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YESMUKHANBET SAIDAKHMETOVICH SMAILOV

Doctor of physical and mathematical sciences, Professor Smailov Esmuhan-
bet Saidakhmetovich passed away on May 24, 2024, at the age of 78 years.

Esmuhanbet Saidakhmetovich was well known to the scienti�c community
as a high quali�ed specialist in science and education, and an outstanding
organizer. Fundamental scienti�c articles and textbooks written in various
�elds of the theory of functions of several variables and functional analysis,
the theory of approximation of functions, embedding theorems, and harmonic
analysis are a signi�cant contribution to the development of mathematics.

E.S. Smailov was born on October 18, 1946, in the village of Kyzyl Kesik,
Aksuat district, Semipalatinsk region. In 1963, he graduated from high school
with a silver medal, and in the same year he entered the Faculty of Mechanics

and Mathematics of the Kazakh State University (Almaty) named after Kirov (now named after Al-
Farabi). In 1971 he graduated from graduate school at the Institute of Mathematics and Mechanics.

He defended his PhD thesis in 1973 (supervisor was K.Zh. Nauryzbaev) and defended his doctoral
thesis �Fourier multipliers, embedding theorems and related topics� in 1997. In 1993 he was awarded
the academic title of professor.

E.S. Smailov since 1972 worked at the Karaganda State University named after E.A. Buketov as
an associate professor (1972-1978), the head of the department of mathematical analysis (1978-1986,
1990-2000), the dean of the Faculty of Mathematics (1983-1987) and was the director of the Institute
of Applied Mathematics of the Ministry of Education and Science of the Republic of Kazakhstan in
Karaganda (2004 -2018).

Professor Smailov was one of the leading experts in the theory of functions and functional analysis
and a major organizer of science in the Republic of Kazakhstan. He had a great in�uence on the
formation of the Mathematical Faculty of the Karaganda State University named after E.A. Buketov
and he made a signi�cant contribution to the development of mathematics in Central Kazakhstan.
Due to the e�orts of Y.S. Smailov, in Karaganda an actively operating Mathematical School on the
function theory was established, which is well known in Kazakhstan and abroad.

He published more than 150 scienti�c papers and 2 monographs. Under his scienti�c advice, 4
doctoral and 10 candidate theses were defended.

In 1999 the American Biographical Institute declared professor Smailov �Man of the Year� and
published his biography in the �Biographical encyclopedia of professional leaders of the Millennium�.

For his contribution to science and education, he was awarded the Order of �Kurmet� (=�Honour�).
The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the

family, relatives and friends of Esmuhanbet Saidakhmetovich Smailov.
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Abstract. In the paper, we establish estimates, sharp in order, for the error of optimal cubature for-
mulas for the smoothness spaces Bs τ

p q (Tm) of Nikol'skii �Besov type and F s τ
p q (Tm) of Lizorkin �Triebel

type, both related to Morrey spaces, on multidimensional torus, for some range of the parameters
s, p, q, τ (0 < s <∞, 1 ≤ p, q ≤ ∞, 0 ≤ τ ≤ 1/p). In particular, we obtain those estimates for the
isotropic Lizorkin �Triebel function spaces F s

∞ q(Tm) .

DOI: https://doi.org/10.32523/2077-9879-2024-15-3-25-37

1 Introduction

Let Ω be a compact set in Rm (m ≥ 2) (with nonempty interior), F a set (class) of complex�valued
continuous functions with domain Ω. In numerical integration, for the approximation of the integral∫

Ω

f(x)dx, f ∈ F,

expressions of the form (cubature formulas)

Q(f, CN ,ΛN) :=
N∑
k=1

c(k)f(λ(k)), (1.1)

are used; here CN := (c(1), . . . , c(N)) ∈ CN is the collection of weights and ΛN := (λ(1), . . . , λ(N)) ⊂
ΩN is the grid of nodes of the cubature formula, and

R(f,Ω, CN ,ΛN) :=

∫
Ω

f(x)dx−Q(f, CN ,ΛN)

is its error on a function f . Denote

R(F,Ω, CN ,ΛN) := sup{|R(f,Ω, CN ,ΛN)| | f ∈ F}.

The problem of optimal numerical integration under consideration here consists in determining
the exact order (in N) of the quantity

RN(F,Ω) := inf{R(F,Ω, CN ,ΛN) |CN ,ΛN} (1.2)
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(which is N -th optimal error of numerical integration on the class F) and constructing a sequence
(C∗N ,Λ

∗
N | N ∈ N) of weights and nodes such that the errors R(F,Ω, C∗N ,Λ

∗
N) of cubature formulas

(1.1) realize the order of optimal error (1.2). Cubature formulas Q(f, C∗N ,Λ
∗
N) are called optimal in

order.
A lot of works are devoted to the study of di�erent formulations of problems of optimal numerical

integration for various classes of smooth functions in several variables, see, for example, monographs
[17], [19], [20, Chapter 6] and survey [7, Chapter 8] and the bibliographies therein. Comprehensive
survey [7], monograph [20], papers [21], [11], [6], [3] show that the interest to problem of optimal
numerical integration we will study here is unabated; a fairly detailed history of the issue and an
extensive bibliographies can be found there as well.

In this paper, we give exact (in the sense of the order) estimates for quantity (1.2) in the case in
which Ω = Tm is the m-dimensional torus, F is the function class Bs τ

p q(Tm) of Nikol'skii �Besov type
or Ls τp q(Tm) of Lizorkin �Triebel type, for some range of the parameters of these classes.

Let us introduce the notation that we will use throughout this article. Let m ∈ N, m ≥ 2,
zm = {1, . . . , k}, N0 = N ∪ {0}, R+ = (0,+∞). For x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm, put
xy = x1y1 + . . .+xmym, |x| = |x1|+ . . .+ |xm|, |x|∞ = max(|xµ| : µ ∈ zm); x ≤ y (x < y)⇔ xµ ≤ yµ
(xµ < yµ) for all µ ∈ zm. For t ∈ R, t+ := max{0, t}.

Let S := S(Rm) and S ′ = S ′(Rm) be the Schwartz spaces of test functions and tempered distri-

butions, respectively; f̂ ≡ Fm(f) and F−1
m (f) direct and inverse Fourier transforms of f ∈ S ′(Rm);

in particular, for ϕ ∈ S,

ϕ̂(ξ) = Fm(ϕ)(ξ) =

∫
Rm

ϕ(x)e−2πi ξxdx, F−1
m (ϕ)(ξ) =

∫
Rm

ϕ(x)e2πi ξxdx, ξ ∈ Rm,

where ξx = ξ1x1 + ... = ξmxm.
Let Tm = (R/Z)m be the m-dimensional torus; sometimes it will be convenient for us to identify

Tm with the cube Q0 := [0, 1)m in Rm. Further, we denote by S̃ ′ ≡ S ′(Tm) the space of all
distributions f from S ′ which are 1-periodic in each variable (i.e. such that 〈f, ϕ(· + ξ)〉 = 〈f, ϕ〉
for all ϕ ∈ S and any ξ ∈ Zm) and by S̃ := S̃ := S(Tm) the space of all in�nitely continuously
di�erentiable functions on Tm endowed with the topology of uniform convergence of all derivatives
over Tm. Then the space S ′(Tm) is naturally identi�ed with the space that is topologically dual to

S(Tm). It is well known that f ∈ S̃ ′ if and only if supp f̂ ⊂ Zm, i.e. distribution f̂ vanishes on the
open set Rm\Zm.

For 0 < p ≤ ∞ and a measurable set G ⊂ Rm, as usual, let Lp(G) be the space of measurable
functions f : G→ C, which are Lebesgue integrable in p-th power (when p =∞ essentially bounded)
over G, endowed with the standard quasi-norm (norm if p ≥ 1)

‖ f |Lp(G) ‖ =
(∫

G

| f(x) |pdx
) 1
p

(p <∞), ‖ f |L∞(G) ‖ = ess sup(| f(x) | : x ∈ G).

For 0 < q ≤ ∞, let `q := `q(N0) be the space of all (complex) number sequences (cj) = (cj : j ∈
N0) with �nite standard quasi-norm (norm if q ≥ 1) ‖(cj) | `q‖.

Further, let `q(Lp(G)) (respectively, Lp(G; `q)) be the space of all function sequences (gj(x)) =
(gj(x) : k ∈ N0) (x ∈ G) with �nite standard quasi-norm (norm if p, q ≥ 1)

‖ (gj(x)) | `q(Lp(G)) ‖ = ‖ ( ‖ gj |Lp(G)‖) | `q ‖

(respectively,
‖ (gj(x)) |Lp(G; `q) ‖ = ‖ ‖ (gj(·)) | `q ‖ |Lp(G)‖).

In what follows we will often use the abbreviation Lp := Lp(Rm), L̃p := Lp(Tm), `q(Lp) :=

`q(Lp(Rm)), `q(L̃p) := `q(Lp(Tm)), Lp(`q) = Lp(Rm; `q), L̃p(`q) = Lp(Tm; `q).
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Let Q be the set of all half-open dyadic cubes in Rm of the form

Q = Qjξ = {x ∈ Rm : 2jx− ξ ∈ [0, 1)m } (j ∈ Z, ξ ∈ Zm).

For a cube Q = Qjξ, we denote by xQ := 2−j · ξ, l(Q)(= 2−j), j(Q) := j and |Q|(= 2−jm) its "lower
left" corner, side length, level and volume, respectively.

2 De�nition of function spaces B̃s τ
p q and F̃ s τ

p q

First we choose a test function η0 ∈ S such that

0 ≤ η̂0(ξ) ≤ 1, ξ ∈ Rm; η̂0(ξ) = 1 if |ξ|∞ ≤ 1; supp η̂0 = {ξ ∈ Rm | |ξ|∞ ≤ 2}.

Put η̂(ξ) = η̂0(2−1ξ)− η̂0(ξ), η̂j(ξ) := η̂j(ξ) = η̂(21−jξ), j ∈ N. Then

∞∑
j=0

η̂j(ξ) ≡ 1, ξ ∈ Rm,

i.e. {η̂j(ξ) | j ∈ N0} is a resolution of unity (by corridors) on Rm. It is clear that

η(x) = 2mη0(2x)− η0(x), ηj(x) := 2(j−1)mη(2j−1x), j ∈ N. (2.1)

Next we denote by ∆η
j operators on S ′ de�ned as follows: for f ∈ S ′

∆η
j (f, x) = f ∗ ηj(x) = 〈f, ηj(x− ·)〉; (2.2)

for the sake of convenience we put ∆η
j (f, x) ≡ 0 if j < 0.

We recall the de�nitions of two scales of the (inhomogeneous) smoothness spaces (on the whole
Euclidean space) related to Morrey spaces.

De�nition 1. Let s, τ ∈ R, 0 < p, q ≤ ∞. Then
I. the Nikol'skii �Besov type space Bs τ

p q := Bs τ
p q (Rm) consists of all distributions f ∈ S ′, for which

the quasi-norm

‖ f |Bs τ
p q ‖ = sup

Q∈Q

1

|Q|τ
‖(2sj∆η

j (f, x)sign((j + 1− j(Q))+)) | `q(Lp(Q))‖

is �nite,
II. the Lizorkin �Triebel type space F s τ

p q := F s τ
p q (Rm) (p <∞) consists of all distributions f ∈ S ′,

for which the quasi-norm

‖ f |F s τ
p q ‖ = sup

Q∈Q

1

|Q|τ
‖(2sj∆η

j (f, x)sign((j + 1− j(Q))+)) |Lp(Q; `q)‖

is �nite.

Remark 1. The inhomogeneous spaces Bs τ
p q and F s τ

p q are introduced in [24] and thoroughly studied
in [24], [15], [16], [22], [23]. We also note that (local) Morrey spaces and Nikol'skii � Besov � Morrey
and Lizorkin � Triebel � Morrey spaces have been attracted a lot of attention, see, for instance, [24],
[15], [16], [22], [23], [10], [9], [14] and bibliographies therein.
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Let g : Rm → C be an arbitrary function, its periodization g̃ : Tm → C is de�ned as the (formal)
sum of the series

∑
ξ∈Zm

g(x+ ξ).

By the Poisson summation formula (see, for example, [18, Chapter VII, Theorem 2.4]) it is easy

to see that if ϕ ∈ S then ϕ̃ ∈ S̃, and, moreover, ϕ̃(x) =
∑

ξ∈Zm ϕ̂(ξ)e2πiξx.
Let

Q̃ = {Q ∈ Q |Q ⊂ Q0 = [0, 1)m} = {Qjξ | j ∈ N0, ξ ∈ Zm : 0 ≤ ξ < 2j1} (0,1 ∈ Rm).

Next we denote by ∆̃η
j the operators de�ned on S̃ ′ (j ∈ N0), as follows: for f ∈ S̃ ′

∆̃η
j (f, x) = f ∗ η̃j(x) = 〈f, η̃j(x− ·)〉 =

∑
ξ∈Zm

η̂j(ξ)f̂(ξ)e2πi ξx. (2.3)

Again, for the sake of convenience we put ∆̃η
j (f, x) ≡ 0 if j < 0.

In next de�nition we introduce two scales of the smoothness spaces (over m−dimensional torus)
related to Morrey spaces.

De�nition 2. s, τ ∈ R, 0 < p, q ≤ ∞. Then
I. the Nikol'skii �Besov type space B̃s τ

p q := Bs τ
p q (Tm) consists of all distributions f ∈ S̃ ′, for which

the quasi-norm

‖ f | B̃s τ
p q ‖ = sup

Q∈Q̃

1

|Q|τ
‖(2sj∆̃η

j (f, x)sign((j + 1− j(Q))+)) | `q(Lp(Q))‖

is �nite,
II. the Lizorkin �Triebel type space F̃ s τ

p q := F s τ
p q (Tm) (p <∞) consists of all distributions f ∈ S̃ ′,

for which the quasi-norm

‖ f | F̃ s τ
p q ‖ = sup

Q∈Q̃

1

|Q|τ
‖(2sj∆̃η

j (f, x)sign((j + 1− j(Q))+)) |Lp(Q; `q)‖

is �nite.
We will call the unit balls B̃s τ

p q := Bs τ
p q(Tm) and F̃s τp q := Fs τp q(Tm) of those spaces the Nikol'skii-

Besov and Lizorkin-Triebel classes, respectively.

Remark 2. Evidently the spaces B̃s 0
p q and F̃ s 0

p q coincide with the well�known isotropic periodic

Nikol'skii-Besov spaces B̃s
p q and Lizorkin-Triebel spaces F̃ s

p q respectively (see, for instance, [13]).

Furthermore, it is not hard to see that for any τ ≤ 0 B̃s τ
p q = B̃s

p q and F s τ
p q = F̃ s

p q in the sense of
equivalent quasi-norms unlike the spaces Bs τ

p q and F s τ
p q : as well known, B

s τ
p q = {0} and F s τ

p q = {0}
when τ < 0 (see [24, Chapter 2]).

We note that periodic Morrey spaces and Nikol'skii � Besov � Morrey and Lizorkin � Triebel �
Morrey spaces (over Tm) have been attracted increasing attention as well, see, for instance, [1], [12],
[5] and bibliographies therein.

We will need ϕ � transform characterization for the spaces B̃s τ
p q and F̃ s τ

p q .
We choose test functions φ0, φ ∈ S satisfying the following conditions :

supp φ̂0 ⊂ {ξ : |ξ|∞ ≤ 2}, supp φ̂ ⊂ {ξ : 1/2 ≤ |ξ|∞ ≤ 2}, (2.4)

|φ̂0(ξ)| ≥ c > 0 when |ξ|∞ ≤
5

3
, |φ̂(ξ)| ≥ c > 0 when

3

5
≤ |ξ|∞ ≤

5

3
. (2.5)
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Next we choose test functions ψ0, ψ ∈ S satisfying conditions (2.4), (2.5) (with ψ instead of φ) and
such that ̂̆ϕ0(ξ)ψ̂0(ξ) +

∑
j∈N

̂̆
φ(2−jξ)ψ̂(2−jξ) = 1, ξ ∈ Rm (2.6)

(ğ(x) ≡ ḡ(−x), z̄ is the number complex conjugate to z ∈ C). For Q = Qjλ ∈ Q̃, we set (functions
φ̃j are de�ned via (2.1) and the periodization)

φ̃Q(x) ≡ |Q|1/2φ̃j(Q)(x− xQ) = 2−jm/2φ̃j(x− 2−jλ),

functions ψ̃Q are de�ned analogously. Then in view of (2.6) it is not hard to show that for any

f ∈ S̃ ′ we have the following decomposition (the convergence in the sense of S̃ ′)

f =
∑
Q∈Q̃

〈f, φ̃Q〉 ψ̃Q =
∑
j∈N0

∑
jQ=j

〈f, φ̃Q〉 ψ̃Q. (2.7)

Let us introduce (direct) ϕ � transform S̃ϕ on S̃ ′ as follows

S̃ϕ : S̃ ′ 3 f 7→ S̃ϕ(f) ≡ (〈f, φ̃Q〉 |Q ∈ Q̃),

and ϕ � transform T̃ψ (formal left inverse to S̃ϕ) as follows

T̃ψ : (cQ) = (cQ |Q ∈ Q̃) 7→ T̃ψ((cQ)) =
∑
Q∈Q̃

cQ ψ̃Q.

Equality (2.7) means that the composition T̃ψ ◦ S̃ϕ is the identity on S̃.

De�nition 3. Let 0 < p, q ≤ ∞; s, τ ∈ R. A number sequence (cQ) = (cQ |Q ∈ Q̃) belongs to the
space Ãs τp q , if ‖(cQ) | Ãs τp q‖ <∞, where A ∈ {B, F} and

‖(cQ) | B̃s τp q‖ = sup
P∈Q̃

1

|P |τ
{ ∞∑
j=j(P )

2j(s+
m
2
−m
p

)q
[ ∑
Q∈Q̃:Q⊂P,j(Q)=j

|cQ|p
]q/p}1/q

,

‖(cQ) | F̃s τp q‖ = sup
P∈Q̃

1

|P |τ
{∫

P

[ ∞∑
j=j(P )

2j(s+
m
2

)q
∑

Q∈Q̃:Q,j(Q)=j

|cQ|qχQ(x)
]p/q}1/p

(p <∞).

(natural modi�cation if p =∞ and/or q =∞)

(Here χQ is the characteristic function of Q.)

Theorem 2.1. Let (A, A) ∈ {(B, B), (F, F)}, 0 < p, q ≤ ∞, (p <∞ if (A, A) = (F, F)), s ∈ R, τ ≥ 0.

Then a distribution f ∈ S̃ ′ belongs to Ãs τp q , if and only if the sequence (〈f, φ̃Q〉 |Q ∈ Q̃) belongs to

Ãs τp q , moreover,

‖ (〈f, φ̃Q〉) | Ãs τp q ‖ ≈ 1 ‖ f | Ãs τp q ‖.

Furthermore, the operators S̃ϕ : Ãs τp q → Ãs τp q and T̃ψ : Ãs τp q → Ãs τp q are bounded and their composition

T̃ψ ◦ S̃ϕ is the identity on Ãs τp q.

1sign "≈" means that there exist positive constants C1, C2 independent of f ∈ Ãs τp q such that C1‖ f | Ãs τp q ‖ ≤
‖ (〈f, φ̃Q〉) | Ãs τp q ‖ ≤ C2‖ f | Ãs τp q ‖.
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Remark 3. The notion of ϕ � transform was invented by M. Frazier and B. Jawerth [8]. This
theorem is the periodic analogue of Theorem 2.1 in [24] for the spaces Bs τ

p q and F
s τ
p q . A special case

of Theorem 2.1 for the isotropic spaces B̃s
p q and F̃

s
p q was established in [4].

Theorem 2.2. Let A ∈ {B,F}, 0 < p, q ≤ ∞, (p < ∞ when A = F ), s ∈ R, τ ≥ 0. Then we have
the following continuous embedding

Ãs τp q ↪→ B̃
s+τm−m

p
∞∞ .

Moreover, if τ > 1
p
, 0 < q <∞ or τ ≥ 1

p
, q =∞ we have

Ãs τp q = B̃
s+τm−m

p
∞∞

in the sense of equivalent quasi-norms.

Remark 4. The �rst statement of this theorem is an analogue of the results on the embedding of
the spaces As τp q(Rm) into the space Cub(Rd) of uniformly continuous and bounded functions, see [24,
Chapter 2, Section 2.2] and [16, Theorem 4.4]. Second statement is a direct periodic analogue of

Theorem 2 in [22]. Note that for s > 0 the space B̃s
∞∞ coincides with the well-known Zygmund

spaces Zs(Tm) (see details in [13, Chapter 3]).

3 Optimal error of numerical integration
on classes B̃s τ

p q and L̃s τp q

In this section, we formulate and discuss the main result of the paper on estimates exact in order
for optimal errors of numerical integration on the Nikol'skii �Besov and Lizorkin �Triebel classes
B̃s τ
p q = Bs τ

p q(Tm) and F̃s τp q = Fs τp q(Tm) under some condition on parameters s, p, q, τ,m (s ∈ R+, 1 ≤
p, q ≤ ∞, τ ∈ [0, 1/p]).

In what follows, we will use the signs� and � of the ordinal inequality and equality: for functions
F : R+ → R+ and H : R+ → R+ we write F (u) � H(u) as u → ∞, if there exists a constant
C = C(F,H) > 0 such that the inequality F (u) ≤ CH(u) holds true for u ≥ u0 > 0; F (u) � H(u)
if F (u)� H(u) and H(u)� F (u) simultaneously.

Main result of the paper is the following

Theorem 3.1. Assume that A ∈ {B,F}, 1 ≤ p, q ≤ ∞, s > 0, τ ≥ 0 (p < ∞ if A = F). Then the
relation

RN(Ãs τ
p q) � N−

s
m
−(τ− 1

p
)+ as N →∞

holds true.

Remark 5. By Theorem 2.2 the hypotheses of Theorem 3.1 guarantee the continuous embedding
Ãs mp q ↪→ C(Tm), which is required in problems of numerical integration (A ∈ {B,F}).

Remark 6. As mentioned in Introduction, there is an extensive literature devoted to optimal cuba-
ture formulas for classes of functions of several variables. Here we discuss results directly related to
Theorem 3.1, namely, results on function classes on the torus included in the Nikol'skii � Besov and
Lizorkin � Triebel scales from De�nition 1.

For s > m/p, 1 ≤ p ≤ ∞, the estimates of RN(F̃), exact in order, for the isotropic Sobolev and

Nikol'skii classes (F̃ = W̃s
p and F̃ = H̃s

p ≡ B̃s
p∞) are given in [20, Chapter 3] (in fact, the anisotropic

case is also considered there):

RN(W̃s
p) � RN(H̃s

p) � N−
s
m as N →∞
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and the simplest sequence of "parallelepipedal" cubature formulas

Q?
N(f) :=

∑
ξ∈Zm:0≤ξµ<M(N),µ∈zm

1

M(N)m
f
( ξ

M(N)

)
,

M(N) ∈ N : M(N)m ≤ N < (M(N) + 1)m,

can be taken as optimal one.
We recall that H̃s

∞ = Zs(Tm) and for 1 < p < ∞ we have W̃ s
p = F̃ s

p2 in the sense of equivalent
norms (see details in [13, Chapter 3]).

Further, in [3] the following sharp estimates are obtained: for A ∈ {B,F}, 1 ≤ p, q ≤ ∞ (p <∞
if A = F ), s > m/p if A = B and s > max{m/p,m/q} if A = F we have

RN(Ãs
pq) � N−

s
m as N →∞.

In [3], to prove upper estimates, the well-known Frolov's cubature formulas are used because there
it is studied general case of the function spaces of product type, in particular, the function spaces
with mixed smoothness. But it is easy to see that for isotropic classes Ãs

pq the sequence of "paral-
lelepipedal" cubature formulas Q?

N(f) can be taken as optimal one as well.
Thus, in view of Theorem 2.2 it remains to prove the theorem for the case 0 < τ ≤ 1/p.

4 Proof of Theorem 3.1

By De�nition 1 it is evident that the quasi-norms of both scales B̃s τ
pq and F̃ s τ

pq are monotonic with

respect to parameter τ : for any τ1 < τ2 we have ‖ · | Ãs τ1pq ‖ ≤ ‖ · | Ãs τ2pq ‖. Hence, the elementary

embedding Ãs τ2pq ↪→ Ãs τ1pq holds (A ∈ {B,F}). From here and Remark 6, it follows that the upper
estimates

RN(Ãs τ
pq )� RN(Ãs

pq) � N−
s
m as N →∞

hold for any τ > 0.
Now we turn to proving the matching lower estimates.
Taking into account the monotonicity of norms ‖ · | Ãs τpq ‖ (with respect to τ) as well as Jensen's

inequality (‖ · | `q1‖ ≥ ‖· | `q2‖ if 1 ≤ q1 < q2 ≤ ∞), we get the following simple inclusions B̃s τ
p q ⊃ B̃

s 1
p

p 1

and F̃s τp q ⊃ F̃
s 1
p

p 1 if 1 ≤ q ≤ ∞ and τ ≤ 1/p.
Since the estimates in Theorem 3.1 do not depend on p, q and τ ≤ 1/p, in view of inclusions

mentioned above, it su�ces to prove the required lower estimates for the classes B̃
s 1
p

p 1 and F̃
s 1
p

p 1 .

Moreover, for B̃
s 1
p

p 1 , we can restrict ourselves to the case 1 ≤ p < ∞ because the required estimate

for B̃s 0
∞ 1 ≡ B̃s

∞ 1 is known (see Remark 6).
To this end, we apply Bakhvalov's method to obtain those lower bounds for optimal error

RN(F,Ω). This method was proposed by N.S. Bakhvalov [2]. Its idea is for a given N and any
cubature formula (1.1) to construct a "bad" function gΛN , ‖gΛN |F‖ = 1, vanishing at all nodes, in
the form of a sum with positive coe�cients of special shifted dilations, a suitable �xed smooth bump
function for which

R(gΛN ,Ω, CN ,ΛN) =

∫
Ω

gΛN (x)dx = ‖gΛN | L̃1‖

has the required order.
To construct those "bad" functions, we will use the so-called atomic decomposition of the spaces

Ãs τpq .
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We need some notions and notation.
For s, t ∈ R, 0 < p, q ≤ ∞, we de�ne the numbers: btc (the integer part of t), t∗ = t − btc,

p∧q = min{p, q}, σp = m(1/p−1)+, σpq = m(1/(p∧q)−1)+. Further, τsp = 1/p+(1−(σp+m−s)∗)/m
if s ≤ σp, and τsp = 1/p+ (s− σp)/m if s > σp, τspq = 1/p+ (1− (σpq +m− s)∗)/m if s ≤ σpq, and
τspq = 1/p+ (s− σpq)/m if s > σp.

Let Q ∈ Q. A function aQ : Tm → C is called a smooth atom ("with a support close to Q") if
the following conditions are satis�ed:

supp (aQ) ⊂ 3̃Q, |∂αaQ(x)| ≤ |Q|−1/2−|α|/m, |α| ≤ max{bs+ τm+ 1c, 0}.

(Here 3Q is the dilation of Q with the same center, D̃ is " the periodic continuation" of a set D ⊂ Q0,
i.e.

D̃ = Zm +D = ∪ξ∈Zm(ξ +D), ξ +D = {ξ + x |x ∈ D}.)

Then we call the sequence (aQ|Q ∈ Q) a family of (smooth) atoms for Ãs,τp,q .

Theorem 4.1. Let (A, A) ∈ {(B, B)(F, F)}, s ∈ R, 0 < p, q ≤ ∞. Assume that 0 ≤ τ < τsp if A = B

and 0 ≤ τ < τspq, p <∞ if A = F . Then f ∈ Ãs τp q if and only if there exist (aQ |Q ∈ Q̃), a family of

atoms for Ãs τp q, and a sequence (cQ |Q ∈ Q̃) ∈ Ãs τp q such that

f =
∑
Q∈Q̃

cQ aQ (convergence in S̃ ′) (4.1)

and
‖ f | Ãs τp q‖ ≈ inf ‖(cQ |Q ∈ Q̃)) | Ãs τp q‖, (4.2)

where inf is taken over all representations (4.1).

Remark 7. This theorem is a direct periodic analog of Theorem 3.3 from [24] for the spaces Ãs τp q .
Notice that in [3] we use an analog of Theorem 4.1 for product spaces, which includes as special case

atomic characterizations for isotropic function spaces B̃s τ
p q and F̃

s τ
p q (with the restriction p <∞ in the

case of F−spaces). Up to now for function spaces F̃ s
∞ q(0 < q <∞), atomic decomposition remained

unproven. Theorem 4.1 completes this gap because we have the coincidence F̃ s
∞ q = F̃

s 1/p
p q (0 < p <

∞, 0 < q ≤ ∞) in the sense of equivalent quasi-norms. In non-trivial case 0 < p, q < ∞, the

coincidence F s
∞ q(Rm) = F

s 1
p

p q (Rm) is shown in [24, Chapter 2], arguing in periodic settings is the
same.

Remark 8. Here we recall a very important (correct and constructive) de�nition of the Lizorkin �
Triebel spaces F s

∞ q(Rm)(0 < q < ∞) invented by M. Frazier and B. Jawerth [8] : for s ∈ R,
0 < q ≤ ∞, the Lizorkin �Triebel space F s

∞ q := F s
∞ q(Rm) consists of all distributions f ∈ S ′, for

which the quasi-norm

‖ f |F s
∞ q ‖ = ‖∆η

0(f) |L∞‖+
(

sup
Q∈Q:j(Q)≥1

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆η
j (f, x)|qdx

)1/q

is �nite.
Moreover, in [8] the following quasi-norm

‖ f |F s
∞ q ‖? =

(
sup

Q∈Q:j(Q)≥0

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆η
j (f, x)|qdx

)1/q
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is de�ned which is equivalent to the original one.
In [4], we studied the spaces (there di�erent notation was used) F̃ s

∞ q which are de�ned as follows

: for s ∈ R, 0 < q < ∞, the Lizorkin �Triebel space F̃ s
∞ q := F s

∞ q(Tm) consists of all distributions

f ∈ S̃ ′, for which the quasi-norm

‖ f | F̃ s
∞ q ‖ =

(
sup

Q∈Q:j(Q)≥0

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆η
j (f, x)|qdx

)1/q

is �nite.

Proof of Theorem 3.1. Now we turn directly to constructing the "bad" functions mentioned
above.

We pick a function h ∈ S such that

supp (h) = [0, 1]m, ĥ(0) > 0, max{|∂αh(x)| : x ∈ [0, 1]m, α ≤ bs+ τm+ 1c} = 1.

For Q ∈ Q̃, we de�ne

hQ(x) := |Q|−1/2h(2j(Q) · (x− xQ)) := 2j(Q)m/2h(2j(Q) · (x− xQ))

and their periodizations h̃Q(x). It is clear that the sequence (h̃Q |Q ∈ Q̃) is a family of atoms for all

Ãs τpq .

For a sequence c := (cQ |Q ∈ Q̃) (which will be speci�ed later), we consider a function

H̃c(x) :=
∑
Q∈Q̃

cQh̃Q(x).

First we evaluate the integral
∫
Q0
H̃c(x)dx :∫

Q0

H̃c(x)dx = ĥ(0)
∑
Q∈Q̃

cQ|Q|1/2. (4.3)

In view of Theorem 4.1 (see (4.2)) we get the inequality

‖H̃c | Ãs τpq ‖ � ‖c | Ãs τpq ‖. (4.4)

Next we write down the norms ‖c | B̃
s 1
p

p1 ‖ and ‖c | F̃s 1
11‖ (in view of Remark 7 and Theorem 2.1 the

last norm is equivalent to ‖c | F̃
s 1
p

p1 ‖) :

‖c | B̃
s 1
p

p1 ‖ = sup
P⊂Q̃

1

|P |1/p
∞∑

j=j(P )

2j(s+
m
2
−m
p

)
( ∑
Q⊂P :j(Q)=j

|cQ|p
)1/p

=: sup
P⊂Q̃

J(P ) (4.5)

and from the coincidence of the spaces B̃s 1
11 and F̃s 1

11 and the equality of their norms ‖· | B̃s 1
11‖ = ‖· | F̃s 1

11‖
we get

‖c | F̃s 1
11‖ = ‖c | B̃s 1

11‖ = sup
P⊂Q̃

1

|P |

∞∑
j=j(P )

2j(s−
m
2

)
∑

Q⊂P :j(Q)=j

|cQ|. (4.6)

Let N ∈ N be an arbitrary number and Q( · , CN ,ΛN) be an arbitrary cubature formula of form
(1.1), ΛN := (λ(1), . . . , λ(N)) ⊂ ΩN its grid of nodes. We choose the natural number jN such that
2(jN−2)m ≤ N < 2(jN−1)m.
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Further, we denote Q̃j := {Q ∈ Q̃ | j(Q) = j}. It is clear that in the collection Q̃jN consisting of
2jNm cubes there exist at least 2(jN−1)m cubes Q(1), . . . , Q(2(jN−1)m) which are free of nodes belonging
to ΛN . We put Q̄(ΛN) = Q(1) ∪ · · · ∪Q(2(jN−1)m).

Now we are in position to de�ne the required sequence of coe�cients c? = (c?Q |Q ∈ Q̃):

c?Q = 0 if Q ∩ Q̄(ΛN) = ∅, c?Q = cj = 2−jt if Q ∈ Q̃j and Q ⊂ Q̄(ΛN),

here the real number t > s + m/2 is �xed. Then, it is not hard to verify that for any λ ∈ ΛN we

have H̃c
?(λ) = 0. Therefore,

Q(H̃c
? , CN ,ΛN) = 0, R(H̃c

? , Q0, CN ,ΛN) =

∫
Q0

H̃c
?(x)dx. (4.7)

From (4.5) and the de�nition of c? it follows that for any P with j(P ) < jN

J(P ) =
1

|P |1/p
∞∑

j=jN

2j(s+
m
2
−m
p

)cj

( ∑
Q⊂P∩Q̄(ΛN ):j(Q)=j

1
)1/p

≤

≤ 2j(P )m
p

∞∑
j=jN

2j(s+
m
2
−m
p

)cj2
(j−j(P ))m

p =
∞∑

j=jN

2j(s+
m
2

)cj � 2jN (s+m
2
−t),

further, for any P with j(P ) ≥ jN such that P ∩ Q̄(ΛN) = ∅ obviously we have J(P ) = 0. Finally,
for any P with j(P ) ≥ jN such that P ⊂ Q̄(ΛN) = ∅ we get

J(P ) =
1

|P |1/p
∞∑

j=j(P )

2j(s+
m
2
−m
p

)cj

( ∑
Q⊂P :j(Q)=j

1
)1/p

=

= 2j(P )m
p

∞∑
j=j(P )

2j(s+
m
2
−m
p

)cj2
(j−j(P ))m

p =
∞∑

j=j(P )

2j(s+
m
2

)cj � 2j(P )(s+m
2
−t) ≤ 2jN (s+m

2
−t),

Hence, taking into account (4.4) we obtain

‖H̃c
? | B̃

s 1
p

p1 ‖ � ‖c? | B̃
s 1
p

p1 ‖ � 2jN (s+m
2
−t),

in particular,
‖H̃c

? | F̃ s 1
11 ‖ � ‖c? | F̃s 1

11‖ � 2jN (s+m
2
−t),

From (4.3) and the de�nition of c? it follows that∫
Q0

H̃c
?(x)dx = ĥ(0)

∑
Q∈Q̃

c?Q|Q|1/2 = ĥ(0)2(jN−1)m
∑

Q∈Q(1)

c?Q|Q|1/2 = ĥ(0)2(jN−1)m×

×
∞∑

j=jN

cj2
−jm/2

∑
Q∈Q(1):j(Q)=j

1 = ĥ(0)2(jN−1)m

∞∑
j=jN

cj2
−jm/22(j−jN )m � 2jN (m/2−t).

Therefore, for an arbitrary cubature formula Q( · , CN ,ΛN) and functions

h̃c
?

:=
H̃c

?

‖H̃c
? | B̃s 1/p

p1 ‖
∈ B̃

s 1/p
p1 , g̃c

?

:=
H̃c

?

‖H̃c
? | F̃ s 1

11 ‖
∈ F̃

s 1/p
p1
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we get

R(B̃
s 1/p
p1 , CN ,ΛN) ≥ R(h̃c

?

, CN ,ΛN)�
∫
Q0

H̃c
?(x)dx/‖c? | B̃

s 1
p

p1 ‖ � 2−sjN � N−
s
m

and

R(F̃
s 1/p
p1 , CN ,ΛN) ≥ R(g̃c

?

, CN ,ΛN)�
∫
Q0

H̃c
?(x)dx/‖c? | F̃s 1

11‖ � 2−sjN � N−
s
m

From the last two inequalities it follows that

RN(F̃
s 1/p
p1 )� N−

s
m , RN(B̃

s 1/p
p1 )� N−

s
m as N →∞.

Thus, the required lower estimates

RN(Ãs τ
pq )� N−

s
m as N →∞.

are established, which completes the proof of Theorem 3.1. �

Remark 9. Here we emphasize the most important special case of Theorem 3.1 (1 ≤ q <∞)

RN(F̃s∞q) � N−
s
m as N →∞,

which completes investigation of optimal numerical integration on isotropic function spaces of both
Nikol'skii �Besov and Lizorkin �Triebel scales.

Remark 10. Proofs of Theorem 2.1, Theorem 2.2 and Theorem 4.1 will be published elsewhere.
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