 1.

In other words,
σ = i1 (i1 − 1) . . . 1 2n (2n− 1) . . . (i1 + 1).

We obtained a permutation σ that has exactly one down-run if i1 = 2n or two down-runs if i1 < 2n.
In other words we obtained a permutations of type II or IV. Thus, σ ∈ D2n.

4 Proof of Theorem 1.3

First we prove that D2n ⊆ Sym pf2n.

Lemma 4.1. If A = (ai,j) is symmetric, then the pfa�an is invariant under action of the dihedral
group D2n,

µ(pf2n) = pf2n

for any µ ∈ D2n.

Proof. The dihedral group D2n has order 4n and is generated by the cyclic permutation

σ =

(
1 2 3 · · · 2n− 1 2n
2 3 4 · · · 2n 1

)
and re�ection

τ =

(
1 2 3 · · · n n+ 1 n+ 2 · · · 2n− 1 2n
1 2n 2n− 1 · · · n+ 2 n+ 1 n · · · 3 2

)
.

To prove our lemma it su�ces to establish that

σ(pf2n) = pf2n,
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τ(pf2n) = pf2n,

if ai,j = aj,i, for any 1 ≤ i < j ≤ 2n.
Recall that α = (i1, i2, . . . , i2n−1, i2n) is a Pfa� permutation, if

i1 < i3 < i5 < · · · < i2n−1,

i1 < i2, i3 < i4, . . . , i2n−1 < i2n.

Let S2n,pf be set of all Pfa� permutations. Below we use the one-line notation for permutations. We
write α = (i1, i2, . . . , i2n−1, i2n) instead of

α =

(
1 2 · · · 2n− 1 2n
i1 i2 . . . i2n−1 i2n

)
.

Note that

τ(i) + i =

{
2n+ 2, if 1 < i ≤ 2n,
2 if i = 1.

Set
ī = 2n+ 2− i,

if i > 1.
Now we study the action of the generator σ on pfa�an polynomials, when generators are sym-

metric, ai,j = aj,i, for any 1 ≤ i, j ≤ 2n. Let α = (1, i2, i3, . . . , i2n) ∈ S2n,pf , and l = α−1(2n). Then l
is even, l = 2k, and

σ(aα) = σ(ai1,i2 · · · ai2n−1i2n) =

ai1+1,i2+1 · · · ai2k−3+1,i2k−2+1ai2k−1+1,1ai2k+1+1,i2k+2+1 · · · ai2n−1+1,i2n+1 = aα̃,

where
α̃ = (1, i2k−1 + 1, i1 + 1, i2 + 1, . . . , i2k−3 + 1, i2k−2 + 1, i2k+1 + 1, i2k+2 + 1,

. . . , i2n−1 + 1, i2n + 1).

Here we replace ai2k−1+1,1 by a1,i2k−1+1. We see that the map

S2n,pf → S2n,pf , α 7→ α̃

is a bijection and
sign α̃ = sign α.

Hence,

σ(pf2n) =
∑

α∈S2n,pf

signα σ(aα) =
∑

α∈S2n,pf

sign α̃ aα̃ = pf2n.

So, we have estabilshed that the pfa�an is invariant under action σ ∈ D2n.

Let us study the action of the generator τ on pfa�an polynomials.
We have

τ : aα 7→ a1, i2
ai3, i4 · · · ai2n−1, i2n

.

Since
i2k−1 > i2k, 1 < k ≤ n,

we have to replace ai2k−1, i2k
by ai2k, i2k−1

. Further,

i3 > i5 > · · · > i2n−1 > 1.
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Therefore,
τ : aα 7→ aᾱ,

where
aᾱ = a1, i2

ai2n, i2n−1
ai2n−2, i2n−3

· · · ai4, i3 .

We see that
sign α = sign ᾱ.

Note that the map
S2n,pf → S2n,pf , α 7→ ᾱ,

is a bijection. Therefore,

τ(pf2n) =
∑

α∈S2n,pf

signα τ(aα) =
∑

α∈S2n,pf

sign ᾱ aᾱ = pf2n.

So, we have proved that the pfa�an pf2n is invariant under the action of the dihedral group D2n of
order 4n, if the matrix (ai,j)1≤i,j≤2n is symmetric.
Example. Let

τ =

(
1 2 3 4
1 4 3 2

)
, µ =

(
1 2 3 4
4 3 2 1

)
.

Then
τ(pf4) = τ(a1,2a3,4 − a1,3a2,4 + a1,4a2,3) =

a1,4a3,2 − a1,3a4,2 + a1,2a4,3 =

a1,4a2,3 − a1,3a2,4 + a1,2a3,4 = pf4,

µ(pf4) = µ(a1,2a3,4 − a1,3a2,4 + a1,4a2,3) =

a4,3a2,1 − a4,2a3,1 + a4,1a3,2 =

a3,4a1,2 − a2,4a1,3 + a1,4a2,3 = pf4.

Proof of Theorem 1.3. . Let σ ∈ Sympf2n i.e.,

σ (pf2n) = pf2n

for any ai,j, such that ai,j = aj,i. In particular, σ is a symmetry of the pfa�an polynomial pf2n((xi−
xj)

2)1≤i<j≤2n. By Theorems 1.1 and 1.2 and Lemma 4.1 our theorem is valid.
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