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Abstract. It is proved that for some semi-elliptic equations the solution can be
obtained as the limit when o — o0, of the solution u, of a boundary value problem in
the generalised ball B, . Also an estimatie at infinity for the tempered fundamental
solution is obtained.

1 Introduction

Let R"™ be the n-dimensional euclidean space of real vectors, N§ — the set of multi-
indices, i.e., n-dimensional vectors a@ = (ay, ..., ;) with nonnegative integer com-
ponents. Furthermore, let m = (my,...,m,) be a vector with natural components,

= (m%, ), 1l =3 g, o = 1r<rli£1 pi. lfz,£ € R*, o € Nj then we set
n j=1 <j<n

X =& Lo DO‘:D?l...Dg”, Dj:%% (j:l,...,n),

- 51 n
n n 2 %
(m0) =Y way, o], = (Z%’\“) :
j=1 j=1

Let P(D) be a linear differential operator of p-order 2 with constant coefficients,

i.e. the symbol of P(D) is represented in the form P(§) = > 7.&%.
(k,0)<2

Definition. The operator P(D) is said to be semi-elliptic (see [3]), if there is a
constant x > 0 such that

S | = a4 6 forall € € R
(1,00)=2

Let P(D) be a semi-elliptic differential operator of p-order 2 with constant coef-
ficients and Q(x, D) a differential operator of p-order 2 with infinitely continuously
differentiable coefficients which vanish for |z[, > a.
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In [4] the equation
[P(D) + Q(z,D)]u = f n R",

has been considered when P(§) # 0 for all £ € R™. It has been shown that if for any
[ € Logu(R") (ie. f € Ly(R"), f(z) = 0if |z[, > a) there exists a solution u of
the above equation, then this solution is unique in the class of functions vanishing at
infinity.

Moreover, in [4] it has been proved that the boundary value problem in p-ball

B, = {mER"; ||, <0}

uy € H™(B,,) ,
for sufficiently large o > 0 has a unique solution u, in the anisotropic Sobolev space

H*™(B,,) and for any fixed compact K

I =t lgongey < e ™ Ifllp,,, @ »

where ¢, 7, po, M are positive numbers which do not depend on f and o.

The aim of the present paper is proving results of this type if P(£) # 0 for all
¢ € R"\{0} but P(0) = 0. In Section 2 estimates for the tempered fundamental
solution will be proved. In Section 3 the case Q(x, D) = 0 will be considered and,
finally, in Section 4 the main theorem for the general case will be proved.

Such results for elliptic equations have been obtained by L. Simon in [7].

2 Fundamental solution
It is clear that any linear differential operator P(D) of u-order 2 one can represent

in the form
P(D) = > Pi(D) = > > 1D (1)

j=0 i=0 (ia)=d,

where 2 =dy > dy > ... > dy > 0. In this paper we suppose that operator (1) has
the form

P(D) = Y P(D) (2)
where [ < M and its symbol satisfies the conditions

P() #0 forall £ € R"\{0}. (3)

Note that
P(0) = 0. (4)
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Theorem 1. Let operator (2) satisfy the following conditions:

a) P(D) is semi-elliptic operator satisfying conditions (3), (4);

b) P(§) £ 0 forall &€ R™\{0};

C) 0< dl < |[L|

Then P(D) has a unique tempered fundamental solution E such that for any
fixed o the estimate

o 1
D E(ﬁ) =0 (W) s |$|M — OO (5)
"

holds.

Proof. By Theorem 1 of [5] we obtain

€55 = O (P(&)?), 1€, —0, j=0,1,..L (6)

1 1
P =0 (ﬁ G

Since d; < |u| the function ﬁ is integrable in a neighbourhood of zero (see [1], § 4),
m

so + is locally integrable in R™. By semi-ellipticity of P, Py(§) # 0 forall ¢ e
R™\ {0}. Therefore & is a tempered distribution and the inverse Fourier transform

’ P
of (2m) 2 5, i.e.

Thus

E=(2mn)"2F']|

]

-

is a fundamental solution of P(D).

It is well known, that two different fundamental solutions of P(D) differ from
each other by a distribution with support in the set {¢; P(£) = 0}. For the solutions
u of the equation P(D)u =0, supp F[u] = {0} (see (3), (4)), thus F[u] has a unique
representation of the form (see [8], § 8.4)

Flul= Y caD

(n,0)<N

and so u is a polynomial. This implies the uniqueness of solutions of P(D)u = ¢ in
the class of functions, vanishing at infinity.
Let 1 € C§°(R™) be such that ¢ = 1in a neighbourhood of zero. Then

E=FE +FE,=2r) :F! {%} + (2m) 2 F ! {%] : (8)

It is easy to verify, that for all a, 8 € N}

n

a® D°E,| = (2m)7% |[FTY[DP(¢a120)]) .
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Note that exists R > 0 such that for all £ € R" satisfying |¢| =R

1 1 P— P
— = - O h (=)

- s(P_PO)S
P B P2

s+1
PO

. 1 (P _ Po)s—i-l
+ (_1> i F P5+1 )
0

where s is an integer (see [6], § 12). We take s such that, when [¢], — oo, the last

term tends to zero quicker than ]f\;(“‘l”). Then, as D? <%> is a p-homogeneous

function of degree (u, ) — (i, 5) — 2 (see [1], § 4), we obtain

1—1 1
e A -
D (f P ) =0 <|§|i+(uﬂ)—(u,a)> ’ |f|u 00.

Therefore D?(¢2122) € Ly (R™) for (u, 8) > |u| — 2+ (p, ). Thus for any a, 8 € N§

(a7 D*By)(x) = O(1), |, — oo. (9)
Consider the term E; in (8). We have the equality

P )| (10)

_n

|2° D*Ey| = (2m)"2

The function DA(£%%) is infinitely continuously differentiable in R™\ {0} and has
compact support. Moreover

1 1
D? <—d> =0 (d—) €. — 0
<1 19 8

DP(¢e%) =0 (W) , 1€l — 0.

SO

This implies that
D* (&5 ) € Li®) it (u.6)<1ul ~di+ (1),
hence by (10)
27 (D*Ey) () =0(1) , 2], — oo (11)

m
In order to show (11) for (i, 5) = |u| — d; + (i, @) it suffices to prove that the
estimate
(

e - o
holds at infinity. This follows since
Jé] ag _ B aﬁ o B a¢(P_ Pl))
olep) = o(en) - (e

and
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DA(g ) € Ly(R)

because at zero

a¥(P—P,
[Dﬁ(f MP—HI))} (6) =0 ( ‘£|2dl dl+1i(lt B) — (1 a)) =0 (W) :

Using integration by parts we get that for any test function ¢ in the Schwartz
space S (see [4])

[D" (5"%)] (p) = lim / {Dﬁ (éa%ﬂ (p)dE = cp(0),  (12)

where ¢ is a complex number depending only on P. For the functions

_ [ p(eg), de =
gr(§) = { 0. |€|Z _

it follows by equality (12) that the sequence g tends to the distribution D? (fo‘%) —co
in the sense of the space S’ of tempered distributions. Thus the sequence F~![g;]
tends to F_I[Dﬁ(fa%)] — ¢F7'4] in the sense of S’. Since F~'[§] = 1, for the
boundedness of F~1[D? (f"‘%)] it is suffices to prove that there exists a constant
A such that for any x

L k=1,2,...

= =

((F g (@) < A if k> ko().

By the definition of g

F ol gi)(z) = (2m)7"" / e'wd) {D? (5%)] de.

1
1€l,2%

By the first part of the proof it follows that the functions F~'[g;] — (27) "2 hy(2),

where N
()= [ v D° (%) .

1
l€1,> %

are uniformly bounded, so it suffices to show that there exists a number A > 0 such
that
| hi(x) | < X if k> ko(z). (13)

Let the function 1 have the special form: (§) = <|f \ u) and suppose that
o > 0, Yo(r) = 0if r > b. Then applying p-spherical (generalized spherical)
transformation of coordinates [1], we obtain

b

o= [ | [ e o2 (5)

1/k 16],,=1

] plel=1 Z 120, d@] dr =
i=1

E=rt 0
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ei(x,r“@)

= [ 90 | [ S wi)ar| as (14)
0], =1 1/k

where

90) = D° (5)] > ok

E=rkl =1

£

2 ) is a u—homogeneous function

The function g(#) does not depend on r, since D” (

of degree (u, ) — (1, 3) — dy = — .
Formula (14) implies that

+ /g(e)de /b%%(r)dr

l0],,=1 1/k

The first term in the right-hand side and hy are convergent in S’ as k — oo so the
second term is also convergent in S’ which implies that

9(0)dd = 0. (15)
l6],,=1

We shall consider hy, for the case of x = (0, ...,0,x,), since the general case can
be reduced to this one by a simple transformation of the coordinates. In this case

e = [ 90 / T =Ly dr | do =

r
\€|M:1 1/k
b(xnbn)™™
et — 1 o
= 0 _ —— | do| db.
[oo] [ u(eim)e
|9‘u:1 (xnOn)™n
k
Thus
b(xnbn)™m
ioHn 1
)= | 90 (o — 1) ( o )mn) do | do +

‘9|H:1 (fnez)mn
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b(znbn)™
ZO”’L"_l
+ / () / ¢ T do| deb. (16)
o
0], =1 (zn0n)mn

The first term in the right-hand side of (16) is uniformly bounded, because there
exists a number ¢; such that

o o
- )|(—— =0 if |—| <c.
o ) ((mnen)m"> 1 (20 )™n “
Using the inequalities
1 1 iohn
= <, (€ =D - 1)| < e,
o o |l—o
(2nbp)mm
we get
b(znbn)™m
S | o
_ —1)|(———|do| <
7 =) (G ) | <
(znbn)mn
k
1 1 Co
< b— — W) ————— =0, 17
< ealb = ) [ab)™ | - e < a7)

where ¢ > 0 is independent of o.
The second term in the right-hand side of (16) can be written in the form

b (xnbn)mn
1 oHn
e -1
4(6) / do| do —
o
‘9|‘u=1 (xnez)m”
sen( (@) ™)
- 9(0) / T do| do
o
‘9|u:1 (lnez)m"
b(@nbp)™
et —1
+ / g(0) / —— do| db. (18)
o
o1, =1 sgn((n6n)n)
Since g(f) is bounded and
Sgn((f’«"nan)m") P in i oghn
etor™ _q etotm _ ) .
——— do| < sup if k> (x,0,)™,
g lof<1 g

(xnbn)™mn
k
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we have the estimate of the form

o((w0™) L
/ () / S T do| do| < A if k> |a™|. (19)
g

|9|M:1 (wnez)m"

Finally we have

b(xnbn)mn i oin
9(0) / S Y [
o
oI, =1 sen((nba)™n)
b(xnen)m” s n
e’LO’
= / 9(0) / do| df —
o
o), =1 sn((@n0) ™)
b (nbn)™n
1
- / g(0) / — do| df. (20)
o
oI, =1 sgn((@n6n)™n)

Equality (15) implies that the second term in the right-hand side of (20) is bounded.
Indeed

b (xnbn)™n
/ 9(60) / ~do| o =
|9|u:1 sgn((znbn)™n)
T
= g(0) In|b |z (| . ,T”)‘d@ <
T
101,,=
< / g(0) In | n B el dl | < sup |g| / In |x” B el dg|, (21)
n" Tp'm
oI, =1 oI, =1
where [ In % 0™~ df is bounded.
jol,=1
Furthermore
b (xnbn)™n .
610'
/ g(0) / do| df =
o
|9‘#:1 sgn((@nbn)™mn)
b(xnbn)™n

_ / 4(6) / o do+

g
(@) 0| >1/b sgn((2n0)n)
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+ / 9(0)

[(znbn)™n| <1/b

s of some semi-elliptic equations in R™

b (xnbn)™n

61 okn
o

sgn((zn0n)™n)

do| db .

67

(22)

The terms in the right-hand side of (22) can be estimated as follows: if |(x,6,)""| >

1/b, i.e. |b(x,0,)™"| > 1, then

b (xnbn)™n

/ P ohn J eibl’n 0 el sgn((znbn)™") n
P 1,0 sgn ((z,0,,)™)
sgn((znbn)™n)
bty
eto
+ / ZO—HH+1 da"
sgn((znOn)mn)

which is uniformly bounded since [
1

g9(0)

[(@n0n)™n| <1/b

-

g9(9)

m do < o0o. Moreover

b (znbn)™n

ez okn
g

_sgn((xn&b)m" )

do| df =

[(n0n)™n| <1/b

+ /P gﬂ@){ln

|(znbn)™n| <1/b

b(xnen)m“ - in
et —1
/ —— do | df+
g
_Sgn((ﬂﬁnen)m”)

m
Ly " an

mn’ n
|7

b + In + ln\x;”"|] o ,

(23)

(24)

where the first term in the right-hand side and the function ¢g(#) In b are bounded and

the integral

|(znbn)mn | <1/b

is uniformly bounded, because the integral

is finite and does not depend on .
Finally the expression

In 27| /

2mn

Ty, pmn
T.mn%n
Tn

<

1
blan'™]

g(0) In|-Tn"_gma| gg
||
In g do
|
1
g(0)do = ln|xy| - O (| )
T
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is also uniformly bounded.
Therefore formulas (14)—(24) imply inequality (11) for (i, 5) = |p| — di + (i, @),
which together with inequality (9) completes the proof of the theorem. U

Remark 1. Here is an example of differential operator satisfying the conditions of

Theorem 1:
P(D)= D% + Dy + D3 + D} — D3 — D3.

The following theorem can be proved similarly.

Theorem 2. Let P(D) = >, 7,D* be a semi-elliptic operator with constant
(1,0)<2
coefficients.
Then, for any tempered fundamental solution E of P(D), the distributional deriva-

tives D*E are locally integrable functions in R™ if (u,a) < 2 and the estimate

o 1
D E(.CIZ') = 0 (m) s ’Q?‘M—>O

holds.

Remark 2. It is known (see e.g. [2]) that on R"\{0} E is an infinitely continuously
differentiable function in the classical sense.

3 Equations with constant coefficients

For any domain 2 C R™ denote by H™(£2) the anisotropic Sobolev space of functions
with the finite norm

lllmn = lullg + > 1D ullg, (25)
i=1
where || - [, is the norm of the space Ly(£2). The closure of the set C§°(£2) in norm

(25) we denote by ﬁjm(Q)
Let

Bavuz{xeR”; |:c|“<a},sw:{xeR"; |x|u:0},

Lowu®) = { f € La(R™);  f(x) =0 i, [al, > a.

Lemma 1. Suppose that the operator P(D) satisfies the conditions of Theorem 2 and

f € Lag,(R™).
Then the equation

PD)u=f in R" (26)

has a unique solution u € H*™(R"), tending to zero at infinity. Moreover

1
u(x) = O (W) :
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This solution u can be representedas u = E x f, where E is the fundamental solution
in Theorem 1 and for any compact K C R"™ the inequality

llose < () £l e (27)
holds, where c¢(K) > 0 is independent of f.

Proof. We have to prove only estimate (27), since the other statements of Lemma 1
follow by Theorem 1. Let (u, ) < 2. In virtue of Theorem 2 D*F is locally integrable
in R", so

Du(z) = / fy)D*E(zx — y)dy.
Bau
Thus by Young’s inequality

| Dou(z) 2 < / F@)P [DE( - y)|dy - / DBz — )| dy.
Ba,u Ba,p

For any b > 0 we have

| Du() [* do < o fWIF [ DBz —y)| do | dy <
/ / |vor |

Ba By
< o / Fa)Pdy,
Ba“u,

where ¢; and ¢y = co(b) are positive constants. Therefore, for (u,a) < 2 and any
b>0,

1Dullp,, < ) 1Fly, . @ (28)

Let ¢ € C5°(R™) be equal to 1 in a neighbourhood of compact K, suppy C By,
Then

lilloie < 10ully s, < O IPO) W), + [bully,] <
| (29)
< &s[1flls,, oy + 10 m, 1

M
where ||u||/2m7BW = ( Z) ||D0‘u||BW. From (28) and (29) we get inequality (27). O
w,o) <2

For |u| > 2d; another estimate can be proved for the solution of equation (26).

Lemma 2. Suppose that the operator P(D) satisfies the conditions of Theorem 1,
Then equation (26) has a unique solution uw € H*™(R™) and the following estimate

15 valid
[ llgmpn < € [ 1Fllz,@ny + 1l Lp@my | 5 (30)

where ¢ > 0 1s independent of f.



70 G.V. Dallakyan

Proof. Since u = Ex f = F~![$F[f]] is a solution of equation (26), by Lemma 1 we
have only to prove that u € H*™(R") and estimate (30) holds.
Parceval’s equality and the equivalence

Sl ~ 1+ ¢
(p,0)<2
imply that
Nullomge ~ [ 0 +1€R) PO |- (31)
Formula (7) and the semi-ellipticity of P(D) imply that

1+
ﬁ| f ]|2 < ¢ |F[f]|2 if |§|u>1
and
(1+[€1,)? ) e , e ,
— |F < F < )a )
o 1P < i 1P < i bt < it 11 e

if [§], < 1. Since |u| > 2d;, estimate (30) follows by these inequalities and (31). [

For any o > 0 consider the following boundary value problem of variational type

P(D)u,=f in B,,, (32)

Uy € H™(B,,). (33)

Theorem 3. Suppose that the operator P(D) satisfies the conditions of Theorem 1
and the polynomial P(&) has the form

= Z 7&,ﬁ€a+ﬁa

(1,0)<1
(1,8)<1

where Vo3 € R, and for any sequence of complex numbers (Co, ..., Ca,-..) # 0 the
following inequalities

Z Yo, Ca@ > 07 Z Yo, Ca@ Z 0 (34)
(m,0)=1 (m,0)<1
(m,B)=1 (m,B)<1

hold.
Then for arbitrary f € LY R™)NLA*(R™) and o > 0 problem (32)-(33) has a unique

solution u, E H(B,,).

Moreover, if |u| > 2d; and 2ug > p; (i = 1,...,n), then for every fized compact
K CR" and (p,7) <2

c(K)

T T
sup |D"u — D7 u, | P
K B} 1T \T

(1 yry + 1) - (39)

g

where ¢(K') > 0 is independent of f and o.
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Proof. The function u, € H*™(B,,,) is a solution of problem (32)—(33) if and only
if function 1,, defined by @, (y) = u,(y o*) satisfies the problem

S el petig, = f, in B, (36)

( ) O'(Hﬂa)+(u7ﬁ)
p,a) <1

(m,p)<1

up € H™(By,,) (37)

where f,(y) = f(yo*). Conditions (34) imply the uniqueness of the solution of
(36)—(37), because multiplying equation (36) by u we get the estimate

r ~ r= Do‘ﬂg Dﬁﬂg
\n&ﬂw@gz/mfzgj%ﬁ D e (Dt
’ <1
B Ez,ﬁgil Bru

1 o~ AR~ C1 o~
> ; / Z ’Va,ﬁ(D Ug)<DB’U/g) > ﬁ / Z (D UU)Q >
P (i B, ()=
> 2

-2
52 ”uUHmba (38)
where ¢; and ¢y are positive constants.

Therefore for some constant ¢z > 0

fo

o g, < co0? | (39)

By,

Thus for any f, € Ly(By,,) there exists a unique function @, € H ™(Bj,,) such that

Ve, o~ —_— ~
Z a(uﬂa)f(uﬁ) / (D% )( DPv) = / fo0,
Bl,,u,

(n,a)<1
(Z,ﬁ)gl Bl

for all v € H ™(By ), which means that we proved the existence of the solution
U, € H*™(By,,) of problem (36)—(37).
Equation (36) can be written in the form
> apo WA DG, 4 o2, = 0% f, + 07 . (40)

(m,0)<1
(m,B)<1

For the characteristic polynomial of the differential operator in (40)
P + 0% >0, if £€R",

hence in virtue of the results of [4] we get the estimate

2myg 1/2
R I I AT | RN T A T
k=0 (1,0) <2— ko "

where ¢ is a positive constant. Inequality (39) implies that
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X D%y, < ot

(1,0)< 2— ko " By
and so if (u, ) <2 — g
lul—=po -
HDO{U/U”LQ(S@M) S g 2 (/L,O{) ”DO{,U/U”[Q(SLM) S
Wl=ro (o) 2+ (ma)+uo || 7 B0 yo
< e B gt et || L <o, (1)
BLM o,

where ¢4, c5 are positive constants.
Let xy € B, . Since 2uy > p1; (i = 1,...,n) by applying Green’s formula from [4]
for the difference of the solutions 9, = u — u, we get

[Da(a0)| = ) [ 90al 51D 00() DBy — ) dS)| <

||
po< (o) +(1,8)<2—po g ®

< >, /

po< () +(p,f)<2-mo g7, |

Y /

po< (ma)+(,0)<2—po g,

< ¢ Z [(HDQUHLQ(SG,M) + ||Dau0||L2(Sg,u)> ||DBE($0 - x)“LQ(Scr,u)]’
po<(p,0)+(1,8)<2—po

o,p

T
gmﬁ(@)

| D% u(x)| ‘DﬁE(a:O — )| dS +

xr
Jas(——)| |D*us(z)| |D” E(zg — z)| dS <

|z],,

(42)
where cg does not depend on x, since the coefficients g, s are bounded functions.
Let K C R" be a fixed compact, xy € K. Then by Theorem 1 for (u, 5) <2 — g

1
B _ _
D E(SCO 13) - O <|$|udl+(#ﬁ)> )
“w

hence

|07 B - ), :0< 1 ) (43)

o L0 4 (11, 6)

Moreover, Lemma 2 implies that for (u, ) <2 — ug

iy 1o
1D%ull s, < €02 lullymp,, < 102 [ u]lympn <

Ho
< cgo 2 [HfHLl(R") + HfHLQ(Rn)]a (44)

where cg > 0 is independent of f.
By estimates (40)—(44) we get inequality (35) in the case 7 = 0. Similarly in-
equality (35) can be proved for arbitrary multi-index 7 satisfying (u,7) < 2. O
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4 Equations with variable coefficients

In this paragraph the equation of the form
A(z, Dyu = f, (45)

will be considered, where A(z,D) = P 4+ AQ, P = P(D) is the operator in
Theorem 1, Q@ = Q(z, D) is a linear diifferential operator of u - order not higher
than 2 with infinitely continuously differentiable coefficients, vanishing for |z| u 2
f €Ly, (R"), and A is a complex number.

It is clear, that the operator P + AQ is semi-elliptic when |)| is sufficiently small.
Denote by A the set of all A such that the operator P+ \(Q) is semi-elliptic. Obviously,
A is an open set. Denote by A the set of all connected components of A, which contain
the point A = 0. It is easy to see that if py-order of Q(z, D) is less than 2, then Ay is
the whole complex plane.

Denote by P~'w the (unique) solution of the equation Pu = w, which vanishes at
infinity, i.e. u = E % w, where E is the fundamental solution in Theorem 1.

Using the method of [4] we get the following lemma.

Lemma 3. Let the operator P satisfy the conditions of Theorem 1, and Q(z, D)
satisfy the above conditions.

Then for any A € Ay a function u is a solution of (45), vanishing at infinity, if
and only if w = Pu s a solution of the equation

w+ ANQP 'w=f (46)
m LQ@M(RH).
Consider next the following problem

Az, D)u, = f in B,,, (47)

Uy € H™(B,,). (48)

Theorem 4. Suppose that the conditions of Theorem 1 and Lemma 3 are satisfied
and A € Ny is a fized number.

Then there exists og > 0 such that for all 0 > o and f € Lo, ,(R™) problem (47)-
(48) has a unique solution u, € H*™(B,,) and if |u| > 2d;, mg < 2m; (i = 1,...,n),
then for any compact K C R"

Cl(K)

[
o 5t-2—d;

T 11 iy #9)

where ¢1(K) > 0 is independent of f and o.

Proof. In virtue of Theorem 3 for any f € Ly ,,(R") the problem

Pv, = f in B,,, (50)
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v, € H™(By, ). (51)
has a unique solution v, € H*™(B,,,). Denote the solution of (50)-(51) by P, 'f.
Then P! : Ly, ,(R") — H*™(B,,) is a bounded linear operator and by estimate (35)
it follows that for any compact K C R"
C2

(P = P |y < #HfHLgauRn)7 (52)

o2
where ¢y > 0 is independent of f and o.
Consequently, the difference of the operators

G=1+XQP?, G,=1+)NQP!

mapping Lo ,,(R") into itself (I — denotes the identity operator in Lo, ,(R™)), can
be estimated as follows

G, — G| < [|MQE7—PY|| < (53)

ngl

By Lemma 3 it follows that the inverse of G exists and G~ : Ly, ,(R") —
Ly ., (R"™) is a bounded linear operator. Therefore estimate (53) implies that for
sufficiently large o also the inverse G,' exists and G,' : Ly, ,(R") — Lo, ,(R™)
is a bounded linear operator. Since the equality u, = P, 'w, defines an one-to-
one mapping between the solutions u, € H*™(B,,) of (47)—(48) and the solutions
Wo € Log,(R™) of the equation G,w, = f, for sufficiently large o and arbitrary
f € Ly, (R™) problem (47)—(48) has a unique solution.

The difference of the solutions u, = P, 'G;!f and u = P~'G~! f can be estimated
as follows. By (53) the number oy > 0 can be chosen such that for o > oy

1Go =Gl < gjg= and so |GGy = G) || < 5.
Hence
6~ [ {e ooy | -
_ [I+G*1(GU—G)}_1G’1 < 2 |c7Y
and
1G =G| = |GG = GG < 2 |G |Gy =G

This estimate and (53) imply that
|6 - <

o5 —2—d
where ¢, > 0 is independent of o.
Therefore by (52) we get (49). Indeed

lu = ttolly s = [I[(P " = P71) G+ PTG, = G)] fly,

K
C _ _ —
a6 ., Rnﬁ%ll(Gal =G Sl ey <

[
olal—2—d,

1AW L oy 5

“L‘Zd

where cg > 0 is independent of f and o. O
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