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YESMUKHANBET SAIDAKHMETOVICH SMAILOV

Doctor of physical and mathematical sciences, Professor Smailov Esmuhan-
bet Saidakhmetovich passed away on May 24, 2024, at the age of 78 years.

Esmuhanbet Saidakhmetovich was well known to the scienti�c community
as a high quali�ed specialist in science and education, and an outstanding
organizer. Fundamental scienti�c articles and textbooks written in various
�elds of the theory of functions of several variables and functional analysis,
the theory of approximation of functions, embedding theorems, and harmonic
analysis are a signi�cant contribution to the development of mathematics.

E.S. Smailov was born on October 18, 1946, in the village of Kyzyl Kesik,
Aksuat district, Semipalatinsk region. In 1963, he graduated from high school
with a silver medal, and in the same year he entered the Faculty of Mechanics

and Mathematics of the Kazakh State University (Almaty) named after Kirov (now named after Al-
Farabi). In 1971 he graduated from graduate school at the Institute of Mathematics and Mechanics.

He defended his PhD thesis in 1973 (supervisor was K.Zh. Nauryzbaev) and defended his doctoral
thesis �Fourier multipliers, embedding theorems and related topics� in 1997. In 1993 he was awarded
the academic title of professor.

E.S. Smailov since 1972 worked at the Karaganda State University named after E.A. Buketov as
an associate professor (1972-1978), the head of the department of mathematical analysis (1978-1986,
1990-2000), the dean of the Faculty of Mathematics (1983-1987) and was the director of the Institute
of Applied Mathematics of the Ministry of Education and Science of the Republic of Kazakhstan in
Karaganda (2004 -2018).

Professor Smailov was one of the leading experts in the theory of functions and functional analysis
and a major organizer of science in the Republic of Kazakhstan. He had a great in�uence on the
formation of the Mathematical Faculty of the Karaganda State University named after E.A. Buketov
and he made a signi�cant contribution to the development of mathematics in Central Kazakhstan.
Due to the e�orts of Y.S. Smailov, in Karaganda an actively operating Mathematical School on the
function theory was established, which is well known in Kazakhstan and abroad.

He published more than 150 scienti�c papers and 2 monographs. Under his scienti�c advice, 4
doctoral and 10 candidate theses were defended.

In 1999 the American Biographical Institute declared professor Smailov �Man of the Year� and
published his biography in the �Biographical encyclopedia of professional leaders of the Millennium�.

For his contribution to science and education, he was awarded the Order of �Kurmet� (=�Honour�).
The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the

family, relatives and friends of Esmuhanbet Saidakhmetovich Smailov.
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1 Introduction

In the realm of the classical analysis, the utilization of weak Lp spaces in both harmonic analysis and
martingale theory has received signi�cant scholarly attention. These spaces have proven instrumen-
tal in various areas such as interpolation theory, rearrangement-invariant function spaces, weighted
inequalities, singular integral operators, and beyond, playing pivotal roles in advancing theoretical
frameworks and facilitating analytical investigations. For example, using the weak Lp norm, Ledoux
and Talagrand [16] conducted an investigation into the integrability properties and tail probability
behavior of p-stable random variables. Soria [19] delved into the discussion of weak-type Lorentz
space Λp,∞(ω) for 0 < p < ∞. Fe�erman and Soria [11] also addressed various properties of the
weak Hardy space H1. Weisz [23, 24] dedicated his studies to the weak atom decompositions of
martingales and martingale inequalities within weak Hardy spaces. Furthermore, Cwikel and other
scholars extensively examined the dual of weak Lp spaces (cf. [6, 7]).

Liu/Hou/Wang [17] introduced the weak version of Orlicz spaces and proved the Burkholder-
Gundy inequalities for martingales in these weak Orlicz spaces. The noncommutative version of
the weak Orlicz spaces was investigated in [1] and was utilized in the theory of noncommutative
martingales. In [3], Raikhan and the author considered the weak noncommutative Orlicz space cases
associated with arbitrary faithful normal locally �nite weights on a semi-�nite von Neumann algebra
M, and characterized the dual spaces of the noncommutative weak Orlicz-Hardy spaces.

Since the weak versions of Lp spaces and Orlicz spaces have opened new research avenues in
(noncommutative) harmonic analysis and (noncommutative) martingale theory, we are investigating
a weak version of symmetric spaces. We will apply them in the study of (noncommutative) harmonic
analysis and (noncommutative) martingale theory. Notice that for a symmetric (quasi-) Banach
space E, we de�ne the weak version of E as the usual Marcinkiewicz space MϕE associated with the
fundamental function ϕE of E. In the rearrangement-invariant Banach space case, it is the space
M(E) ([4, De�nition 2.5.2]).

The purpose of this paper is to investigate a weak version of symmetric spaces and to study some
properties of noncommutative spaces associated with the weak version of symmetric spaces.
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2 Preliminaries

Let L0(0, 1) be the set of all Lebesgue measurable almost everywhere �nite real-valued functions on
(0, 1). For f ∈ L0(0, 1) we de�ne the distribution function λ(f) of f by

λs(f) = m({ω ∈ (0, 1) : |f(ω)| > s}), s > 0

and its decreasing rearrangement µ(f) by

µt(f) = inf{s > 0 : λs(f) ≤ t}, t > 0.

If f, g ∈ L0(0, 1) and ∫ t

0

µs(f)ds ≤
∫ t

0

µs(g)ds, for all t > 0,

we say f is majorized by g, and write f 4 g.
If E is a (quasi-)Banach lattice of measurable functions on (0, 1) (with the Lebesgue measure)

and satis�es the following properties:
if f ∈ E, g ∈ L0(0, 1) and µ(g) ≤ µ(f) implies that g ∈ E and ‖g‖E ≤ ‖f‖E,

then E is called a symmetric (quasi-)Banach space on (0, 1). E is called fully symmetric if, in
addition,

for x ∈ L0(I) and y ∈ E with x � y it follows that x ∈ E and ‖x‖E ≤ ‖y‖E.
For 0 < p <∞, E(p) will denote the quasi-Banach lattice de�ned by

E(p) = {f : |f |p ∈ E},

equipped with the quasi-norm

‖f‖E(p) = ‖|f |p‖
1
p

E.

Observe that, if 0 < p, q <∞, then (E(p))(q) = E(pq). It is to be noted that, if E is a Banach space
and p > 1, then the space E(p) is a Banach space and is usually called the p-convexi�cation of E.

Let 0 < α, β <∞. If there a constant C > 0 such that for all �nite sequences (fn)n≥1 in E

‖(
∑
|fn|α)

1
α‖E ≤ C(

∑
‖fn‖αE)

1
α

(respectively, ‖(
∑
|fn|β)

1
β ‖E ≥ C−1(

∑
‖fn‖βE)

1
β ),

then E is called α-convex (respectively, β-concave). The least such constant C is called the
α-convexity (respectively, β-concavity) constant of E and is denoted by M (α)(E) (respectively,
M(β)(E)). If E is α-convex and β-concave, then E(p) is pα-convex and pβ-concave withM (pα)(E(p)) =

M (α)(E)
1
p and M(pβ)(E

(p)) = M(β)(E)
1
p (see [9, Proposition 3.1]). Therefore, if E is α-convex then

E( 1
α

) is 1-convex, so it can be renormed as a Banach lattice (see [15, Proposition 1.d.8] and [22, p.
544]).

A symmetric (quasi-)Banach space E on (0, 1) is said to have the Fatou property if for every net
(xi)i∈I in E satisfying 0 ≤ xi ↑ and supi∈I ‖xi‖E < ∞ the supremum x = supi∈I xi exists in E and
‖xi‖E ↑ ‖x‖E; We say that E has order continuous norm, if for every net (fi)i∈I in E such that fi ↓ 0,
‖fi‖E ↓ 0 holds; E is called a rearrangement invariant space if it has order continuous (quasi-)norm
or the Fatou property.

Let Ei be a symmetric (quasi-)Banach space on (0, 1), i = 1, 2. We de�ne the pointwise product
space E1 � E2 as

E1 � E2 = {f : f = f1f2, fi ∈ Ei, i = 1, 2} (2.1)
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with a functional ‖f‖E1�E2 de�ned by

‖f‖E1�E2 = inf{‖f1‖E1‖f2‖E2 : f = f1f2, fi ∈ Ei, i = 1, 2}.

If Ei is a symmetric quasi-Banach space on (0, 1), i = 1, 2, then by [3, Corollary 1], there is an
equivalent quasi-norm ‖ · ‖ such that (E1 � E2, ‖ · ‖) is a symmetric quasi-Banach space on (0, 1).

It is clear that if E is a symmetric (quasi-)Banach space on (0, 1), then for di�erent Lebesgue
measurable subsets A of (0, 1) with the same measure m(A) = t, the value of ‖χA‖ remains constant,
where χA is the characteristic function of A.

De�nition 1. Let E be a symmetric (quasi-)Banach space on (0, 1). The fundamental function ϕE
is de�ned by ϕE(t) = ‖χA‖, where t ∈ [0, 1) and A is a Lebesgue measurable subset of (0, 1) with
m(A) = t.

Note that ϕL1(0,1) = t (see [4, p. 65]). Let 0 < p < ∞. If A ⊂ (0, 1) with m(A) = t (0 ≤ t < 1),
then

ϕLp(0,1)(t) = ‖χA‖p = ‖χA‖
1
p

1 = t
1
p .

Let MϕE(0, 1) be the usual Marcinkiewicz space:

MϕE(0, 1) = {f ∈ L0(0, 1) : ‖f‖MϕE
= sup

t>0

ϕE(t)

t

∫ t

0

µs(f)ds <∞}.

De�nition 2. Let E be a symmetric (quasi-)Banach space on (0, 1). We call MϕE(0, 1) is a weak
version of E and denote it by E∞.

The classical weak Lp space Lp,∞(0, 1) (1 ≤ p < ∞) is de�ned as the set of all measurable
functions f on (0, 1) such that

‖f‖Lp,∞ = sup
t>0

t
1
pµt(f) <∞.

For p > 1, Lp,∞(0, 1) can be renormed into a Banach space. More precisely,

f 7→ sup
t>0

t−1+ 1
p

∫ t

0

µs(f)ds

gives an equivalent norm on Lp,∞(0, 1). We refer to [12] for more information about weak Lp spaces.
If E = Lp(0, 1) (1 < p <∞), then E∞ = Lp,∞(0, 1). But for 0 < p ≤ 1, if f ∈ (Lp(0, 1))∞, then

‖f‖(Lp(0,1))∞ = sup
t>0

t
1
p
−1

∫ t

0

µs(f)ds =

∫ 1

0

µs(f)ds = ‖f‖1.

Hence, (Lp(0, 1))∞ = L1(0, 1) and it is di�erent from the classical weak Lp space.
Let Φ be an N-function, we de�ne

aΦ = inf
t>0

tΦ′(t)

Φ(t)
and bΦ = sup

t>0

tΦ′(t)

Φ(t)
.

If bΦ < ∞, then the fundamental function of Orlicz space LΦ(0, 1) on (0, 1) equipped with the
Luxemburg norm, is the following

ϕLΦ(Ω)(t) = 1/Φ−1(
1

t
), t > 0,
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where the Luxemburg norm is de�ned by

‖x‖Φ = inf{λ > 0 :

∫ 1

0

Φ(
|x|
λ

)dx ≤ 1}.

Hence, if E = LΦ(0, 1) and 1 < aΦ ≤ bΦ <∞, then E∞ = LΦ,∞(0, 1).
For more details on symmetric (quasi-)Banach space and Orlicz spaces we refer to [4, 5, 9, 14,

15, 18, 21, 25].
LetM be a �nite von Neumann algebra with a normal �nite faithful trace τ (τ(1) = 1) and L0(M)

be the topological ∗-algebra of measurable operators with respect to (M, τ). For x ∈ L0(M), we
de�ne the distribution function λ(x) of x as follows:

λt(x) = τ(e(t,∞)(|x|)) for t > 0,

where e(t,∞)(|x|) is the spectral projection of |x| in the interval (t,∞). We also de�ne the generalized
singular numbers µ(x) of x as

µt(x) = inf{s > 0 : λs(x) ≤ t} for t > 0.

Recall that both functions λ(x) and µ(x) are decreasing and continuous from the right on (0,∞) (for
further information, see [10]).

For a symmetric quasi-Banach function space E on (0, 1), set

E(M) = {x ∈ L0(M) : µ(x) ∈ E};

‖x‖E = ‖µ(x)‖E, x ∈ E(M).

Recall that (E(M), ‖.‖E) is a Banach space and we call (E(M), ‖.‖E) a noncommutative symmetric
Banach space (see for reference [8, 20]).

3 Properties

If E1 and E2 are symmetric Banach spaces on (0, 1), then by [13, Theorem 2], we know that

ϕE1�E2(t) = ϕE1(t)ϕE2(t), t ≥ 0. (3.1)

We claim that if E is a symmetric (quasi-)Banach space on (0, 1) and 0 < p <∞, then

ϕE(p)(t) = ϕE(t)
1
p , t ≥ 0. (3.2)

Indeed, if A ⊂ (0, 1) with m(A) = t (0 ≤ t < 1), then

ϕE(p)(t) = ‖|χA|p‖
1
p

E = ‖χA‖
1
p

E = ϕE(t)
1
p .

Proposition 3.1. Let Ei be a symmetric (quasi-)Banach space on (0, 1) which is αi-convex for some
0 < αi <∞ (i = 1, 2). Then E1 and E2 can be equipped with equivalent quasi norms ‖ · ‖1 and ‖ · ‖2,
respectively, so that ϕE1�E2(t) = ϕE1(t)ϕE2(t), for any t ≥ 0.

Proof. Let n ∈ N such that nαi ≥ 1 (i = 1, 2). Then E
(n)
i = (E

α1)
i )(nαi) can be renormed as a

symmetric Banach space (i = 1, 2). In the following, we consider E
(n)
j with this new symmetric

norm (j = 1, 2). Using [13, Theorem 1 (iii)], we get that (E1�E2)(n) = E
(n)
1 �E

(n)
2 . Applying (3.1),

we get ϕ(E1�E2)(n)(t) = ϕ
E

(n)
1

(t)ϕ
E

(n)
2

(t), for each t ≥ 0. Hence, by (3.2), we have that

ϕ
1
n
E1�E2

(t) = ϕ
1
n
E1

(t)ϕ
1
n
E2

(t), t ≥ 0.

Thus, we obtain the desired result.
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In rest of this paper, M will always denote a �nite von Neumann algebra with a normal �nite
faithful trace τ (τ(1) = 1).

Theorem 3.1. Let Ei be a symmetric (quasi-)Banach space on (0, 1) which is αi-convex for some

0 < αi < ∞ (i = 1, 2) and 0 < a < 1. If x ∈ ((E
(a)
1 )∞)( 1

a
)(M) and y ∈ ((E

(1−a)
2 )∞)( 1

1−a )(M), then
xy ∈ (E1 � E2)∞(M) and the following H�older type inequality holds

‖xy‖(E1�E2)∞ ≤ ‖x‖((E
(a)
1 )∞)( 1

a )‖y‖
((E

(1−a)
2 )∞)

( 1
1−a ) .

Proof. Let x ∈ ((E
(a)
1 )∞)( 1

a
)(M) and y ∈ ((E

(1−a)
2 )∞)( 1

1−a )(M). By Proposition 3.1, [10, Theorem
4.2, Lemma 2.3(iv)], classical H�older inequality and (3.2), we have that

‖xy‖(E1�E2)∞ = supt>0
ϕE1�E2

(t)

t

∫ t
0
µs(xy)ds

= supt>0
ϕE1

(t)ϕE2
(t)

t

∫ t
0
µs(xy)ds

≤ supt>0
ϕE1

(t)ϕE2
(t)

t

∫ t
0
µs(x)µs(y)ds

≤ supt>0
ϕE1

(t)ϕE2
(t)

t

( ∫ t
0
µs(x)

1
ads
)a( ∫ t

0
µs(y)

1
1−ads

)1−a

≤ supt>0
ϕE1

(t)ϕE2
(t)

t

( ∫ t
0
µs(|x|

1
a )ds

)a( ∫ t
0
µs(|y|

1
1−a )ds

)1−a

= supt>0

(
ϕE1

(t)
1
a

t

∫ t
0
µs(|x|

1
a )ds

)a(ϕE2
(t)

1
1−a

t

∫ t
0
µs(|y|

1
1−a )ds

)1−a

= supt>0

(ϕ
E

(a)
1

(t)

t

∫ t
0
µs(|x|

1
a )ds

)a(ϕ
E

(1−a)
2

(t)

t

∫ t
0
µs(|y|

1
1−a )ds

)1−a

≤ supt>0

(ϕ
E

(a)
1

(t)

t

∫ t
0
µs(|x|

1
a )ds

)a
supt>0

(ϕ
E

(1−a)
2

(t)

t

∫ t
0
µs(|y|

1
1−a )ds

)1−a

= ‖|x| 1a‖a
(E

(a)
1 )∞
‖|y|

1
1−a‖(1−a)

(E
(1−a)
2 )∞

= ‖x‖
((E

(a)
1 )∞)( 1

a )‖y‖
((E

(1−a)
2 )∞)

( 1
1−a ) .

Proposition 3.2. Let E be a symmetric (quasi-)Banach space on (0, 1).

(i) If 1 ≤ p <∞, then (E∞)(p)(M) ↪→ (E(p))∞(M).

(ii) If 0 < p ≤ 1, then (E(p))∞(M) ↪→ (E∞)(p)(M).

Proof. (i) Let x ∈ (E∞)(p)(M). Using Jensen's inequality and [10, Lemma 2.3(iv)], we obtain that

‖x‖(E(p))∞ = supt>0

ϕ
E(p) (t)

t

∫ t
0
µs(x)ds

= supt>0
ϕE(t)

1
p

t

∫ t
0
µs(x)ds

=
(

supt>0 ϕE(t)(1
t

∫ t
0
µs(x)ds)p

) 1
p

≤
(

supt>0
ϕE(t)
t

∫ t
0
µs(x)pds

) 1
p

=
(

supt>0
ϕE(t)
t

∫ t
0
µs(|x|p)ds

) 1
p

= ‖|x|p‖
1
p

E∞
= ‖x‖(E∞)(p)).

The proof of (ii) is similar to the proof of (i).

In general, (E∞)(p)(M) 6= (E(p))∞(M). For example, let E = L1(M). If 1 < p < ∞, then
(E∞)(p)(M) = Lp(M) and (E(p))∞(M) = Lp,∞(M). If 0 < p < 1, then (E∞)(p)(M) = Lp(M) and
(E(p))∞(M) = L1(M).
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Theorem 3.2. Let E be a symmetric (quasi-)Banach space on (0, 1). Then we have the following
Chebyshev type inequality

tϕE(τ(e(t,∞)(|x|))) ≤ ‖x‖E∞, ∀x ∈ E∞(M).

Proof. It is clear that for s ≥ 0,

µs(e(t,∞)(|x|)) = χ[0,τ(e(t,∞)(|x|)).

Since |x|e(t,∞)(|x|) ≥ te(t,∞)(|x|),

ϕE(τ(e(t,∞)(|x|))) ≤ sups>0
ϕE(s)
s

∫ s
0
µν(e(t,∞)(|x|))dν

= ‖e(t,∞)(|x|)‖E∞ ≤ ‖1
t
|x|e(t,∞)(|x|)‖E∞

= 1
t
‖|x|e(t,∞)(|x|)‖E∞ ≤ 1

t
‖|x|‖E∞ = 1

t
‖x‖E∞ .
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