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Abstract. It is proved that for some semi-elliptic equations the solution can be
obtained as the limit when σ →∞, of the solution uσ of a boundary value problem in
the generalised ball Bσ,µ. Also an estimatie at infinity for the tempered fundamental
solution is obtained.

1 Introduction

Let Rn be the n-dimensional euclidean space of real vectors, Nn
0 – the set of multi-

indices, i.e., n-dimensional vectors α = (α1, ..., αn) with nonnegative integer com-
ponents. Furthermore, let m̄ = (m1, ...,mn) be a vector with natural components,

µ = ( 1
m1
, ..., 1

mn
), |µ| =

n∑
j=1

µj, µ0 = min
1≤j≤n

µj. If x, ξ ∈ Rn , α ∈ Nn
0 then we set

ξα = ξα1
1 · ... · ξαn

n , Dα = Dα1
1 ...Dαn

n , Dj = 1
i
∂
∂xj

(j = 1, ..., n),

(µ, α) =
n∑
j=1

µj αj, |x|µ =

(
n∑
j=1

|xj|
2

µj

) 1
2

.

Let P (D) be a linear differential operator of µ-order 2 with constant coefficients,
i.e. the symbol of P (D) is represented in the form P (ξ) =

∑
(µ,α)≤2

γαξ
α.

Definition. The operator P (D) is said to be semi-elliptic (see [3]), if there is a
constant χ > 0 such that∣∣∣∣∣∣

∑
(µ,α)=2

γαξ
α

∣∣∣∣∣∣ ≥ χ ( |ξ1|2/µ1 + ...+ |ξn|2/µn) for all ξ ∈ Rn.

Let P (D) be a semi-elliptic differential operator of µ-order 2 with constant coef-
ficients and Q(x,D) a differential operator of µ-order 2 with infinitely continuously
differentiable coefficients which vanish for |x|µ > a.
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In [4] the equation

[P (D) + Q(x,D)]u = f in Rn,

has been considered when P (ξ) 6= 0 for all ξ ∈ Rn. It has been shown that if for any
f ∈ L2,a,µ(Rn) (i.e. f ∈ L2(Rn), f(x) = 0 if |x|µ > a) there exists a solution u of
the above equation, then this solution is unique in the class of functions vanishing at
infinity.

Moreover, in [4] it has been proved that the boundary value problem in µ-ball

Bσ,µ =
{
x ∈ Rn; |x|µ < σ

}
P (D)uσ = f in Bσ,µ,

◦
uσ ∈ H m̄(Bσ,µ) ,

for sufficiently large σ > 0 has a unique solution uσ in the anisotropic Sobolev space
H2m̄(Bσ,µ) and for any fixed compact K

‖u − uσ ‖H2m̄(K) ≤ c e−γ σ
µ0σM ‖f‖L2,a,µ(Rn) ,

where c, γ, µ0, M are positive numbers which do not depend on f and σ.
The aim of the present paper is proving results of this type if P (ξ) 6= 0 for all

ξ ∈ Rn\ {0} but P (0) = 0. In Section 2 estimates for the tempered fundamental
solution will be proved. In Section 3 the case Q(x,D) ≡ 0 will be considered and,
finally, in Section 4 the main theorem for the general case will be proved.

Such results for elliptic equations have been obtained by L. Simon in [7].

2 Fundamental solution

It is clear that any linear differential operator P (D) of µ-order 2 one can represent
in the form

P (D) =
M∑
j=0

Pj(D) ≡
M∑
j=0

∑
(µ,α)=dj

γαD
α, (1)

where 2 = d0 > d1 > ... > dM ≥ 0. In this paper we suppose that operator (1) has
the form

P (D) =
l∑

j=0

Pj(D) (2)

where l < M and its symbol satisfies the conditions

P (ξ) 6= 0 for all ξ ∈ Rn\ {0} . (3)

Note that

P (0) = 0. (4)
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Theorem 1. Let operator (2) satisfy the following conditions:
a) P (D) is semi-elliptic operator satisfying conditions (3), (4);
b) Pl(ξ) 6= 0 for all ξ ∈ Rn\ {0};
c) 0 < dl < |µ|.
Then P (D) has a unique tempered fundamental solution E such that for any

fixed α the estimate

DαE(x) = O

(
1

|x||µ|−dl+(µ,α)
µ

)
, |x|µ →∞ (5)

holds.

Proof. By Theorem 1 of [5] we obtain

|ξ|2dj

µ = O
(
Pj(ξ)

2
)
, |ξ|µ → 0 , j = 0 , 1 , ..., l. (6)

Thus
1

P (ξ)
= O

(
1

|ξ|dl

µ

)
. (7)

Since dl < |µ| the function 1

|ξ|dl
µ

is integrable in a neighbourhood of zero (see [1], § 4),

so 1
P

is locally integrable in Rn. By semi-ellipticity of P , P0(ξ) 6= 0 for all ξ ∈
Rn\ {0} . Therefore 1

P
is a tempered distribution and the inverse Fourier transform

of (2π)−
n
2

1
P
, i.e.

E = (2π)−
n
2 F−1

[
1
P

]
,

is a fundamental solution of P (D).
It is well known, that two different fundamental solutions of P (D) differ from

each other by a distribution with support in the set {ξ ; P (ξ) = 0}. For the solutions
u of the equation P (D)u = 0, suppF [u] = {0} (see (3), (4)), thus F [u] has a unique
representation of the form (see [8], § 8.4)

F [u] =
∑

(µ,α)≤N

cαD
αδ

and so u is a polynomial. This implies the uniqueness of solutions of P (D)u = δ in
the class of functions, vanishing at infinity.

Let ψ ∈ C∞
0 (Rn) be such that ψ = 1 in a neighbourhood of zero. Then

E = E1 + E2 = (2π)−
n
2F−1

[
ψ

P

]
+ (2π)−

n
2F−1

[
1− ψ

P

]
. (8)

It is easy to verify, that for all α, β ∈ Nn
0∣∣xβDαE2

∣∣ = (2π)−
n
2

∣∣F−1[Dβ(ξα 1−ψ
P

)]
∣∣ .
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Note that exists R > 0 such that for all ξ ∈ Rn satisfying |ξ|µ ≥ R

1

P
=

1

P0

− P − P0

P 2
0

+ · · ·+ (−1)s
(P − P0)

s

P s+1
0

+ (−1)s+1 1

P

(P − P0)
s+1

P s+1
0

,

where s is an integer (see [6], § 12). We take s such that, when |ξ|µ → ∞ , the last

term tends to zero quicker than |ξ|−(|µ|+2)
µ . Then, as Dβ

(
ξα

P0

)
is a µ-homogeneous

function of degree (µ, α)− (µ, β)− 2 (see [1], § 4), we obtain

Dβ

(
ξα

1− ψ

P

)
= O

(
1

|ξ|2+ (µ,β)− (µ,α)
µ

)
, |ξ|µ →∞.

Therefore Dβ(ξα 1−ψ
P

) ∈ L1(Rn) for (µ, β) > |µ| − 2 + (µ, α). Thus for any α, β ∈ Nn
0

(xβDαE2)(x) = O(1) , |x|µ →∞. (9)

Consider the term E1 in (8). We have the equality∣∣xβDαE1

∣∣ = (2π)−
n
2

∣∣∣∣F−1[Dβ(ξα
ψ

P
)]

∣∣∣∣ . (10)

The function Dβ(ξα ψ
P
) is infinitely continuously differentiable in Rn\ {0} and has

compact support. Moreover

Dβ

(
1

|ξ|dl

µ

)
= O

(
1

|ξ|dl+(µ,β)
µ

)
, |ξ|µ → 0,

so

Dβ(ξα ψ
P
) = O

(
1

|ξ|dl + (µ,β)− (µ,α)
µ

)
, |ξ|µ → 0.

This implies that

Dβ

(
ξα
ψ

P

)
∈ L1(Rn) if (µ, β) < |µ| − dl + (µ, α),

hence by (10)
xβ (DαE1) (x) = O(1) , |x|µ →∞. (11)

In order to show (11) for (µ, β) = |µ| − dl + (µ, α) it suffices to prove that the
estimate

F−1

[
Dβ(ξα

ψ

P
)

]
= O(1)

holds at infinity. This follows since

Dβ

(
ξα
ψ

P

)
= Dβ

(
ξα
ψ

Pl

)
− Dβ

(
ξα
ψ(P − Pl)

P Pl

)
and
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Dβ(ξα ψ(P−Pl)
P Pl

) ∈ L1(Rn)

because at zero[
Dβ(ξα ψ(P−Pl)

P Pl
)
]
(ξ) = O

(
1

|ξ|
2dl − dl+1 + (µ,β)− (µ,α)
µ

)
= O

(
1

|ξ|
|µ|− ( dl+1− dl)
µ

)
.

Using integration by parts we get that for any test function ϕ in the Schwartz
space S (see [4])[

Dβ

(
ξα
ψ

Pl

)]
(ϕ) = lim

ε→+0

∫
Rn\Bε,µ

[
Dβ

(
ξα
ψ

Pl

)]
(ϕ) d ξ − c ϕ(0), (12)

where c is a complex number depending only on P . For the functions

gk(ξ) =

{
Dβ
(
ξα ψ

Pl

)
, |ξ|µ ≥

1
k

0, |ξ|µ <
1
k

, k = 1, 2, . . .

it follows by equality (12) that the sequence gk tends to the distribution Dβ(ξα ψ
Pl

)−cδ
in the sense of the space S ′ of tempered distributions. Thus the sequence F−1[gk]
tends to F−1[Dβ(ξα ψ

Pl
) ] − c F−1[δ] in the sense of S ′. Since F−1[δ] = 1 , for the

boundedness of F−1[Dβ(ξα ψ
Pl

) ] it is suffices to prove that there exists a constant
λ such that for any x

|(F−1[gk])(x)| ≤ λ if k ≥ k0(x).

By the definition of gk

F−1[gk](x) = (2π)−n/2
∫

|ξ|µ≥
1
k

ei(x,ξ)
[
Dβ
ξ

(
ξα
ψ

Pl

)]
dξ.

By the first part of the proof it follows that the functions F−1[gk] − (2π)−
n
2 hk(x),

where

hk(x) =

∫
|ξ|µ≥

1
k

ei(x,ξ) ψ(ξ)Dβ

(
ξα

Pl

)
dξ,

are uniformly bounded, so it suffices to show that there exists a number λ > 0 such
that

|hk(x) | ≤ λ if k ≥ k0(x). (13)

Let the function ψ have the special form: ψ(ξ) = ψ0

(
|ξ|µ
)

and suppose that

ψ0 ≥ 0 , ψ0(r) = 0 if r > b. Then applying µ-spherical (generalized spherical)
transformation of coordinates [1], we obtain

hk(x) =

b∫
1/k

 ∫
|θ|µ=1

ei(x,r
µθ)ψ0(r)

[
Dβ
ξ

(
ξα

Pl

) ∣∣∣∣
ξ=rµ θ

]
r|µ|−1

n∑
i=1

µ2
i θi dθ

]
dr =
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=

∫
|θ|µ=1

g(θ)

 b∫
1/k

ei(x,r
µθ)

r
ψ0(r) dr

 dθ, (14)

where

g(θ) = Dβ
(
ξα

Pl

) ∣∣∣
ξ=rµθ

n∑
i=1

µ2
i θi r

|µ| .

The function g(θ) does not depend on r, since Dβ
(
ξα

Pl

)
is a µ−homogeneous function

of degree (µ, α)− (µ, β)− dl = − |µ|.
Formula (14) implies that

hk(x) =

∫
|θ|µ=1

g(θ)

 b∫
1/k

ei (x , r
µθ) − 1

r
ψ0(r) dr

 dθ +

+

 ∫
|θ|µ=1

g(θ) dθ


 b∫
1/k

1

r
ψ0(r) dr

 .
The first term in the right-hand side and hk are convergent in S ′ as k → ∞ so the
second term is also convergent in S ′ which implies that∫

|θ|µ=1

g(θ) dθ = 0. (15)

We shall consider hk for the case of x = (0, ..., 0, xn), since the general case can
be reduced to this one by a simple transformation of the coordinates. In this case

hk(x) =

∫
|θ|µ=1

g(θ)

 b∫
1/k

ei xn · rµnθn − 1

r
ψ0(r) dr

 dθ =

=

∫
|θ|µ=1

g(θ)


b (xnθn)mn∫
(xnθn)mn

k

ei σ
µn − 1

σ
ψ0

(
σ

(xnθn)mn

)
dσ

 dθ.

Thus

hk(x) =

∫
|θ|µ=1

g(θ)


b (xnθn)mn∫
(xnθn)mn

k

ei σ
µn − 1

σ
(ψ0 − 1)

(
σ

(xnθn)mn

)
dσ

 dθ +
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+

∫
|θ|µ=1

g(θ)


b (xnθn)mn∫
(xnθn)mn

k

ei σ
µn − 1

σ
dσ

 dθ. (16)

The first term in the right-hand side of (16) is uniformly bounded, because there
exists a number c1 such that

(ψ0 − 1)

(
σ

(xnθn)mn

)
= 0 if

∣∣∣∣ σ

(xnθn)mn

∣∣∣∣ < c1.

Using the inequalities

1

|σ|
≤ 1

c1

∣∣∣ σ
(xnθn)mn

∣∣∣ ,
∣∣(eiσµn − 1)(ψ0 − 1)

∣∣ ≤ c2,

we get ∣∣∣∣∣∣∣∣
b (xnθn)mn∫
(xnθn)mn

k

ei σ
µn − 1

σ
(ψ0 − 1)

(
σ

(xnθn)mn

)
dσ

∣∣∣∣∣∣∣∣ ≤
≤ c2(b−

1

k
) |(xnθn)mn| · 1

c1 |(xnθn)mn|
≤ c2

c1
b, (17)

where c2 > 0 is independent of σ.
The second term in the right-hand side of (16) can be written in the form

∫
|θ|µ=1

g(θ)


b (xnθn)mn∫
(xnθn)mn

k

ei σ
µn − 1

σ
dσ

 dθ =

=

∫
|θ|µ=1

g(θ)


sgn( (xnθn)mn )∫

(xnθn)mn

k

ei σ
µn − 1

σ
dσ

 dθ +

+

∫
|θ|µ=1

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn − 1

σ
dσ

 dθ. (18)

Since g(θ) is bounded and∣∣∣∣∣∣∣∣
sgn((xnθn)mn )∫

(xnθn)mn

k

ei σ
µn − 1

σ
dσ

∣∣∣∣∣∣∣∣ ≤ sup
|σ|≤1

∣∣∣∣ei σµn − 1

σ

∣∣∣∣ if k ≥ (xnθn)
mn ,
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we have the estimate of the form∣∣∣∣∣∣∣∣
∫

|θ|µ=1

g(θ)


sgn( (xnθn)mn )∫

(xnθn)mn

k

ei σ
µn − 1

σ
dσ

 dθ

∣∣∣∣∣∣∣∣ ≤ λ if k ≥ |xmn
n | . (19)

Finally we have

∫
|θ|µ=1

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn − 1

σ
dσ

 dθ =

=

∫
|θ|µ=1

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn

σ
dσ

 dθ−

−
∫

|θ|µ=1

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

1

σ
dσ

 dθ. (20)

Equality (15) implies that the second term in the right-hand side of (20) is bounded.
Indeed ∣∣∣∣∣∣∣

∫
|θ|µ=1

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

1

σ
dσ

 dθ

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
∫

|θ|µ=1

g(θ) ln

∣∣∣∣b |xmn
n |

(
xmn
n

|xmn
n |

· θmn
n

)∣∣∣∣ dθ
∣∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣∣
∫

|θ|µ=1

g(θ) ln

∣∣∣∣ xmn
n

|xmn
n |

· θmn
n

∣∣∣∣ dθ
∣∣∣∣∣∣∣ ≤ sup |g|

∣∣∣∣∣∣∣
∫

|θ|µ=1

ln

∣∣∣∣ xmn
n

|xmn
n |

· θmn
n

∣∣∣∣ dθ
∣∣∣∣∣∣∣ , (21)

where
∫

|θ|µ=1

ln
∣∣∣ xmn

n

|xmn
n | · θ

mn
n

∣∣∣ dθ is bounded.

Furthermore ∫
|θ|µ=1

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn

σ
dσ

 dθ =

=

∫
|(xnθn)mn | ≥ 1/b

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn

σ
dσ

 dθ+
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+

∫
|(xnθn)mn |<1/b

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn

σ
dσ

 dθ . (22)

The terms in the right-hand side of (22) can be estimated as follows: if |(xnθn)mn| ≥
1/b, i.e. |b(xnθn)mn| ≥ 1, then

b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn

σ
dσ = mn

[
ei b xn θn

i xn θn
− ei sgn((xnθn)mn )

sgn ((xnθn)mn)

]
+

+

b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn

iσµn+1
dσ, (23)

which is uniformly bounded since
∞∫
1

1
σ1+µn dσ <∞. Moreover

∫
|(xnθn)mn |< 1/b

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn

σ
dσ

 dθ =

=

∫
|(xnθn)mn |< 1/b

g(θ)

 b (xnθn)mn∫
sgn((xnθn)mn )

ei σ
µn − 1

σ
dσ

 dθ+

+

∫
|(xnθn)mn |< 1/b

g(θ)

[
ln b + ln

∣∣∣∣ xmn
n

|xmn
n |

θmn
n

∣∣∣∣ + ln |xmn
n |
]
dθ , (24)

where the first term in the right-hand side and the function g(θ) ln b are bounded and
the integral ∫

|(xnθn)mn |< 1/b

g(θ) ln

∣∣∣∣ xmn
n

|xmn
n |

θmn
n

∣∣∣∣ dθ
is uniformly bounded, because the integral∫

|θ|µ=1

ln

∣∣∣∣ xmn
n

|xmn
n |

· θmn
n

∣∣∣∣ dθ
is finite and does not depend on x.

Finally the expression

ln |xmn
n |

∫
∣∣∣∣ x

mn
n

|xmn
n | θ

mn
n

∣∣∣∣ < 1
b |xmn

n |

g(θ) dθ = ln |xmn
n | · O

(
1

|xmn
n |

)



68 G.V. Dallakyan

is also uniformly bounded.
Therefore formulas (14)–(24) imply inequality (11) for (µ, β) = |µ| − dl + (µ, α),

which together with inequality (9) completes the proof of the theorem. �

Remark 1. Here is an example of differential operator satisfying the conditions of
Theorem 1:

P (D) = D8
1 + D4

2 + D4
3 + D4

1 − D2
2 − D2

3.

The following theorem can be proved similarly.

Theorem 2. Let P (D) =
∑

(µ,α)≤2

γαD
α be a semi-elliptic operator with constant

coefficients.
Then, for any tempered fundamental solution E of P (D), the distributional deriva-

tives DαE are locally integrable functions in Rn if (µ, α) < 2 and the estimate

DαE(x) = O

(
1

|x||µ|−2+ (µ,α)
µ

)
, |x|µ → 0

holds.

Remark 2. It is known (see e.g. [2]) that on Rn\{0} E is an infinitely continuously
differentiable function in the classical sense.

3 Equations with constant coefficients

For any domain Ω ⊂ Rn denote by Hm̄(Ω) the anisotropic Sobolev space of functions
with the finite norm

‖u ‖m̄,Ω = ‖u ‖Ω +
n∑
i=1

‖Dmi
i u ‖Ω , (25)

where ‖ · ‖Ω is the norm of the space L2(Ω). The closure of the set C∞
0 (Ω) in norm

(25) we denote by
◦
H m̄(Ω).

Let

Bσ,µ =
{
x ∈ Rn ; |x|µ < σ

}
, Sσ,µ =

{
x ∈ Rn; |x|µ = σ

}
,

L2,a,µ(Rn) =
{
f ∈ L2(Rn); f(x) = 0 if, |x|µ > a

}
.

Lemma 1. Suppose that the operator P (D) satisfies the conditions of Theorem 2 and
f ∈ L2,a,µ(Rn).

Then the equation
P (D)u = f in Rn (26)

has a unique solution u ∈ H2m̄(Rn), tending to zero at infinity. Moreover

u(x) = O

(
1

|x||µ|−dl

µ

)
.
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This solution u can be representedas u = E ∗ f , where E is the fundamental solution
in Theorem 1 and for any compact K ⊂ Rn the inequality

‖u ‖2m̄,K ≤ c(K) ‖ f ‖L2,a,µ(Rn) (27)

holds, where c(K) > 0 is independent of f .

Proof. We have to prove only estimate (27), since the other statements of Lemma 1
follow by Theorem 1. Let (µ, α) < 2. In virtue of Theorem 2 DαE is locally integrable
in Rn, so

Dαu(x) =

∫
Ba,µ

f(y)DαE(x− y)dy.

Thus by Young’s inequality

|Dαu(x) |2 ≤
∫
Ba,µ

|f(y)|2 |DαE(x− y)| dy ·
∫
Ba,µ

|DαE(x− y)| dy.

For any b > 0 we have

∫
Bb,µ

|Dαu(x) |2 dx ≤ c1

∫
Ba,µ

|f(y)|2
∫
Bb,µ

|DαE(x− y)| dx

 dy ≤

≤ c2

∫
Ba,µ

|f(y)|2 dy ,

where c1 and c2 = c2(b) are positive constants. Therefore, for (µ, α) < 2 and any
b > 0,

‖Dαu‖Bb,µ
≤ c(b) ‖f‖L2,a,µ(Rn) . (28)

Let ψ ∈ C∞
0 (Rn) be equal to 1 in a neighbourhood of compact K, suppψ ⊂ Bb,µ.

Then

‖u‖2m̄,K ≤ ‖ψ u‖2m̄,Bb,µ
≤ c2(b) [ ‖P (D)(ψ u)‖Bb,µ

+ ‖ψ u‖Bb,µ
] ≤

≤ c3 [ ‖f‖L2,a,µ(Rn) + ‖u ‖
′

2m̄,Bb,µ
] ,

(29)

where ‖u‖
′

2m̄,Bb,µ
=

∑
(µ,α)<2

‖Dαu‖Bb,µ
. From (28) and (29) we get inequality (27). �

For |µ| > 2dl another estimate can be proved for the solution of equation (26).

Lemma 2. Suppose that the operator P (D) satisfies the conditions of Theorem 1,
|µ| > 2dl and f ∈ L1(Rn) ∩ L2(Rn).

Then equation (26) has a unique solution u ∈ H2m̄(Rn) and the following estimate
is valid

‖u ‖2m̄,Rn ≤ c
[
‖f‖L1(Rn) + ‖f‖L2(Rn)

]
, (30)

where c > 0 is independent of f .
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Proof. Since u = E ∗ f = F−1[ 1
P
F [f ]] is a solution of equation (26), by Lemma 1 we

have only to prove that u ∈ H2m̄(Rn) and estimate (30) holds.
Parceval’s equality and the equivalence∑

(µ,α)≤2

| ξα| ∼ 1 + |ξ|2µ

imply that

‖u ‖2 m̄,Rn ∼
∥∥∥ (1 + |ξ|2µ)F [u](ξ)

∥∥∥
Rn
. (31)

Formula (7) and the semi-ellipticity of P (D) imply that

1 + |ξ|2µ
|P (ξ)|2

|F [f ] |2 ≤ c1 |F [f ] |2 if |ξ|µ > 1

and

(1 + |ξ|µ)2

|P (ξ)|2
|F [f ]|2 ≤ c2

|ξ|2dl

µ

|F [f ]|2 ≤ c2

|ξ|2dl

µ

|sup(F [f ])|2 ≤ c3

|ξ|2dl

µ

‖f‖2
L1(Rn)

if |ξ|µ < 1. Since |µ| > 2dl, estimate (30) follows by these inequalities and (31). �

For any σ > 0 consider the following boundary value problem of variational type

P (D)uσ = f in Bσ,µ , (32)

◦
uσ ∈ H m̄(Bσ,µ). (33)

Theorem 3. Suppose that the operator P (D) satisfies the conditions of Theorem 1
and the polynomial P (ξ) has the form

P (ξ) =
∑

(µ,α)≤1
(µ,β)≤1

γα,βξ
α+β,

where γα,β ∈ R, and for any sequence of complex numbers (ζ0, ..., ζα, ...) 6= 0 the
following inequalities∑

(µ,α)=1
(µ,β)=1

γα,β ζαζβ > 0,
∑

(µ,α)<1
(µ,β)<1

γα,β ζαζβ ≥ 0 (34)

hold.
Then for arbitrary f ∈ L1(Rn)∩L2(Rn) and σ > 0 problem (32)–(33) has a unique

solution
2m̄

uσ ∈ H(Bσ,µ).
Moreover, if |µ| > 2dl and 2µ0 > µi (i = 1, ..., n), then for every fixed compact

K ⊂ Rn and (µ, τ) ≤ 2

sup
K

|Dτ u − Dτ uσ | ≤ c(K)

σ
|µ|
2
−2−dl+(µ,τ)

(
‖f‖L1(Rn) + ‖f‖L2(Rn)

)
. (35)

where c(K) > 0 is independent of f and σ.
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Proof. The function uσ ∈ H2m̄(Bσ,µ) is a solution of problem (32)–(33) if and only
if function ũσ, defined by ũσ(y) = uσ(y σ

µ) satisfies the problem∑
(µ,α)≤1
(µ,β)≤1

γα,β
σ(µ,α)+(µ,β)

Dα+β ũσ = f̃σ in B1,µ, (36)

◦
uσ ∈ H m̄(B1,µ) (37)

where f̃σ(y) = f(y σµ). Conditions (34) imply the uniqueness of the solution of
(36)–(37), because multiplying equation (36) by ũ we get the estimate∥∥∥f̃σ∥∥∥

B1,µ

‖ũσ‖B1,µ
≥

∫
B1,µ

f̃σũσ =
∑

(µ,α)≤1
(µ,β)≤1

γα,β

∫
B1,µ

Dαũσ
σ(µ,α)

(
Dβũσ
σ(µ,β)

) ≥

≥ 1

σ2

∫
B1,µ

∑
(µ,α)=1
(µ,β)=1

γα,β(D
αũσ)(Dβũσ) ≥ c1

σ2

∫
B1,µ

∑
(µ,α)=1

(Dαũσ)
2 ≥

≥ c2
σ2

‖ũσ‖2
m̄,B1,µ

, (38)

where c1 and c2 are positive constants.
Therefore for some constant c3 > 0

‖ ũσ ‖B1,µ
≤ c3σ

2
∥∥∥ f̃σ∥∥∥

B1,µ

. (39)

Thus for any f̃σ ∈ L2(B1,µ) there exists a unique function
◦

ũσ ∈ H m̄(B1,µ) such that∑
(µ,α)≤1
(µ,β)≤1

γα,β
σ(µ,α)+(µ,β)

∫
B1,µ

(Dαũσ)( Dβv ) =

∫
B1,µ

f̃σv̄,

for all v ∈
◦
H m̄(B1,µ), which means that we proved the existence of the solution

ũσ ∈ H2m̄(B1,µ) of problem (36)–(37).
Equation (36) can be written in the form∑

(µ,α)≤1
(µ,β)≤1

γα,β σ
2− (µ,α)− (µ,β)Dα+β ũσ + σ2 ũσ = σ2 f̃σ + σ2 ũσ. (40)

For the characteristic polynomial of the differential operator in (40)

P (ξ) + σ2 > 0 , if ξ ∈ Rn ,

hence in virtue of the results of [4] we get the estimate
2m0∑
k=0

σ2km0

 ∑
(µ,α)≤2− kµ0

‖Dα ũσ ‖2
B1,µ


1/2

≤ c σ2

[ ∥∥∥f̃σ∥∥∥
B1,µ

+ ‖ ũσ‖B1,µ

]
.

where c is a positive constant. Inequality (39) implies that
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∑
(µ,α)≤ 2− kµ0

‖Dα ũσ ‖B1,µ
≤ c σ4−kµ0

∥∥∥ f̃σ∥∥∥
B1,µ

and so if (µ, α) ≤ 2− µ0

‖Dαuσ‖L2(Sσ,µ) ≤ σ
|µ|−µ0

2
− (µ,α) ‖Dαũσ‖L2(S1,µ) ≤

≤ c4 σ
|µ|−µ0

2
− (µ,α) σ2+ (µ,α)+µ0

∥∥∥ f̃σ ∥∥∥
B1,µ

≤ c5 σ
µ0
2

+2 ‖ f ‖Bσ,µ
. (41)

where c4, c5 are positive constants.
Let x0 ∈ Bσ,µ. Since 2µ0 > µi (i = 1, ..., n) by applying Green’s formula from [4]

for the difference of the solutions ϑσ = u− uσ we get

|ϑσ(x0)| =

∣∣∣∣∣∣∣
∑

µ0≤ (µ,α)+(µ,β)≤ 2−µ0

∫
Sσ,µ

gα,β(
x

|x|µ
)Dαϑσ(x)D

βE(x0 − x) dS

∣∣∣∣∣∣∣ ≤

≤
∑

µ0≤ (µ,α)+(µ,β)≤ 2−µ0

∫
Sσ,µ

∣∣∣∣∣ gα,β( x

|x|µ
)

∣∣∣∣∣ |Dα u(x)|
∣∣Dβ E(x0 − x)

∣∣ dS +

+
∑

µ0≤ (µ,α)+(µ,β)≤ 2−µ0

∫
Sσ,µ

∣∣∣∣∣gα,β( x

|x|µ
)

∣∣∣∣∣ |Dα uσ(x)|
∣∣Dβ E(x0 − x)

∣∣ dS ≤

≤ c6
∑

µ0≤(µ,α)+(µ,β)≤2−µ0

[(
‖Dαu‖L2(Sσ,µ) + ‖Dαuσ‖L2(Sσ,µ)

)∥∥DβE(x0 − x)
∥∥
L2(Sσ,µ)

]
,

(42)
where c6 does not depend on x0, since the coefficients gα,β are bounded functions.

Let K ⊂ Rn be a fixed compact, x0 ∈ K. Then by Theorem 1 for (µ, β) ≤ 2− µ0

DβE(x0 − x) = O

(
1

|x||µ|−dl+(µ,β)
µ

)
,

hence ∥∥DβE(x0 − x)
∥∥
Sσ,µ

= O

(
1

σ
|µ|+µ0

2
−dl+(µ,β)

)
. (43)

Moreover, Lemma 2 implies that for (µ, α) ≤ 2− µ0

‖Dαu‖L2(Sσ,µ) ≤ c7σ
µ0
2 ‖u‖2m̄,B1,µ

≤ c7σ
µ0
2 ‖u ‖2m̄,Rn ≤

≤ c8σ
µ0
2 [ ‖f‖L1(Rn) + ‖f‖L2(Rn)], (44)

where c8 > 0 is independent of f .
By estimates (40)–(44) we get inequality (35) in the case τ = 0. Similarly in-

equality (35) can be proved for arbitrary multi-index τ satisfying (µ, τ) ≤ 2. �
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4 Equations with variable coefficients

In this paragraph the equation of the form

A(x,D)u = f, (45)

will be considered, where A(x,D) ≡ P + λQ , P = P (D) is the operator in
Theorem 1, Q = Q(x,D) is a linear diifferential operator of µ - order not higher
than 2 with infinitely continuously differentiable coefficients, vanishing for |x|µ ≥ a,
f ∈ L2,a,µ(Rn), and λ is a complex number.

It is clear, that the operator P + λQ is semi-elliptic when |λ| is sufficiently small.
Denote by Λ the set of all λ such that the operator P +λQ is semi-elliptic. Obviously,
Λ is an open set. Denote by Λ0 the set of all connected components of Λ, which contain
the point λ = 0. It is easy to see that if µ-order of Q(x,D) is less than 2, then Λ0 is
the whole complex plane.

Denote by P−1ω the (unique) solution of the equation Pu = ω, which vanishes at
infinity, i.e. u = E ∗ ω, where E is the fundamental solution in Theorem 1.

Using the method of [4] we get the following lemma.

Lemma 3. Let the operator P satisfy the conditions of Theorem 1, and Q(x,D)
satisfy the above conditions.

Then for any λ ∈ Λ0 a function u is a solution of (45), vanishing at infinity, if
and only if ω = Pu is a solution of the equation

ω + λ QP−1ω = f (46)

in L2,a,µ(Rn).

Consider next the following problem

A(x,D)uσ = f in Bσ,µ, (47)

◦
uσ ∈ H m̄(Bσ,µ). (48)

Theorem 4. Suppose that the conditions of Theorem 1 and Lemma 3 are satisfied
and λ ∈ Λ0 is a fixed number.

Then there exists σ0 > 0 such that for all σ ≥ σ0 and f ∈ L2,a,µ(Rn) problem (47)–
(48) has a unique solution uσ ∈ H2m̄(Bσ,µ) and if |µ| > 2dl, m0 < 2mi (i = 1, ..., n),
then for any compact K ⊂ Rn

‖u − uσ ‖2m̄,K ≤ c1(K)

σ
|µ|
2
−2−dl

‖f‖L2,a,µ(Rn) , (49)

where c1(K) > 0 is independent of f and σ.

Proof. In virtue of Theorem 3 for any f ∈ L2, a,µ(Rn) the problem

P vσ = f in Bσ,µ, (50)
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◦
vσ ∈ H m̄(Bσ,µ). (51)

has a unique solution vσ ∈ H2m̄(Bσ,µ). Denote the solution of (50)–(51) by P−1
σ f .

Then P−1
σ : L2,a,µ(Rn) → H2m̄(Bσ,µ) is a bounded linear operator and by estimate (35)

it follows that for any compact K ⊂ Rn∥∥(P−1
σ − P−1)f

∥∥
2m̄,K

≤ c2

σ
|µ|
2
−2−dl

‖f‖L2,a,µ(Rn) , (52)

where c2 > 0 is independent of f and σ.
Consequently, the difference of the operators

G = I + λ0QP
−1 , Gσ = I + λ0QP

−1
σ

mapping L2, a,µ(Rn) into itself (I – denotes the identity operator in L2,a,µ(Rn)), can
be estimated as follows

‖Gσ − G ‖ ≤
∥∥λ0Q(P−1

σ − P−1)
∥∥ ≤ c3

σ
|µ|
2
− 2− dl

. (53)

By Lemma 3 it follows that the inverse of G exists and G−1 : L2,a,µ(Rn) →
L2,a,µ(Rn) is a bounded linear operator. Therefore estimate (53) implies that for
sufficiently large σ also the inverse G−1

σ exists and G−1
σ : L2,a,µ(Rn) → L2,a,µ(Rn)

is a bounded linear operator. Since the equality uσ = P−1
σ ωσ defines an one-to-

one mapping between the solutions uσ ∈ H2m̄(Bσ,µ) of (47)–(48) and the solutions
ωσ ∈ L2,a,µ(Rn) of the equation Gσωσ = f , for sufficiently large σ and arbitrary
f ∈ L2,a,µ(Rn) problem (47)–(48) has a unique solution.

The difference of the solutions uσ = P−1
σ G−1

σ f and u = P−1G−1f can be estimated
as follows. By (53) the number σ0 > 0 can be chosen such that for σ > σ0

‖Gσ −G ‖ ≤ 1
2 ‖G−1‖ and so ‖G−1(Gσ −G) ‖ ≤ 1

2
.

Hence ∥∥G−1
σ

∥∥ −
∥∥∥ { G [I +G−1(Gσ −G)

] }−1
∥∥∥ =

=
∥∥∥ [ I +G−1(Gσ −G)

]−1
G−1

∥∥∥ ≤ 2
∥∥G−1

∥∥
and

‖G−1
σ −G−1 ‖ = ‖G−1

σ (G−Gσ)G
−1‖ ≤ 2 ‖G−1‖2 ‖Gσ −G ‖ .

This estimate and (53) imply that∥∥G−1
σ −G−1

∥∥ ≤ c4

σ
|µ|
2
− 2− dl

,

where c4 > 0 is independent of σ.
Therefore by (52) we get (49). Indeed

‖u− uσ‖2m̄,K =
∥∥[(P−1

σ − P−1
)
G−1
σ + P−1

(
G−1
σ −G−1

)]
f
∥∥

2m̄,K
≤

≤ c2

σ
|µ|
2
−2−dl

∥∥G−1
σ f

∥∥
L2,a,µ(Rn)

+ c5
∥∥(G−1

σ −G−1
)
f
∥∥
L2,a,µ(Rn)

≤

≤ c6

σ
|µ|
2
−2−dl

‖f‖L2,a,µ(Rn) ,

where c6 > 0 is independent of f and σ. �



On approximation of solutions of some semi-elliptic equations in Rn 75

References

[1] O.V. Besov, V.P. Il’in, S.M. Nikol’skii, Integral representations of functions and embedding
theorems. John Wiley and Sons, New York, v. 1, 1978, v. 2, 1979.

[2] V.V. Grushin, On fundamental solutions of hypoelliptic equations. Uspekhi Math. Nauk, 16,
no. 4 (1961), 147 – 153 (in Russian).
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