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Abstract. We denote by Λβ(λ), β > 0, the Lorentz space equipped with the (quasi)
norm

‖f‖Λβ(λ) :=

(∫ 1

0

(
f ∗(t)tλ

(
1

t

))β
dt

t

) 1
β

for a function f on [0,1] and with λ positive and equipped with some additional
growth properties. Some estimates of this quantity and some corresponding sums
of Fourier coefficients are proved for the case with a general orthonormal bounded
system.

1 Introduction

Let f be a measurable function on a measure space (Ω, µ), where µ is an additive
positive measure.

The distribution function m(σ, f) and the nonincreasing rearrangement f ∗ of a
function f are defined as follows:

m(σ, f) := µ {x ∈ Ω : |f(x)| > σ} ,

f ∗(t) := inf {σ : m(σ, f) ≤ t} .

Let 1≤ p ≤ ∞ and 0 < q ≤ ∞. The Lorentz space Lpq consists of all functions f
satisfying

‖f‖Lpq :=

(∫ ∞

0

t
q
p
−1(f ∗(t))qdt

) 1
q

<∞. (1)

Note that for the case p = q the Lpq spaces coincide with the usual Lp spaces equipped
with the norms ‖f‖Lp(quasinorms for 0 < p < 1, see [7] and [6]).
Let 0 < β ≤ ∞ and let λ be a nonnegative function on [0,∞]. Some generalized

Lorentz spaces Λq(ϕ), which can be obtained by replacing the function t
1
p
− 1

q in (1)
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by an some positive weight function ϕ(t), are frequently studied in the literature. In
this paper we shall use a special case introduced by L. -E. Persson in the Ph.D thesis
from 1974 (see [10] and also [3]) in connection to Fourier series.

The generalized Lorentz space Λβ(λ) ≡ Λβ(λ)[0, 1] consists of the functions f on
[0, 1] such that: ‖f‖Λβ(λ) <∞, where

‖f‖Λβ(λ) :=


(∫ 1

0

(
f ∗(t)tλ(1

t
)
)β dt

t

) 1
β

for 0 < β <∞,

sup
0≤t≤1

f ∗(t)tλ(1
t
) for β = ∞.

Let the function f be periodic with period 1 and integrable on [0, 1] and let Φ =
{ϕn}∞n=1 be an orthonormal system on [0, 1]. The numbers

an = an(f) =

∫ 1

0

f(x)ϕn(x)dx, n ∈ N,

are called the Fourier coefficients of the function f with respect to the system Φ =
{ϕn}∞n=1.

We also remark that there are many relations between summability of Fourier
coefficients and integrability of the corresponding functions e.g. the following two-
sided ones for the trigonometrical system:

‖f‖pLp[0,1] ≤ c1

∞∑
k=1

kp−2|ak|p, if 2 ≤ p <∞, (2)

‖f‖pLp[0,1] ≥ c2

∞∑
k=1

kp−2|ak|p, if 1 < p ≤ 2. (3)

The inequalities (2) and (3) are the classical ones, which can be found already in the
Hardy-Littlewood-Pólya book [1]. These inequalities were early generalized to hold
also for Lorentz spaces by Stein [15] and for the more general Lorentz spaces Λβ(λ)
by L. -E. Persson(see [10] and [3]):

Theorem 1. Let 0 < β <∞ and Φ =
{
e2πikt

}+∞
k=−∞ be a trigonometrical system.

a) If there exists a positive number δ > 0 satisfying such conditions like: λ(t)t−δ is

an increasing function of t and λ(t)t−( 1
2
−δ) is a decreasing function of t, then(

∞∑
n=1

(a∗nλ(n))β
1

n

) 1
β

≤ c1‖f‖Λβ(λ).

b) If there exists a positive number δ > 0 satisfying such conditions like: λ(t)t−
1
2
−δ is

an increasing function of t and λ(t)t−1+δ is a decreasing function of t, then

‖f‖Λβ(λ) ≤ c2

(
∞∑
n=1

(a∗nλ(n))β
1

n

) 1
β

,

where {a∗n}
∞
n=1 is the nonincreasing rearrangement of the sequence {|ak|}∞k=1 of Fourier

coefficients of f with respect to the system Φ.
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The aim of this paper is to derive some analogues of the inequalities (2) and (3)
both in the case of bounded orthonormal systems Φ = {ϕn}∞n=1 and for generalized
Lorentz spaces of type Λβ(λ).

Conventions. The letter c (c1, c2, etc.) means a constant which does not dependent
on the involved functions and it can be different in different occurences. Moreover,
for C,D > 0 the notation C ∼ D means that there exist positive constants a1 and a2

such that a1D ≤ C ≤ a2D.

2 The main result

Let δ > 0 and λ(t) be a nonnegative function on [1,∞) . We define the following
classes (see also [12]):

Aδ = {λ(t) : λ(t)t−δ is an increasing function and

λ(t)t−( 1
2
−δ)is a decreasing function

}
,

Bδ = {λ(t) : λ(t)t−
1
2
−δ is an increasing function and

λ(t)t−1+δ is a decreasing function
}
.

Then the classes A and B are defined as follows:

A = ∪δ>0Aδ, B = ∪δ>0Bδ.

In the sequel we denote by Φ = {ϕn}∞1 a bounded orthonormal system, i.e., |ϕn(t)| ≤
M,
t ∈ [0, 1] , n ∈ N. Our result reads:

Theorem 2. Let 0 < β ≤ ∞, and assume that the orthonormal system Φ = {ϕk}∞k=1

is bounded.
(a) If λ(t) belongs to the class A, then(

∞∑
n=1

(a∗nλ(n))β
1

n

) 1
β

≤ c1‖f‖Λβ(λ), (4)

where {a∗n}
∞
n=1 is the nonincreasing rearrangement of the sequence {ak}∞k=1 of Fourier

coefficients of f with respect to the system Φ.
(b) If λ(t) belongs to the class B and f

a.e.
=
∑∞

n=1 anϕn, then

‖f‖Λβ(λ) ≤ c2

(
∞∑
n=1

(a∗nλ(n)β
1

n

) 1
β

. (5)

Here the constants c1 and c2 don’t depend on f.
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Proof. (a) Let λ(t) belongs to the class A. This means that there exists δ > 0

such that: λ(t)t−δ is an increasing function and λ(t)t−( 1
2
−δ) is a decreasing function.

Suppose that the function f satisfies the condition:(∫ 1

0

(
f ∗(t)tλ

(
1

t

))β
dt

t

) 1
β

<∞.

Let f = f0 + f1, where f0 and f1 are defined later on. By using the inequalities

‖a‖l2∞ ≤ c1‖f‖L21 ,

‖a‖l∞ ≤ c2‖f‖L1 and

a∗n(f) ≤ a∗[n
2 ]

(f0) + a∗[n
2 ]

(f1), n = 1, 2, ...,

we estimate a∗n(f) from above as follows:

a∗n(f) ≤ a∗[n
2 ]

(f0) +

(
2

n

) 1
2 (n

2

) 1
2
a∗[n

2 ]
(f1) ≤

≤ c3

(∫ 1

0

f ∗0 (t)dt+
1

n
1
2

∫ 1

0

t−
1
2f ∗1 (t)dt

)
.

Define the functions f0 and f1 in the following way:

f0(t) =

{
f(t)− f ∗( 1

n
), as |f(t)| ≥ f ∗( 1

n
)

0, as |f(t)| < f ∗( 1
n
),

(6)

f1(t) =

{
f ∗( 1

n
), as |f(t)| > f ∗( 1

n
)

f(t), as |f(t)| ≤ f ∗( 1
n
).

(7)

Now, by using (6) and (7) we obtain that∫ 1

0

f ∗0 (t)dt =

∫ 1
n

0

(
f ∗(t)− f ∗

(
1

n

))
dt =

∫ 1
n

0

f ∗(t)dt−
f ∗( 1

n
)

n
, (8)

1

n
1
2

∫ 1

0

t−
1
2f ∗1 (t)dt =

1

n
1
2

(∫ 1
n

0

t−
1
2f ∗

(
1

n

)
dt+

∫ 1

1
n

t−
1
2f ∗(t)dt

)
= (9)

=
2f ∗( 1

n
)

n
+

1

n
1
2

∫ 1

1
n

t−
1
2f ∗(t)dt.

According to (8) and (9) we find that∫ 1
n

0

f ∗(t)dt−
f ∗( 1

n
)

n
+

2f ∗( 1
n
)

n
+

1

n
1
2

∫ 1

1
n

t−
1
2f ∗(t)dt =

=

∫ 1
n

0

f ∗(t)dt+
f ∗( 1

n
)

n
+

1

n
1
2

∫ 1

1
n

t−
1
2f ∗(t)dt ≤
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≤ 2

∫ 1
n

0

f ∗(t)dt+
1

n
1
2

∫ 1

1
n

t−
1
2f ∗(t)dt,

hence, by making a change of variables, we get that

2

∫ ∞

n

f ∗
(

1

n

)
dt

t2
+

1

n
1
2

∫ n

1

f ∗
(

1

t

)
dt

t−
1
2
+2
∼

∼

(
∞∑
k=n

f ∗
(

1

k

)
k−2 +

1

n
1
2

n∑
k=1

f ∗
(

1

k

)
1

k−
1
2
+2

)
. (10)

In view of (10) and Minkowski’s inequality we have that

I :=

(
∞∑
n=1

(a∗nλ(n))β
1

n

) 1
β

≤

≤ c4

 ∞∑
n=1

(
λ(n)

∞∑
k=n

f ∗
(

1

k

)
k−2 +

λ(n)

n
1
2

n∑
k=1

f ∗
(

1

k

)
1

k−
1
2
+2

)β
1

n

 1
β

≤

≤ c5

 ∞∑
n=1

(
λ(n)

∞∑
k=n

f ∗
(

1

k

)
k−2

)β
1

n

 1
β

+

+

 ∞∑
n=1

(
λ(n)

n
1
2

n∑
k=1

f ∗
(

1

k

)
1

k−
1
2
+2

)β
1

n

 1
β

:=

:= c5 (I1 + I2) . (11)

Firstly, we consider I1. Let ε be such that − 1
β
− 1 < ε < δ − 1

β
− 1. We use Hölder’s

inequality and since − 1
β
− 1 < ε, we have that

I1 ≤ c6

 ∞∑
n=1

λ(n)

(
∞∑
k=n

(
f ∗
(

1

k

)
kε
)β) 1

β

·

(
∞∑
k=n

(
1

kε+2

)β′) 1
β′
β

1

n


1
β

∼

∼

(
∞∑
k=1

(
f ∗
(

1

k

)
kε
)β k∑

n=1

λβ(n)n
β
β′−β(ε+2) 1

n

) 1
β

.

Hence, by using the fact that λ(t)t−δ is an increasing function, we obtain that

I1 ≤ c7

(
∞∑
k=1

(
f ∗
(

1

k

)
λ(k)

kδ
kε
)β k∑

n=1

n(δ−ε−1)β−2

) 1
β

.
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Thus, taking into account that ε < δ − 1
β
− 1, and by using some obvious estmates

we find that

I1 ≤ c8

(
∞∑
k=1

(
f ∗
(

1

k

)
λ(k)

k

)β
1

k

) 1
β

≤

≤ c9

(
∞∑
k=1

(
f ∗
(

1

k

)
λ(k)

)β ∫ k+1

k

dt

t1+β

) 1
β

≤

≤ c10

 ∞∑
k=1

∫ k+1

k

(
f ∗
(

1
t

)
λ(t)t−δ

t−δ+1

)β
dt

t

 1
β

= c10

(∫ ∞

1

(
f ∗
(

1

t

)
λ(t)

t

)β
dt

t

) 1
β

.

Consequently, we get that

I1 ≤ c10

(∫ 1

0

(
f ∗(t)tλ

(
1

t

))β
dt

t

) 1
β

. (12)

Let us now estimate I2. Choose ε such that 1
2
+ 1

β
< ε < 1

2
+ 1

β
+ δ. By using Hölder’s

inequality and that 1
2

+ 1
β
< ε, we find that

I2 =

 ∞∑
n=1

(
λ(n)

n
1
2

n∑
k=1

f ∗
(

1

k

)
1

k−
1
2
+2

)β
1

n

 1
β

≤

≤ c11

 ∞∑
n=1

λ(n)

n
1
2

(
n∑
k=1

(
f ∗
(

1

k

)
k−ε
)β) 1

β
(

n∑
k=1

1

k( 3
2
−ε)β′

) 1
β′
β

1

n


1
β

∼

∼

(
∞∑
n=1

λβ(n) · n(ε−1)β−2

n∑
k=1

(
f ∗
(

1

k

)
k−ε
)β) 1

β

=

= c12

(
∞∑
k=1

(
f ∗
(

1

k

)
k−ε
)β ∞∑

n=k

λβ(n)

n( 1
2
−δ)β

n( 1
2
−δ)βn(ε−1)β−2

) 1
β

.

Hence, by using the fact that λ(t)t−( 1
2
−δ) is a decreasing function and taking into

account that ε < 1
2

+ 1
β

+ δ we obtain that

I2 ≤ c12

(
∞∑
k=1

(
f ∗
(

1

k

)
k−ε

λ(k)

k
1
2
−δ

)β ∞∑
n=k

n(ε−δ− 1
2
)β−2

) 1
β

≤

≤ c13

(
∞∑
k=1

(
f ∗
(

1

k

)
λ(k)

k

)β
1

k

) 1
β

≤
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≤ c13

(∫ 1

0

(
f ∗(t)λ

(
1

t

)
t

)β
dt

t

) 1
β

. (13)

Thus, by combinig (11), (12) and (13) we prove (4).
(b) Let λ(t) belongs to the class B. This means that there exists δ > 0 such

that: λ(t)t−
1
2
−δ is an increasing function and λ(t)t−1+δ is a decreasing function. Let

a = {an}∞n=1 , a = a0 + a1, a0 = {a0
n}

∞
n=1 , a1 = {a1

n}
∞
n=1 , where

a0
n =

{
an, when |an| ≥ a∗

[ 1
t ]

0, when |an| < a∗
[ 1

t ]
,

(14)

and
a1
n = an − a0

n. (15)

Then

f ∗(t) =

(
∞∑
n=1

a0
nϕn

)∗

+

(
∞∑
n=1

a1
nϕn

)∗

≤

≤

(
M

∞∑
n=1

∣∣a0
n

∣∣)∗

+

(
M

∞∑
n=1

∣∣a1
n

∣∣)∗

.

Hence, according to (14) and (15), it yields that

f ∗(t) ≤M

[ 1
t ]∑

n=1

a∗n +M
∞∑

n=[ 1
t ]+1

a∗n.

By using this information and Minkowski’s inequality we find that

I0 :=

(∫ 1

0

(
f ∗(t)tλ

(
1

t

))β
dt

t

) 1
β

≤

≤M

∫ 1

0

 [ 1
t
]∑

n=1

a∗n +
∞∑

n=[ 1
t
]

a∗n

 tλ

(
1

t

)β

dt

t


1
β

=

≤M

∫ 1

0

tλ(1

t

) [ 1
t
]∑

n=1

a∗n

β

dt

t


1
β

+M

∫ 1

0

tλ(1

t

) ∞∑
n=[ 1

t
]

a∗n

β

dt

t


1
β

:=

:= M (I1 + I2) .

We consider first I1. Choose ε such that − 1
β
< ε < − 1

β
+ δ. Since λ (t) t−1+δ is a

decreasing function it yields that
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I1 =

∫ 1

0

λ(
1

t
)t

[ 1
t
]∑

n=1

a∗n

β

dt

t


1
β

=

=

∫ 1

0

tλ (1
t

) (
1
t

)−1+δ(
1
t

)−1+δ

[ 1
t
]∑

n=1

a∗n

β

dt

t


1
β

≤

≤ c1

∫ 1

0

tδ [ 1
t
]∑

n=1

λ (n)n−1+δa∗n

β

dt

t


1
β

=

= c2

∫ ∞

1

t−δ [t]∑
n=1

λ (n)n−1+δa∗n

β

dt

t


1
β

∼

∼

 ∞∑
k=1

k−δ [k]∑
n=1

λ (n)n−1+δa∗n

β

1

k


1
β

.

By now using Hölder’s inequality and the fact that − 1
β
< ε < − 1

β
+ δ, we derive that

I1 ≤ c2

 ∞∑
k=1

k−δ( k∑
n=1

(λ (n)nεa∗n)
β

) 1
β
(

k∑
n=1

n(−1+δ−ε)β′
) 1

β′
β

1

k


1
β

∼

∼

(
∞∑
k=1

k−δβk
(−1+δ−ε)β+ β

β′
1

k

k∑
n=1

(λ (n)nεa∗n)
β

) 1
β

=

= c3

(
∞∑
n=1

(λ (n)nεa∗n)
β

∞∑
k=n

k−εβ−2

) 1
β

∼

(
∞∑
n=1

(λ (n) a∗n)
β 1

n

) 1
β

.

Hence,

I1 ≤ c4

(
∞∑
n=1

(λ (n) a∗n)
β 1

n

) 1
β

. (16)

Our next aim is to derive a similar estimate for I2. Choose ε > 0 such that−δ− 1
β
+ 1

2
<

ε < − 1
β
. Since λ(t)t−

1
2
−δ is an increasing function, we obtain the following estimates:

I2 =

∫ 1

0

tλ(1

t

) ∞∑
n=[ 1

t
]

a∗n

β

dt

t


1
β

=
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=

∫ 1

0

 ∞∑
n=[ 1

t
]

a∗n

(1

t

)− 1
2
−δ (

1

t

) 1
2
+δ

λ

(
1

t

)
t

β

dt

t


1
β

≤

≤ c5

∫ 1

0

t 1
2
−δ

∞∑
n=[ 1

t
]

λ (n)n−
1
2
−δa∗n

β

dt

t


1
β

=

= c5

∫ ∞

1

t− 1
2
+δ

∞∑
n=[t]

λ (n)n−
1
2
−δa∗n

β

dt

t


1
β

∼

∼

 ∞∑
k=1

(
k−

1
2
+δ

∞∑
n=k

λ (n)n−
1
2
−δa∗n

)β
1

k

 1
β

.

Hence, we have that

I2 ≤ c6

(
∞∑
n=1

(a∗nλ(n))β
1

n

) 1
β

. (17)

By combining (16) with (17), we obtain (5) and the proof is complete. �

Remark. An analogous theorem was proved in 1974 by L. -E. Persson, under the
assumption that Φ =

{
e2πikx

}+∞
k=−∞ is a trigonometrical system and β <∞ (see [10]

and also [3]).
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