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Abstract. In this paper, we consider the equation F (x) = y in a neighbourhood of a given point
x̄, where F is a given continuous mapping between finite-dimensional real spaces. We study a class
of polynomial mappings and show that these polynomials satisfy certain regularity assumptions.
We show that if a λ-truncation of F at x̄ belongs to the considered class of polynomial mappings
then for every y close to F (x̄) there exists a solution to the equation F (x) = y that is close to x̄.
For polynomial mappings satisfying the regularity conditions we study their stability to bounded
continuous perturbations.
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1 Introduction

Let n and m be positive integers, x̄ ∈ Rn be a given point, F : Rn → Rm be a mapping continuously
differentiable in a neighbourhood of x̄.

Numerous classical results of analysis allow to study properties of the mapping F when the point
x̄ is normal, i.e. the first derivative F ′(x̄) : Rn → Rm of the mapping F at the point x̄ is a surjective
linear operator. For instance, the classical inverse function theorem (see, for example, [4, Theorem
1F.6]) states that the equation

F (x) = y (1.1)

with the unknown x ∈ Rn and the parameter y ∈ Rm has a solution x(y) for y close to F (x̄) such
that x(y)→ x̄ as y → F (x̄).

If the point x̄ is abnormal, i.e. the linear operator F ′(x̄) is not surjective, then the study of the
behavior of the mapping F in a neighbourhood of the point x̄ becomes significantly more complicated.
In this case, this problem is studied under certain conditions of non-degeneracy, formulated in terms
of the first two derivatives F ′(x̄) and F ′′(x̄) of the mapping F at the point x̄, and under very general
and natural assumptions. A detailed overview of the relevant results is given in [1]. The need for the
investigation of equation (1.1) in the abnormal case is partly dictated by optimization problems with
equality-type constraints that degenerate in one sense or another. For example, some topics related
to numerical methods for investigation of optimization problems with abnormality were studied in
[6]. Theoretical problems concerning degenerating constraints were discussed and studied in [1].

Another approach, meaningful also in the abnormal case, was proposed in [2]. Unlike the results
using the first and second derivatives of the mapping F at the point x̄, in [2], there were obtained
solvability conditions that use the derivatives of higher orders. The corresponding results are ap-
plicable to equation (1.1) when the mentioned conditions of the nondegeneracy in terms of the first
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two derivatives F ′(x̄) and F ′′(x̄) are violated. Note that in this case, the methods from [1] are
fundamentally inaplicable.

The present work is a natural continuation of the research begun in [2]. In Section 1 we recall the
definition of λ-truncation and the inverse function theorem from [2]. In Section 2 we give an example
of a wide class of λ-truncations that have the regularity property. In Section 3 we study the stability
of the surjectivity property of regular λ-truncations under continuous bounded perturbations.

2 Preliminaries

Below 〈·, ·〉 stands for the inner product in Rn and Rm and | · | stands for the corresponding Euclidean
norm in these spaces.

Let D be the set of all non-zero n-dimensional vectors d = (d1, ..., dn) with the non-negative
components, D̂ ⊂ D be the subset of all vectors with integer components.

For x = (x1, ..., xn) ∈ Rn, s = (s1, ..., sn) ∈ D̂ and d = (d1, ..., dn) ∈ D, we set

xs :=
n∏
j=1

x
sj
j , |x|d :=

n∏
j=1

|xj|dj .

Here and below we assume that x0
j = |xj|0 = 1. The vector s is called the multi-index of the monomial

xs.
Given a vector λ = (λ1, ..., λn) ∈ D and nonempty finite sets Si ⊂ D̂, i ∈ {1, ...,m}, assume that

∃αi > 0 : 〈λ, s〉 = αi ∀ s ∈ Si. (2.1)

Given a collection of real numbers pi,s 6= 0, s ∈ Si, i ∈ {1, ...,m}, define the mapping P =
(P1, ..., Pm) : Rn → Rm by formula

Pi(x) =
∑
s∈Si

pi,sx
s, x = (x1, ..., xn) ∈ Rn.

Note that the polynomials Pi have the property of quasihomogeneity, i.e.

Pi(t
λ1x1, ..., t

λnxn) ≡ tαiPi(x), x ∈ Rn, t > 0.

Moreover, since Si are nonempty and pi,s 6= 0 for all s ∈ Si, all functions Pi are nonzero polynomials.
Moreover, it is obvious that P (0) = 0.

Let F : Rn → Rm be a mapping that is continuous in a neighbourhood of the given point x̄. The
mapping P is said to be a λ-truncation of the mapping F at the point x̄, if there exist nonempty
finite sets Di ⊂ D, i ∈ {1, ...,m} such that the following properties are satisfied. Firstly, the strict
inequalities

〈λ, d〉 > αi ∀ d ∈ Di, ∀ i ∈ {1, ...,m}
hold. Secondly, the representation

F (x) ≡ F (x̄) + P (x− x̄) + ∆(x− x̄),

is valid, in which for the mapping ∆ = (∆1, ...,∆m) : Rn → Rm there exists const ≥ 0 such that

|∆i(x− x̄)| ≤ const
∑
d∈Di

|x− x̄|d ∀ i ∈ {1, ...,m}.

for every x from a neighbourhood of the point x̄.
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For a vector h ∈ Rn we say that the λ-truncation P is regular in the direction h, if

P (h) = 0, P ′(h)Rn = Rm, (2.2)

and hj = 0 for any j such that λj = 0.
In [2, Theorem 1], the following inverse function theorem is obtained. Let λ > 0, P be a λ-

truncation of the mapping F at x̄ and P be regular in a direction h ∈ Rn. Then there exists a
neighbourhood O of the point F (x̄) and a number const > 0 such that for every y ∈ O there exists a
solution x(y) to equation (1.1) such that

|x(y)− x̄| ≤ const|y − F (x̄)|θ ∀ y ∈ O. (2.3)

Here

θ =

(
max
i=1,m

αi

)−1

min
i=1,m

λi. (2.4)

In connection with the above introduced concept of the regularity in a direction h, the following
question arises. Is it essential to assume that hj = 0 for any j such that λj = 0, can the assumption
λ > 0 in [2, Theorem 1] be replaced by the assumption λ ≥ 0, λ 6= 0, and hj = 0 for any j such that
λj = 0? The following example gives a negative answer to this question.

Example 1. Let n = 2, m = 1, x̄ = 0, F (x) = P (x) = x2
1 + x2

1x2. We have

S1 = {(2, 0), (2, 1)}.

Put λ := (1, 0) and h := (1, 1, 1). Then (2.1) holds for α1 = 2 and equalities (2.2) take place. At the
same time, for a solution (x1, x2) to the equation

P (x) = y

with the unknown x ∈ R2 we have the following. If y < 0, then we have x2
1 + x2

1x2 < 0. Therefore,
x2 < −1. So, in this example there exists no solution x(y) to the equation F (x) = y such that
x(y)→ x̄ = 0 as y → F (x̄) = 0.

This example shows the essentiality of the assumption that hj = 0 for any j such that λj = 0. It
also shows that the assumption λ > 0 of [2, Theorem 1] is essential.

To apply [2, Theorem 1] to a continuous mapping F, we must first find an appropriate vector λ
and a polynomial mapping P (if they exist) such that P is a λ-truncation of F in a neighbourhood
of the point x̄, and then verify that P is regular in some direction h ∈ Rn.

3 On one type of regular λ-truncations

First, we present a class of mappings F : Rn → Rm, for which the assumptions of [2, Theorem 1] are
satisfied.

Let ni be positive integers such that n = n1 + ... + nm + 1, Qi be given nonzero symmetric
ni × ni-matrices, bi be given nonzero real numbers, i ∈ {1, ...,m}.

Consider m functions Pi : Rn → R defined by the formula

Pi(x) = 〈Qiχi, χi〉+ bi+1(χ1
i+1)3, i ∈ {1, ...,m}. (3.1)

Here x = (χ1, ..., χm, χ
1
m+1) ∈ Rn, where χ1 = (x1, ..., xn1) ∈ Rn1 , χ2 = (xn1+1, ..., xn1+n2) ∈ Rn2 , etc.;

χ1
i+1 is the first component of the vector χi+1, i ∈ {1, ...,m− 1}, i.e. χ1

2 = xn1+1, χ
1
3 = xn1+n2+1, etc.;



26 A.V. Arutyunov, S.E. Zhukovskiy

and χ1
m+1 = xn is a real number, which for definiteness we will consider as the first coordinate of the

one-dimensional vector χm+1.
So, for every i ∈ {1, ...,m}, the function Pi is the sum of two terms. The first one is a non-zero

quadratic form in the variable χi, which is defined by the square ni×ni-matrix Qi. The second term
is the non-zero cubic form bi+1(χ1

i+1)3 in the variable χi+1 with a given non-zero coefficient bi+1.
Define an n-dimensional vector λ > 0 as follows. First, we put λn = λ̂m+1 = 1

3
. Then take

λ̂i = 1
3
(3

2
)(m−i+1), i ∈ {1, ...,m}. We define the remaining coordinates λ1, ..., λn−1 of the vector λ so

that in the places corresponding to the vector χi, all coordinates of the vector λ are equal to λ̂i,
i ∈ {1, ...,m}. As a result, we have

λ1 = ... = λn1 =
1

3

(
3

2

)m
, λn1+1 = ... = λn1+n2 =

1

3

(
3

2

)m−1

, ..., λn =
1

3
. (3.2)

Let Si be the set of all the multi-indices of the monomials of Pi, i ∈ {1, ...,m}. So, each set Si is
a disjoint union of two finite nonempty subsets Si,1 t Si,2.

The vectors s ∈ Si,1 has two ones ore one two in the places corresponding to the vector χi, while
the remaining components are zeros. The second subset Si,2 consists of the only vector s with all the
components equal to zero except the component corresponding to the variable χ1

i+1. This component
equals to three.

Let us show that (2.1) holds. Put

αi =

(
3

2

)m−i
, i ∈ {1, ...,m}.

Let us prove that 〈λ, s〉 = αi for every s ∈ Si. Fix an arbitrary i ∈ {1, ...,m}. Let s ∈ Si. If s ∈ Si,1
then

〈λ, s〉 = 2λ̂i =
2

3

(
3

2

)(m−i+1)

=

(
3

2

)(m−i)

= αi.

If s ∈ Si,2 then

〈λ, s〉 = 3λ̂i+1 = 3
1

3
αi = αi

for i ≤ m − 1. Obviously, the last equality also holds for i = m. So, we have 〈λ, s〉 = αi for every
s ∈ Si. Hence, (2.1) holds.

So, it is shown that the polynomial mapping P is a λ-truncation of itself in a neighbourhood of
zero.

Let us construct an n-dimensional vector h such that

P (h) = 0, P ′(h)Rn = Rm.

We divide the construction into several stages.
First, we construct the vector h1 by taking h1 := x̂1, where x̂1 is an arbitrary vector such that

〈Q1x̂1, x̂1〉 6= 0. This vector exists since Q1 6= 0. Now we choose the first component h1
2 of the vector

h2 satisfying the equality
〈Q1h1, h1〉+ b2(h1

2)3 = 0.

This real number h1
2 exists since b2 6= 0. We have h1

2 6= 0 since 〈Q1x̂1, x̂1〉 6= 0.
Now we construct the remaining coordinates of the vector h2. If n2 = 1 then we put h2 = h1

2.
Since h1

2 6= 0 and Q2 6= 0, then 〈Q2h2, h2〉 6= 0. In this case, the construction of the vector h2 is
completed.



Applications of λ-truncations to nonlinear equations 27

Assume now that n2 ≥ 2. Let us show that the already constructed first coordinate h1
2 can be

supplemented with real numbers h2
2, ..., h

n2
2 to the vector h2 ∈ Rn2 so that 〈Q2h2, h2〉 6= 0.

Consider the contrary, i.e. 〈Q2χ2, χ2〉 = 0 for every vector χ2 such that its first component h1
2 is

not equal zero, i.e. h1
2 6= 0.

Denote by M ⊂ Rn2 the set of all vectors χ2 ∈ Rn2 whose first component is not zero.
Take an arbitrary χ2 ∈M. Then there exists t 6= 0 such that the first component of tχ2 equals to

h1
2. Then the assumption made implies

t2〈Q2χ2, χ2〉 = 〈Q2tχ2, tχ2〉 = 0.

Therefore, 〈Q2χ2, χ2〉 = 0. At the same time, the set M is everywhere dense in Rn2 . So, since the
quadratic form Q2 is a continuous function, it vanishes over the entire space Rn2 .

The latter contradicts the assumption Q2 6= 0. This means that the first coordinate h1
2 can

be supplemented with the real numbers h2
2, ..., h

n2
2 to the vector h2 so that 〈Q2h2, h2〉 6= 0. The

construction of the vector h2 in the case under consideration is completed.
Now we take the first component h1

3 of the vector h3 so that

〈Q2h2, h2〉+ b3(h1
3)3 = 0.

Obviously, h1
3 6= 0.

We continue this procedure until the end. At the last stage, we take the vector hm such that
〈Qmhm, hm〉 6= 0 and take h1

m+1 ∈ R such that

〈Qmhm, hm〉+ (h1
m+1)3 = 0.

Obviously, h1
m+1 6= 0.

Define an n-dimensional vector h by the formula

h = (h1, h2, ..., hm, h
1
m+1).

By construction we have 〈Qihi, hi〉+ bi+1(h1
i+1)3 = 0 for each i ∈ {1, ...,m}.

Let us show that the polynomial mapping P is regular in the constructed direction h, i.e. equalities
(2.2) hold. The equality P (h) = 0 is satisfied due to the above constructions. Therefore, it suffices
to verify that the rows of the matrix P ′(h) are linearly independent.

The i-th row P ′i (h) of the matrix P ′(h) is

P ′i (h) = (0, ..., 2Qihi, 3bi+1(h1
i+1)2, 0, ..., 0), i ∈ {1, ...,m}.

Here, 2Qihi are on the places corresponding to χi and h1
i+1 is the first component of the vector hi+1.

Let the real numbers γi be such that

m∑
i=1

γiP
′
i (h) = 0. (3.3)

The last component of the vectors P ′1(h), ..., P ′m−1(h) corresponding to χm+1 is zero, while the
last component of P ′m(h) equals to 3bm+1(h1

m+1)2 6= 0. So, it follows from (3.3) that

m−1∑
i=1

γiP
′
i (h) = 0, γm = 0. (3.4)



28 A.V. Arutyunov, S.E. Zhukovskiy

Similarly, for vectors P ′1(h), ..., P ′m−2(h) the second to last component corresponding to χm−1 is
zero, while the second to last component of P ′m−1(h) equals 3bm(h1

m)2 6= 0. So, it follows from (3.3)
and (3.4) that

m−2∑
i=1

γiP
′
i (h) = 0, γm−1 = γm = 0.

Carrying out similar reasoning for i = m− 2, i = m− 3, etc. up to i = 1, as a result we obtain
that γ1 = ... = γm = 0. Therefore, the vectors P ′i (h), i ∈ {1, ...,m} are linearly independent.

So, we have shown that under the assumptions Qi 6= 0 and bi+1 6= 0 for i ∈ {1, ...,m} the
polynomial mapping P is a λ-truncation of itself in a neighbourhood of zero and it is regular in a
direction h, i.e. (2.2) holds.

Thus, the following assertion is proved. Let λ be the above constructed n-dimensional vector, i.e.
the components of λ are defined by formula (3.2). Let Si be the finite set of all the multi-indices of
the monomials of Pi, i ∈ {1, ...,m}, while Pi be defined by (3.1).

Theorem 3.1. Let the mapping P = (P1, ..., Pm) : Rn → Rm be defined by formula (3.1), all the
matrices Qi and real numbers bi+1 be non-zero, i ∈ {1, ...,m}.

Then for every i ∈ {1, ...,m}, equality (2.1) holds and there exists a vector h ∈ Rn such that
equalities (2.2) hold, i.e. P (h) = 0 and P ′(h)Rn = Rm.

The assumptions Qi 6= 0 and bi+1 6= 0 for every i ∈ {1, ...,m} in Theorem 3.1 are essential even
when m = 1. Let us show this.

Let us first assume that b2 6= 0 and Q1 = 0. Then P (x) ≡ b2x
3
n. It is obvious that in this

case at least one of the equalities in (2.2) is violated for every h ∈ Rn. Assume now that b2 = 0.
Take a positive symmetric (n − 1) × (n − 1)-matrix Q1. We have P (x) ≡ 〈Q1χ1, χ1〉 ≥ 0 for every
x = (χ1, xn) ∈ Rn. So, the classical inverse function theorem implies that if P (h) = 0 for some h ∈ Rn

then P ′(h)Rn = {0}. Thus, relation (2.2) is violate for every h ∈ Rn in the second case too.
In the special case when n = 3, m = 2, Q1 and Q2 are 1 × 1-matrices and b2 = b3 = 1, the

mapping F = P was considered in [2, Example 7].
Let us now return to equation (1.1). The following assertion follows from Theorem 3.1 and [2,

Theorem 1].

Theorem 3.2. Let the mapping F : Rn → Rm be continuous in a neighbourhood of the point x̄, the
mapping P = (P1, ..., Pm) : Rn → Rm, be defined by formula (3.1) and P be the λ-truncation of the
mapping F in a neighbourhood of x̄. Assume that all the matrices Qi and the real numbers bi+1 are
non-zero, i ∈ {1, ...,m}.

Then there exists a neighbourhood O of the point F (x̄) and a real const > 0 such that for every
y ∈ O there exists a solution x = x(y) to the equation F (x) = y with the unknown x such that

|x(y)− x̄| ≤ const|y − F (x̄)|θ ∀ y ∈ O.

Here θ =
1

3

(
2

3

)m−1

.

Proof. Theorem 3.1 implies that there exists a vector h ∈ Rn such that (2.2). Moreover, P is the
λ-truncation of the mapping F in a neighbourhood of the point x̄. So, applying [2, Theorem 1] we
obtain that there exists a neighbourhood O of the point F (x̄) and a real number const > 0 such that
for every y ∈ O there exists a solution x = x(y) to the equation (1.1) satisfying the inequality (2.3).
Computing the value of θ by formula (2.4) we obtain that θ = 1

3
· (2

3
)m−1.

Note that for the mapping F in the above theorem the equality F ′(x̄) = 0 holds. Therefore, the
classical inverse function theorem is not applicable to the mapping F . In addition, since each matrix
Qi is only non-zero and can be sign-definite, the results from the survey [1] are not applicable as well.
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4 The stability of λ-truncations to nonlocal
perturbations

Theorem 1 from [2] is local in nature. The main idea of the proof of this theorem is to replace the
original equation F (x) = y with the equivalent equation

P (h+ ξ) + Φ(t, ξ) = ỹ(t, η)

for η from a neighbourhood of zero. Here P is a λ-truncation of the mapping F in a neighbourhood
of zero which is regular in a direction h, t and η are parameters, ξ is an unknown variable from a
neighbourhood of zero, ỹ is an auxiliary function. This leads to the problem of the global solvability
of the equation

P (x) + Φ(x) = y (4.1)

for all y ∈ Rm and all the continuous bounded mappings Φ : Rn → Rm.
The solvability of equation (4.1) for all specified Φ and y can be interpreted as the stability of

the solvability property of the equation P (x) = 0 under the perturbations Φ and y.
Let the following be given: a vector λ = (λ1, ..., λn) ∈ D nonempty finite sets Si ⊂ D̂, i ∈

{1, ...,m} satisfying (2.1), and real numbers pi,s, s ∈ Si, i ∈ {1, ...,m}. Define the mapping P =
(P1, ..., Pm) : Rn → Rm by the formula

Pi(x) =
∑
s∈Si

pi,sx
s, x = (x1, ..., xn) ∈ Rn.

For an arbitrary bounded continuous mapping Φ : Rn → Rm, we denote

‖Φ‖ := sup
x∈Rn
|Φ(x)|.

Denote by Bm
δ the closed ball in Rm centred at zero with the radius δ ≥ 0, i.e.

Bm
δ := {y ∈ Rm : |y| ≤ δ}.

Theorem 4.1. Assume that P satisfies (2.1), λ > 0 and there exists a vector h ∈ Rn such that P is
regular in the direction h, i.e. equalities (2.2) hold.

Then there exists a real number const > 0 such that for every continuous bounded mapping
Φ : Rn → Rm and for every vector y ∈ Rm there exists a solution x = (x1, ..., xn) ∈ Rn to equation
(4.1) such that

|xj| ≤ const

(
max
i=1,m

(
(‖Φ‖+ |y|)1/αi

))λj
, j ∈ {1, ..., n}. (4.2)

Proof. Take an arbitrary bounded continuous mapping Φ = (Φ1, ...,Φm) : Rn → Rm and an arbitrary
vector y = (y1, ..., ym) ∈ Rm. As it is mentioned above, P (0) = 0 and so if both Φ = 0 and y = 0 then
x = 0 is the desired solution to equation (4.1). So, we assume that either Φ 6= 0 or y 6= 0. Hence,

‖Φ‖+ |y| 6= 0.

We apply the classical inverse function theorem to the mapping P at the point h. Since the
equalities (2.2) hold, i.e.

P (h) = 0 and P ′(h)Rn = Rm,

this theorem implies that there exist reals µ > 0 and δ > 0 and a continuous mapping g : Bm
δ → Rn

such that
P (h+ g(z)) = z, |g(z)| ≤ µ|z| ∀ z ∈ Bm

δ . (4.3)
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Without loss of generality we will assume that a positive δ < 1.
Denote

t := max
i=1,m

((
‖Φ‖+ |y|

δ

)1/αi)
. (4.4)

Note that if ‖Φ‖ + |y| ≤ δ then t =
(
‖Φ‖+|y|

δ

)1/α

, where α = max{α1, ..., αm}. If ‖Φ‖ + |y| > δ then

t =
(
‖Φ‖+|y|

δ

)1/α

, where α = min{α1, ..., αm}.
The inequality

t−αi ≤ δ

‖Φ‖+ |y|
∀ i ∈ {1, ...,m} (4.5)

takes place. Indeed, fix an arbitrary i ∈ {1, ...,m}. It follows from (4.4) that t ≥
(
(‖Φ‖+ |y|)/δ

)1/αi .
Therefore, we have tαi ≥ (‖Φ‖+ |y|)/δ. Hence, inequalities (4.5) take place.

Denote
x(ξ) := (tλ1(h1 + ξ1), ..., tλn(hn + ξn)), ξ ∈ Rn.

Define the mapping Γ = (Γ1, ...,Γm) : Rn → Rm by the formula

Γi(ξ) = t−αi(yi − Φi(x(ξ))), ξ ∈ Rn, i ∈ {1, ...,m}.

Obviously, the mapping Γ is continuous, since x(·) is an affine one by the definition.
For every ξ, we have

|Γ(ξ)| =

√√√√ m∑
i=1

t−2αi(yi − Φi(x(ξ)))2 ≤

√√√√ m∑
i=1

(
δ

‖Φ‖+ |y|

)2

(yi − Φi(x(ξ)))2 =

=
δ

‖Φ‖+ |y|

√√√√ m∑
i=1

(yi − Φi(x(ξ)))2 =
δ

‖Φ‖+ |y|
|Φ(x(ξ))− y| ≤ δ

‖Φ‖+ |y|
(‖Φ‖+ |y|) = δ.

Here, the first equality follows from the definition of Γ, the first inequality follows from inequalities
(4.5), and the last inequality is the triangle inequality.

The obtained estimate implies that |Γ(ξ)| is sufficiently small, i.e. |Γ(ξ)| ≤ δ ∀ ξ. Hence, the
composition g(Γ(ξ)) is well-defined for all ξ ∈ Bn

µ . Moreover, the inequality

|g(Γ(ξ))|
(4.3)

≤ µδ < µ ∀ ξ ∈ Bn
µ

takes place. Therefore, the composition ξ 7→ g(Γ(ξ)), ξ ∈ Bn
µ of continuous mappings is a continuous

self-mapping of the ball Bn
µ . So, Brouwer’s fixed-point theorem (see, for example, [7, Theorem 1.6.2])

implies that there exists a point ξ̃ = (ξ̃1, ..., ξ̃n) ∈ Bn
µ such that

ξ̃ = g(Γ(ξ̃)).

Let us show that the point x := x(ξ̃) is the desired solution to equation (4.1).
At first, let us verify the equality P (x) + Φ(x) = y. For every i ∈ {1, ...,m}, we have

Pi(x(ξ̃)) = Pi(t
λ1(h1 + ξ̃1), ..., tλn(hn + ξ̃n)) =

∑
s∈Si

pi,s

n∏
j=1

(tλj(hj + ξ̃j))
sj =
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=
∑
s∈Si

pi,st
〈λ,s〉

n∏
j=1

(hj + ξ̃j)
sj = tαi

∑
s∈Si

pi,s

n∏
j=1

(hj + ξ̃j)
sj = tαiPi(h+ ξ̃).

Here, the first equality follows from the definition of x(ξ̃), the second equality follows from the
definition of Pi, the second to last equalities follow from (2.1), and the last equality follows from the
definition of Pi.

Moreover, for each i ∈ {1, ...,m}, we have

Pi(h+ ξ̃) = Pi(h+ g(Γ(ξ̃))) = Γi(ξ̃) = t−αi(yi − Φi(x(ξ̃))).

Here, the first equality holds since ξ̃ = g(Γ(ξ̃)), the second equality follows from the identity in (4.3)
since Γ(ξ̃) ∈ Bm

δ , and the last equality follows from the definition of the mapping Γi.
So, it follows from the obtained equalities that

Pi(x(ξ̃)) = tαiPi(h+ ξ̃) = tαit−αi(yi − Φi(x(ξ̃))) = yi − Φi(x(ξ̃)) ∀ i ∈ {1, ...,m}.

Hence, for the vector x = x(ξ̃) we have P (x) + Φ(x) = y.
Let us prove that the desired inequalities hold for the components of the constructed vector x.

For each j ∈ {1, ..., n}, we have

|xj(ξ̃)| = tλj |hj + ξ̃j| =
(

max
i=1,m

((
‖Φ‖+ |y|

δ

)1/αi))λj
|hj + ξ̃j| ≤

≤ |h|+ µ

( min
i=1,m

(δ1/αi))λj

(
max
i=1,m

((
‖Φ‖+ |y|

)1/αi
))λj

.

Here, the first equality follows from the definition of x(ξ̃), the second equality follows from (4.4), and

the inequality holds since ξ̃ ∈ Bn
µ . Denoting

|h|+ µ

( min
i=1,m

(δ1/αi))λj
by const we obtain that estimate (4.2)

is proved. Thus, since x := x(ξ̃) is the desired solution to equation (4.1) we complete the proof.

In the special case when Φ(x) ≡ 0, Theorem 4.1 implies the following assertion on surjectivity of
λ-truncations.

Corollary 4.1. Assume that P satisfies (2.1), λ > 0 and there exists a vector h ∈ Rn such that P
is regular in the direction h, i.e. equalities (2.2) hold.

Then there exists a real number const > 0 such that for every vector y ∈ Rm there exists a solution
x = (x1, ..., xn) ∈ Rn to the equation P (x) = y such that

|xj| ≤ const

(
max
i=1,m

(
|y|1/αi

))λj
, j ∈ {1, ..., n}.

Let us briefly discuss the problem on stability under set-valued perturbation. Recall that a set-
valued mapping Φ : Rn ⇒ Rm is a mapping that corresponds to each x ∈ Rn a non-empty closed
subset of Rm. This mapping is called bounded if there exists R > 0 such that Φ(x) ⊂ Bm

R for every
x ∈ Rn. A set-valued mapping Φ is called convex-valued if Φ(x) is convex for each x ∈ Rn. A set-
valued mapping Φ is called lower semicontinuous if for every x ∈ Rn, for every open set W ⊂ Rk

such that W ∩Φ(x) 6= ∅ there exists a neighbourhood V ⊂ Rn of x such that W ∩Φ(χ) 6= ∅ for each
χ ∈ V.

For an arbitrary bounded set-valued mapping Φ : Rn ⇒ Rm, we denote

‖Φ‖ := sup{|y| : x ∈ Rn, y ∈ Φ(x)}.
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Corollary 4.2. Assume that P satisfies (2.1), λ > 0 and there exists a vector h ∈ Rn such that P
is regular in the direction h, i.e. equalities (2.2) hold.

Then there exists a real number const > 0 such that for every convex-valued bounded lower
semicontinuous mapping Φ : Rn ⇒ Rm and for every vector y ∈ Rm there exists x = (x1, ..., xn) ∈ Rn

such that y ∈ P (x) + Φ(x) and (4.2) holds.

Proof. Applying the Michael continuous selection theorem we obtain a continuous mapping ϕ :
Rn → Rm such that ϕ(x) ∈ Φ(x) for every x ∈ Rn. Applying Theorem 4.1 to the mapping P, the
perturbation ϕ and a vector y ∈ Rm since ‖ϕ‖ ≤ ‖Φ‖, we obtain that the desired x exists.

Here, we consider convex-valued bounded lower semicontinuous perturbations. Another types of
perturbations can be considered using different technique based on various fixed point theorems for
set-valued mappings (see, for example, [3, 5]).
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