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Abstract. Let Ωi and Ωo be two bounded open subsets of Rn containing 0. Let
Gi be a (nonlinear) map from ∂Ωi × Rn to Rn. Let ao be a map from ∂Ωo to the
set Mn(R) of n × n matrices with real entries. Let g be a function from ∂Ωo to Rn.
Let γ be a positive valued function defined on a right neighborhood of 0 in the real
line. Let T be a map from ]1− (2/n),+∞[×Mn(R) to Mn(R). Then we consider the
problem

div (T (ω,Du)) = 0 in Ωo \ εcl Ωi ,
−T (ω,Du(x))νεΩi(x) = 1

γ(ε)
Gi(x/ε, γ(ε)ε−1(log ε)−δ2,nu(x)) ∀x ∈ ε∂Ωi ,

T (ω,Du(x))νo(x) = ao(x)u(x) + g(x) ∀x ∈ ∂Ωo ,

where νεΩi and νo denote the outward unit normal to ε∂Ωi and ∂Ωo, respectively,
and where ε > 0 is a small parameter. Here (ω − 1) plays the role of ratio between
the first and second Lamé constants, and T (ω, ·) denotes (a constant multiple of)
the linearized Piola Kirchhoff stress tensor, and δ2,n denotes the Kronecker symbol.
Under the condition that γ generates a very strong singularity, i.e., the case in which
limε→0+

γ(ε)
εn−1 exists in [0,+∞[, we prove that under suitable assumptions the above

problem has a family of solutions {u(ε, ·)}ε∈]0,ε′[ for ε′ sufficiently small and we analyze
the behavior of such a family as ε is close to 0 by an approach which is alternative
to those of asymptotic analysis.

1 Introduction

In [3], we have considered a linearly elastic homogeneous isotropic body with a small
hole subject to a traction on the boundary of the internal hole, which depends sin-
gularly on the singular perturbation parameter ε which determines the size of the
hole, and we have analyzed the cases which are ‘microscopically weakly singular’ and
‘microscopically singular’ in a sense which we illustrate below.
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In this paper, we concentrate on the ‘singular’ and ‘hypersingular’ cases.
We assume that the constitutive relations of our body are expressed by means of

the linearized tensor T (ω, ·) defined by

T (ω,A) ≡ (ω − 1)(trA)I + (A+ At) ∀A ∈Mn(R) ,

where ω ∈]1 − (2/n),+∞[ is a parameter such that (ω − 1) plays the role of ratio
between the first and second Lamé constants, Mn(R) denotes the set of n×n matrices
with real entries, trA and At and I denote the trace and the transpose matrix of
the matrix A and the identity matrix, respectively. We also note that the classical
linearization of the (first) Piola Kirchhoff tensor equals the second Lamé constant
times T (ω, ·).

Next we introduce a problem in the case our body has no hole. We assume that
the body with no hole occupies an open bounded connected subset Ωo of Rn of class
Cm,α for some m ∈ N \ {0} and α ∈]0, 1[ and such that 0 ∈ Ωo and such that the
exterior of Ωo is also connected. Then we assign a function ao from ∂Ωo to Mn(R) of
class Cm−1,α, and a function g from ∂Ωo to Rn of class Cm−1,α, and we consider the
linear boundary value problem div (T (ω,Du)) = 0 in Ωo ,

T (ω,Du(x))νo(x) = ao(x)u(x) + g(x) ∀x ∈ ∂Ωo ,
(1)

where νo denotes the outward unit normal to ∂Ωo. Here ao(x)u(x) + g(x) plays the
role of the reciprocal of the second Lamé constant times a field of forces applied to
the boundary of the body. We know that under certain nondegeneracy assumptions
on the function ao, the linear traction boundary value problem in (1) admits a unique
solution ũ ∈ Cm,α(cl Ωo,Rn). Here cl Ωo denotes the closure of Ωo. Next we make a
hole in the body Ωo. Namely, we consider another bounded open connected subset
Ωi of Rn of class Cm,α such that 0 ∈ Ωi and such that the exterior of Ωi is also
connected, and we take ε0 ∈]0, 1[ such that εcl Ωi ⊆ Ωo for |ε| < ε0, and we consider
the perforated domain

Ω(ε) ≡ Ωo \ εcl Ωi .

Obviously, ∂Ω(ε) = (ε∂Ωi) ∪ ∂Ωo. Next we wish to define a boundary value problem
in Ω(ε). To do so, we assign a function Gi from ∂Ωi × Rn to Rn and a function γ
from ]0, ε0[ to ]0,+∞[, and we consider the following nonlinear problem

div (T (ω,Du)) = 0 in Ωo \ εcl Ωi ,

− T (ω,Du(x))νεΩi(x) = 1
γ(ε)

Gi(x/ε, u(x)) ∀x ∈ ε∂Ωi ,

T (ω,Du(x))νo(x) = ao(x)u(x) + g(x) ∀x ∈ ∂Ωo ,

(2)

where νεΩi denotes the outward unit normal to ε∂Ωi. Here the function
1
γ(ε)

Gi(x/ε, u(x)) of x ∈ ε∂Ωi plays the role of the reciprocal of the second Lamé
constant times a field of forces applied to the inner boundary of the body. Since we
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allow the function γ to tend to 0 as ε tends to 0, the presence of the factor 1/γ(ε) in
the second equation of (2) determines a singularity of the problem as ε tends to 0.
In [3], we have analyzed (2) under the following assumptions

γm ≡ lim
ε→0

γ−1(ε)ε(log ε)δ2,n = 0 , γm ≡ lim
ε→0

γ−1(ε)ε(log ε)δ2,n ∈ R \ {0} , (3)

which we address to as the ‘microscopically weakly singular’ and ‘microscopically
singular’ cases. Here δ2,n denotes the Kronecker symbol defined by δi,j = 1 if i = j,
δi,j = 0 if i 6= j for all i, j = 1, . . . , n. In this paper, we shall analyze the case in
which the singularity is very strong, i.e., the case in which

γM ≡ limε→0
γ(ε)
εn−1 ∈]0,+∞[ , (4)

γM ≡ limε→0
γ(ε)
εn−1 = 0 , (5)

which we address to as the ‘singular’ and ‘hypersingular’ cases, respectively. Such
a terminology is justified by the behavior of the families of solutions which we will
consider as ε tends to zero. We note however that in cases (4) and (5), we consider
a problem in which the right hand side of the second equation of (2) is replaced by

1

γ(ε)
Gi(x/ε, γ(ε)ε−1(log ε)−δ2,nu(x)) ,

and thus we shall consider the boundary value problem
div (T (ω,Du)) = 0 in Ωo \ εcl Ωi ,

− T (ω,Du(x))νεΩi(x) = 1
γ(ε)

Gi(x/ε, γ(ε)ε−1(log ε)−δ2,nu(x)) ∀x ∈ ε∂Ωi ,

T (ω,Du(x))νo(x) = ao(x)u(x) + g(x) ∀x ∈ ∂Ωo .

(6)

For a discussion on such a choice, see [4]. We note that in case Gi(·, ·) depends linearly
upon the second variable, our problem becomes linear. Both under assumptions
(4) and (5), we shall introduce a limiting boundary value problem (see (24)), and
we shall show that under the assumption that such a problem admits a solution
satisfying certain conditions, possibly shrinking ε0, problem (6) has a solution u(ε, ·) ∈
Cm,α(cl Ω(ε),Rn) which is locally unique in a sense which we shall clarify. Whereas
under condition (4), u(ε, ·) approaches a function related to the solution of the limiting
problem (24), under the ‘hypersingular’ case (5), u(ε, ·) has a singular behavior as
ε→ 0+, and we show that by taking the limit of

γ(ε)

εn−1
u(ε, ·) ,

we obtain again a limiting function associated to the solution of the limiting problem.
However, our main interest is focused on the description of the behavior of u(ε, ·) when
ε is near 0, and not only on the limiting value. Actually, we pose the following three
questions
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(j) Let x be a fixed point in cl Ωo \ {0}. What can be said on the map ε 7→ u(ε, x)
when ε is close to 0 and positive?

(jj) Let x be a fixed point in Rn \ Ωi. What can be said on the map ε 7→ u(ε, εx)
when ε is close to 0 and positive?

(jjj) What can be said on the energy integral

E(ω, u(ε, ·)) ≡ 1

2

∫
Ω(ε)

tr

(
T (ω,Dxu(ε, x))(Dxu(ε, x))

t

)
dx (7)

when ε is close to 0 and positive?

Questions of this type have long been investigated for linear problems with the meth-
ods of Asymptotic Analysis and of the Calculus of the Variations. Here, we mention
Dal Maso and Murat [5], Kozlov, Maz’ya and Movchan [8], Maz’ya, Nazarov and
Plamenewskii [14], Ozawa [18], Ward and Keller [22]. We also mention the seminal
paper of Ball [1] on nonlinear elastic cavitation. For more comments, see also [2].

Here instead, we wish to represent the maps of (j)–(jjj) in terms of real analytic
maps and in terms of possibly singular at 0, but known functions of ε (such as ε−1,
log ε, 1/γ(ε), etc..) Our main results in this sense are Theorems 4 and 5. Theorem 4,
answers questions (j), (jj). In particular, Theorem 4 implies that for x fixed as in (j),

the function γ(ε)
εn−1u(ε, x) of the variable ε equals a real analytic map of three variables

defined in a neighborhood of (0, γM , 1− δ2,n) in R3 computed at (ε, γ(ε)
εn−1 , (log ε)

−δ2,n)
for ε small enough and positive. Also, such a statement ensures that we can expand
γ(ε)
εn−1u(ε, x) into a convergent power series of ε, ( γ(ε)

εn−1 − γM) for n ≥ 3, and of ε,

(γ(ε)
ε
− γM), (log ε)−1 for n = 2. Theorem 5 instead answers question (jjj).

The paper is organized as follows. Section 2 is a section of preliminaries. In Section
3, we transform our problem (6) into a problem for integral equations, and we identify
the limiting problem (24), and we define our family of solutions {u(ε, ·)}ε∈]0,ε′[ with
ε′ ∈]0, ε0[. In Section 4, we prove Theorems 4 and 5. In Section 5, we prove the local
uniqueness of our family of solutions. In Section 6, we present a sufficient condition
in order that the (nonlinear) limiting boundary value problem (24) has a solution.

2 Preliminaries and Notation

We denote the norm on a (real) normed space X by ‖ · ‖X . Let X and Y be normed
spaces. We endow the product space X ×Y with the norm defined by ‖(x, y)‖X×Y ≡
‖x‖X + ‖y‖Y ∀(x, y) ∈ X ×Y , while we use the Euclidean norm for Rn. For standard
definitions of Calculus in normed spaces, we refer to Prodi and Ambrosetti [20]. The
symbol N denotes the set of natural numbers including 0. Throughout the paper,

n is an element of N \ {0, 1} .

The inverse function of an invertible function f is denoted f (−1), as opposed to the
reciprocal of a complex-valued function g, or the inverse of a matrix A, which are
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denoted g−1 and A−1, respectively. A dot ‘·’ denotes the inner product in Rn, or the
matrix product between matrices with real entries. Let D ⊆ Rn. Then cl D denotes
the closure of D and ∂D denotes the boundary of D. For all R > 0, x ∈ Rn, xj denotes
the j-th coordinate of x, |x| denotes the Euclidean modulus of x in Rn, and Bn(x,R)
denotes the ball {y ∈ Rn : |x − y| < R}. Let Ω be an open subset of Rn. The
space of m times continuously differentiable real-valued functions on Ω is denoted
by Cm(Ω,R), or more simply by Cm(Ω). Let f ∈ (Cm(Ω))n. The s-th component

of f is denoted fs, and Df (or ∇f) denotes the gradient matrix
(
∂fs

∂xl

)
s,l=1,...,n

. Let

η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1 + · · · + ηn. Then Dηf denotes ∂|η|f
∂x

η1
1 ...∂xηn

n
. The

subspace of Cm(Ω) of those functions f such that f and its derivatives Dηf of order
|η| ≤ m can be extended with continuity to cl Ω is denoted Cm(cl Ω). The subspace
of Cm(cl Ω) whose functions have m-th order derivatives that are Hölder continuous
with exponent α ∈]0, 1] is denoted Cm,α(cl Ω), (cf. e.g. Gilbarg and Trudinger [6].)
The subspace of Cm(cl Ω) of those functions f such that f|cl (Ω∩Bn(0,R)) ∈ Cm,α(cl (Ω∩
Bn(0, R))) for all R ∈]0,+∞[ is denoted Cm,α

loc (cl Ω). Let D ⊆ Rn. Then Cm,α(cl Ω,D)
denotes {f ∈ (Cm,α(cl Ω))n : f(cl Ω) ⊆ D}. Now let Ω be a bounded open subset
of Rn. Then Cm(cl Ω) endowed with the norm ‖f‖Cm(cl Ω) ≡

∑
|η|≤m supcl Ω |Dηf | is

a Banach space. If f ∈ C0,α(cl Ω), then its Hölder constant |f : Ω|α is defined as

sup
{
|f(x)−f(y)|
|x−y|α : x, y ∈ cl Ω, x 6= y

}
. The space Cm,α(cl Ω), equipped with its usual

norm ‖f‖Cm,α(cl Ω) = ‖f‖Cm(cl Ω) +
∑

|η|=m |Dηf : Ω|α, is well-known to be a Banach
space. We say that a bounded open subset of Rn is of class Cm or of class Cm,α,
if it is a manifold with boundary imbedded in Rn of class Cm or Cm,α, respectively
(cf. e.g., Gilbarg and Trudinger [6, §6.2].) For standard properties of the functions
of class Cm,α both on a domain of Rn or on a manifold imbedded in Rn we refer to
Gilbarg and Trudinger [6] (see also [12, §2, Lem. 3.1, 4.26, Thm. 4.28], Lanza and
Rossi [13, §2].) We retain the standard notation of Lp spaces and of corresponding
norms. We note that throughout the paper ‘analytic’ means ‘real analytic’. For the
definition and properties of analytic operators, we refer to Prodi and Ambrosetti [20,
p. 89].

We denote by Sn the function of Rn \ {0} to R defined by

Sn(ξ) ≡


1
sn

log |ξ| ∀ξ ∈ Rn \ {0}, if n = 2 ,

1
(2−n)sn

|ξ|2−n ∀ξ ∈ Rn \ {0}, if n > 2 ,

where sn denotes the (n − 1) dimensional measure of ∂Bn. Sn is well-known to be
the fundamental solution of the Laplace operator.

We denote by Γn(·, ·) the matrix valued function from (R \ {−1})× (Rn \ {0}) to
Mn(R) which takes a pair (ω, ξ) to the matrix Γn(ω, ξ) defined by

Γjn,i(ω, ξ) ≡
ω + 2

2(ω + 1)
δi,jSn(ξ)−

ω

2(ω + 1)

1

sn

ξiξj
|ξ|n

.

As is well known, Γn(ω, ξ) is the fundamental solution of the operator

L[ω] ≡ ∆ + ω∇div .
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We note that the classical operator of linearized homogeneous and isotropic elasto-
statics equals L[ω] times the second constant of Lamé, and that L[ω]u = div T (ω,Du)
for all regular vector valued functions u, and that the classical fundamental solution
of the operator of linearized homogeneous and isotropic elastostatics equals Γn(ω, ξ)
times the reciprocal of the second constant of Lamé. We find also convenient to set

Γjn(·, ·) ≡ (Γjn,i(·, ·))i=1,...,n ,

which we think of as a column vector for all j = 1, . . . , n. Let α ∈]0, 1[. Let Ω be
an open bounded connected subset of Rn of class C1,α. We shall denote by νΩ the
outward unit normal to ∂Ω. We also set

Ω− ≡ Rn \ cl Ω .

Let ω ∈]1− (2/n),+∞[. Then we set

v[ω, µ](x) ≡
∫
∂Ω

Γn(ω, x− y)µ(y) dσy ,

w[ω, µ](x) ≡ −
(∫

∂Ω

µt(y)T (ω,DξΓ
i
n(ω, x− y))νΩ(y) dσy

)
i=1,...,n

,

for all x ∈ Rn, and

v∗[ω, µ](x) ≡
∫
∂Ω

n∑
l=1

µl(y)T (ω,DξΓ
l
n(ω, x− y))νΩ(x) dσy ∀x ∈ ∂Ω ,

for all µ ≡ (µj)j=1,...,n ∈ Lp(∂Ω,Rn) with p > 1. As is well known, if µ ∈ C0,α(∂Ω,Rn),
then v[ω, µ] is continuous in the whole of Rn, and we set

v+[ω, µ] ≡ v[ω, µ]|cl Ω v−[ω, µ] ≡ v[ω, µ]|cl Ω− .

Also if µ ∈ C0,α(∂Ω,Rn), then w[ω, µ]|Ω admits a unique continuous extension to cl Ω,
which we denote by w+[ω, µ], and w[ω, µ]|Ω− admits a unique continuous extension
to cl Ω−, which we denote by w−[ω, µ].

We now shortly review some facts on the linear traction problem, which we need
in the sequel. Let a be a continuous map from ∂Ω to Mn(R) satisfying the following
assumptions.

The determinant det a(·) of a(·) does not vanish identically in ∂Ω , (8)

ξta(x)ξ ≥ 0 ∀x ∈ ∂Ω, ∀ξ ∈ Rn . (9)

For each G ∈ C0(∂Ω×Rn,Rn), we denote by FG the (nonlinear) composition operator
from C0(∂Ω,Rn) to itself which maps v ∈ C0(∂Ω,Rn) to the function FG[v] defined
by

FG[v](t) ≡ G(t, v(t)) ∀t ∈ ∂Ω .

In the next proposition, we transform our nonlinear boundary value problem into a
problem for integral equations (see [2, Prop. 2.3].)
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Proposition 1. Let α ∈]0, 1[, ω ∈]1 − (2/n),+∞[. Let m ∈ N \ {0}. Let Ω be
an open bounded connected subset of Rn of class Cm,α. Let G be a function of class
C0(∂Ω × Rn,Rn) such that FG maps Cm−1,α(∂Ω,Rn) to itself. Then the map from
the set{

(d, µ) ∈ Rn × Cm−1,α(∂Ω,Rn)0 : −1

2
µ+ v∗[ω, µ] = FG[v[ω, µ]|∂Ω + d]

}
, (10)

to the set{
u ∈ Cm,α(cl Ω,Rn) :

div (T (ω,Du)) = 0 in Ω, T (ω,Du)νΩ = FG[u|∂Ω] on ∂Ω

}
,

which takes (d, µ) to the function v+[ω, µ] + d is a bijection.

3 Formulation of the problem in terms of integral equations,
and existence of the solution u(ε, ·)

We now provide a formulation of problem (6) in terms of integral equations. We shall
consider the following assumptions for some α ∈]0, 1[ and for some natural m ≥ 1.

Let Ω be a bounded open connected subset of Rn of class Cm,α . (11)

Let Rn \ cl Ω be connected. Let 0 ∈ Ω .

Now let Ωi, Ωo be as in (11). Then there exists

ε0 ∈]0, 1[ such that εcl Ωi ⊆ Ωo, ∀ε ∈]− ε0, ε0[ . (12)

A simple topological argument shows that Ω(ε) ≡ Ωo \ εcl Ωi is connected, and that
Rn \ cl Ω(ε) has exactly the two connected components εΩi and Rn \ cl Ωo, and that
∂Ω(ε) = (ε∂Ωi) ∪ ∂Ωo, for all ε ∈]− ε0, ε0[\{0}. For brevity, we set

νi ≡ νΩi , νo ≡ νΩo .

Obviously,

νΩ(ε)(x) = −νi(x/ε) sgn(ε) ∀x ∈ ε∂Ωi , (13)

νΩ(ε)(x) = νo(x) ∀x ∈ ∂Ωo , (14)

for all ε ∈] − ε0, ε0[\{0}, where sgn(ε) = 1 if ε > 0, sgn(ε) = −1 if ε < 0. Then we
consider the following assumptions

Gi ∈ C0(∂Ωi × Rn,Rn) , (15)

FGi maps Cm−1,α(∂Ωi,Rn) to itself , (16)

g ∈ Cm−1,α(∂Ωo,Rn), ao ∈ Cm−1,α(∂Ωo,Mn(R)), (17)
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and we set
Go(t, ξ) ≡ g(t) + ao(t)ξ ∀(t, ξ) ∈ ∂Ωo × Rn . (18)

If Gi ∈ C0(∂Ωi×Rn,Rn), Go ∈ C0(∂Ωo×Rn,Rn), we denote by G the function from
∂Ω(ε)× Rn to Rn defined by

G(s, ξ) ≡ Go(s, ξ) if (s, ξ) ∈ ∂Ωo × Rn, (19)

G(s, ξ) ≡ Gi(s/ε, ξ) if (s, ξ) ∈ ε∂Ωi × Rn .

We now convert our boundary value problems (6) into a system of integral equations.
We could exploit Proposition 1. However, we note that the corresponding represen-
tation formulas include integration on the ε-dependent set ∂Ω(ε). In order to get rid
of such dependence, we introduce the following theorem in which we properly rescale
the restriction of the unknown function to ε∂Ωi. We note that the transformation we
operate (cf. (22)) differs considerably from that we have operated for the treatment
of the nonlinear conditions on ∂Ωo of [2], or for the microscopically weakly singular
case of [3]. We find convenient to introduce the following notation. We set

Xm,α ≡ Cm−1,α(∂Ωi,Rn)× Cm−1,α(∂Ωo,Rn) ,

and we introduce the map M = (M1,M2,M3) from ] − ε0, ε0[×R2 × Rn × Xm,α to
Rn ×Xm,α defined by

M1[ε, ε1, ε2, c, η, ρ] ≡
∫
∂Ωi

η dσ +

∫
∂Ωo

ρ dσ , (20)

M2[ε, ε1, ε2, c, η, ρ](t)

≡ 1

2
η(t) + v∗[ω, η](t) + εn−1

∫
∂Ωo

n∑
l=1

ρl(s)T (ω,DξΓ
l
n(ω, εt− s))νi(t) dσs

+Gi

(
t, ε2v[ω, η](t) +

δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ + εn−2ε2v[ω, ρ](εt) + εn−2ε2c

)
∀t ∈ ∂Ωi ,

M3[ε, ε1, ε2, c, η, ρ](t)

≡ −1

2
ρ(t) + v∗[ω, ρ](t) +

∫
∂Ωi

n∑
l=1

ηl(s)T (ω,DξΓ
l
n(ω, t− εs))νo(t) dσs

−ao(t)
{∫

∂Ωi

Γn(ω, t− εs)η(s) dσs + v[ω, ρ](t) + c

}
− ε1g(t) ∀t ∈ ∂Ωo ,

for all (ε, ε1, ε2, c, η, ρ) ∈] − ε0, ε0[×R2 × Rn ×Xm,α. As we shall see in the next two
statements, the map M will play an important role in the analysis of problem (6).
In the first statement, we consider case ε > 0. We clarify that at this stage, we
do not claim existence neither for boundary value problem (6) nor for its equivalent
counterpart (21) in terms of zeros of M .

Theorem 1. Let α ∈]0, 1[, ω ∈]1 − (2/n),+∞[, m ∈ N \ {0}. Let Ωi, Ωo be as in
(11). Let ε0 be as in (12). Let Gi, Go be as in (15), (16), (17), (18). Let γ(·) be a
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map from ]0, ε0[ to ]0,+∞[. Let ε ∈]0, ε0[. The map uε[·, ·, ·] from the set of solutions
(c, η, ρ) ∈ Rn ×Xm,α of the following system of integral equations

M [ε,
γ(ε)

εn−1
, (log ε)−δ2,n , c, η, ρ] = 0 (21)

to the set of solutions u ∈ Cm,α(cl Ω(ε),Rn) of (6) which takes (c, η, ρ) to v+[ω, µ]+d,
where

µ(x) ≡ εn−1

γ(ε)
ρ(x) if x ∈ ∂Ωo, µ(x) ≡ 1

γ(ε)
η(x/ε) if x ∈ ε∂Ωi ,

d ≡ εn−1

γ(ε)
c , (22)

is a bijection.

Proof. Let ε ∈]0, ε0[. A simple computation based on the rule of change of variables
in integrals over ∂Ωi and on (13), (14) shows that (c, η, ρ) solves (21) if and only if
the pair (c, µ) belongs to the set in (10) with Ω = Ω(ε) and G as in (19). Thus the
statement follows by Proposition 1. �

Theorem 1 reduces the analysis of problem (6), which has been considered only for
ε ∈]0, ε0[ to that of equation M = 0. However equation M = 0, contrary to problem
(6) makes sense also for ε = 0. Then we state the following Theorem which analyses
case ε = 0. Once more, also in case ε = 0, at this stage we do not claim existence
neither for equation M = 0 nor for its equivalent counterpart in terms of boundary
value problem (24).

Theorem 2. Let the same assumptions of Theorem 1 hold. Let γM ∈ [0,+∞[. Then
the map (ui[·, ·, ·], uo[·, ·, ·]) from the set of solutions (c, η, ρ) ∈ Rn × Xm,α of the
following system of integral equations

M [0, γM , 1− δ2,n, c, η, ρ] = 0 (23)

to the set of solutions (ui, uo) ∈ Cm,α
loc (Rn \ Ωi,Rn)× Cm,α(cl Ωo,Rn) of the ‘limiting

boundary value problem’

div (T (ω,Dui)) = 0 in Rn \ cl Ωi,

−T (ω,Dui(t))νi(t)

= Gi

(
t, (1− δ2,n)u

i(t) + δ2,n

4π
ω+2
ω+1

∫
∂Ωi T (ω,Dui)νi dσ

)
∀t ∈ ∂Ωi,

supx∈Ωi− |x|n−2+δ2,n|u∗,i(x)| <∞,

supx∈Ωi− |x|n−1+δ2,n|Du∗,i(x)| <∞,

div (T (ω,Duo)) = 0 in Ωo,

T (ω,Duo(t))νo(t)− ao(t)uo(t)

= −
∑n

l,j=1

(∫
∂Ωi Tlj(ω,Du

i)νij dσ
)
T (ω,DΓln(ω, t))ν

o(t)

+ ao(t)
{
Γn(ω, t)

∫
∂Ωi T (ω,Dui)νi dσ

}
+ γMg(t) ∀t ∈ ∂Ωo,

(24)
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where νij denotes the j-th component of νi and

u∗(x) = ui(x)− δ2,nΓ(ω, x)

∫
∂Ωi

T (ω,Dui)νi dσ ∀x ∈ Rn \ Ωi ,

which takes the triple (c, η, ρ) to

ui[c, η, ρ] ≡ v−[ω, η] in Rn \ Ωi , (25)

uo[c, η, ρ] ≡ v+[ω, ρ] + c on cl Ωo ,

is a bijection.

Proof. Let (c, η, ρ) solve equation (23). Then by standard jump properties of the
elastic layer potentials, and by the boundedness of the functions

|x|(Γ2(ω, x− y)− Γ2(ω, x)) , |x|2(DxΓ2(ω, x− y)−DxΓ2(ω, x)) ,

for all (x, y) ∈ (R2 \ cl B2(0, R))×∂Ωi where R > 0 is such that cl Ωi ⊆ Bn(0, R), and
by the equality∫

∂Ωi

T (ω,Dui)νi dσ =

∫
∂Ωi

{
1

2
η + v∗[ω, η]

}
dσ =

∫
∂Ωi

η dσ ,

which follows by standard properties of elastic layer potentials (cf. e.g., [2, (A.7)]), the
functions ui, uo defined in (25) solve problem (24) and have the required regularity
(cf. e.g., [2, Thm. A.2]).)

Next we prove that the map (ui[·, ·, ·], uo[·, ·, ·]) is injective. Thus we now assume
that (ĉ, η̂, ρ̂), (c̆, η̆, ρ̆) ∈ Rn ×Xm,α, and that the corresponding pairs (ui, uo) defined
in (25) coincide, and we show that (ĉ, η̂, ρ̂) equals (c̆, η̆, ρ̆). To do so, we set (c, η, ρ) ≡
(ĉ− c̆, η̂ − η̆, ρ̂− ρ̆) and we show that (c, η, ρ) = (0, 0, 0). Clearly,

v−[ω, η] = 0 in Rn \ Ωi, v+[ω, ρ] + c = 0 cl Ωo . (26)

Then by standard jump properties of simple elastic layer potentials, we have

1

2
η + v∗[ω, η] = 0 on ∂Ωi , −1

2
ρ+ v∗[ω, ρ] = 0 on ∂Ωo . (27)

Since Rn \ cl Ωi is connected, a classical result in potential theory implies that η = 0
(cf. e.g., [2, Rmk. A.8].) Thus by the first component of equation (23) applied to
(ĉ, η̂, ρ̂), (c̆, η̆, ρ̆), we have

∫
∂Ωo ρ dσ = 0. As known classically, the space of constant

functions of the form v+[ω, ρ]|∂Ωo with ρ as in the second equation of (27) and such
that

∫
∂Ωo ρ dσ = 0 contains only the constant vector 0 (cf. e.g., [2, Thm. A.5 (iv)].)

Hence, the second equation in (26) implies that c = 0. Then by the second equality
of (26), and by the second equation of (27) and by equality

∫
∂Ωo ρ dσ = 0, we deduce

that ρ = 0 (cf. e.g., [2, Thm. A.5 (ii)].)
Now we show that if (ui, uo) is as in the statement and satisfies the limiting

problem (24), then there exists a solution (c, η, ρ) ∈ Rn×Xm,α of equation (23) such
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that ui = ui[c, η, ρ], uo = uo[c, η, ρ]. By classical properties of elastic layer potentials,
the equation

1

2
η + v∗[ω, η] = T (ω,Dui)νi

has a unique solution η ∈ Cm−1,α(∂Ωi,Rn) (cf. e.g., [2, Rmk. A.8].) Since∫
∂Ωi

T (ω,Dv−[ω, η])νi dσ =

∫
∂Ωi

η dσ =

∫
∂Ωi

T (ω,Dui)νi dσ ,

both ui and v−[ω, η] satisfy the system div (T (ω,Du)) = 0 in Rn \ cl Ωi ,

T (ω,Du)νi = T (ω,Dui)νi on ∂Ωi ,

in the unknown u, together with the third and fourth condition of problem (24).
Accordingly, ui = v−[ω, η] in Rn \ Ωi (cf. e.g., [3, Thm. 2.3 (ii)].) Next we consider
the problem

∫
∂Ωo ρ dσ = −

∫
∂Ωi η dσ ,

− 1
2
ρ(t) + v∗[ω, ρ](t) + (v[ω, ρ](t) + c)

= T (ω,Duo(t))νo(t) + uo(t) ∀t ∈ ∂Ωo .

(28)

Problem (28) in the unknown (c, ρ) is associated to a linear traction boundary value
problem. Since the matrix-valued function a ≡ I on ∂Ωo satisfies assumptions (8),
(9), a classical result implies that problem (28) admits a unique solution (c, ρ) in
Rn × Xm,α (cf. e.g., [2, Th. 2.2 (ii)].) Then both uo and v+[ω, ρ] + c solve the
boundary value problem div (T (ω,Du)) = 0 in Ωo ,

T (ω,Du)νo + u = T (ω,Duo)νo + uo on ∂Ωo ,

in the unknown u. Then a standard uniqueness argument implies that uo = v+[ω, ρ]+
c (cf. e.g., [2, Prop. 2.1].)

By equalities ui = v−[ω, η] in Rn \ Ωi and uo = v+[ω, ρ] + c in cl Ωo, and by
standard jump relations for the normal derivative of the elastic simple layer potential,
and by the second and sixth equation in (24), we deduce that the second and third
components of (23) hold. By (28), the first component of (23) holds. Hence, (c, η, ρ)
solves equation (23). �

Theorems 1, 2 reduce the analysis of problem (6) and of the boundary value
problem (24) to that of the analysis of the set of zeros of M . We shall now show that,
both in the singular and hypersingular case, if problem (24) has a solution (ũi, ũo)
satisfying certain nondegeneracy conditions, then for ε sufficiently small, problem (6)
has a solution. We shall also see that such a solution is unique in a local sense which
we clarify in section 5.
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Theorem 3. Let α ∈]0, 1[, ω ∈]1−(2/n),+∞[, m ∈ N\{0}. Let Ωi, Ωo be as in (11).

Let ε0 be as in (12). Let γ(·) be a map from ]0, ε0[ to ]0,+∞[. Let limε→0
γ(ε)
εn−1 ≡ γM

exist in [0,+∞[. Let (15)–(18) hold. Let

FGi be real analytic in Cm−1,α(∂Ωi,Rn) . (29)

Let −ao satisfy conditions (8), (9) on ∂Ωo. Assume that the limiting boundary value
problem (24) admits a solution (ũi, ũo) ∈ Cm,α

loc (Rn \Ωi,Rn)×Cm,α(cl Ωo,Rn). Let Gi
be the function from ∂Ωi to Mn(R) defined by

Gi(t) ≡ −DξG
i

(
t, (1− δ2,n)ũ

i(t) +
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

T (ω,Dũi)νi dσ

)
∀t ∈ ∂Ωi . (30)

If n = 2, we assume that the matrix I − ω+2
4π(ω+1)

∫
∂Ωi Gi dσ is invertible.

If n ≥ 3, we assume that Gi(·) satisfies conditions (8), (9) on ∂Ωi.

Let (c̃, η̃, ρ̃) ∈ Rn × Xm,α be the unique solution of the system of integral equations
M [0, γM , 1− δ2,n, c̃, η̃, ρ̃] = 0 such that

ũi = ui[c̃, η̃, ρ̃] ũo = uo[c̃, η̃, ρ̃] ,

(see Theorem 1.) Then there exist ε′ ∈]0, ε0[, and an open neighborhood UγM
of the

pair (γM , 1− δ2,n) in R2, and an open neighborhood V of (c̃, η̃, ρ̃) in Rn ×Xm,α, and
a real analytic operator (C,E,R) from ]− ε′, ε′[×UγM

to V such that

(
γ(ε)

εn−1
, (log ε)−δ2,n

)
∈ UγM

∀ε ∈]0, ε′[ , (31)

and such that the set of zeros of M in ]− ε′, ε′[×UγM
×V coincides with the graph of

(C,E,R). In particular

(C[0, γM , 1− δ2,n], E[0, γM , 1− δ2,n], R[0, γM , 1− δ2,n]) = (c̃, η̃, ρ̃) .

Proof. We plan to apply the Implicit Function Theorem to equation

M [ε, ε1, ε2, c, η, ρ] = 0 ,

around (0, γM , 1−δ2,n, c̃, η̃, ρ̃). By assumption (29), and by standard properties of the
elastic potentials (cf. e.g., [2, Thm. A.2]) and by known properties of (nonsingular)
integral operators (cf. e.g., [11, Thm. 6.2]), we conclude that the map M is real
analytic. By definition of (c̃, η̃, ρ̃), we have M [0, γM , 1− δ2,n, c̃, η̃, ρ̃] = 0. By standard
Calculus in Banach space (see also [11, Prop. 6.3]), the differential of M at the point
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(0, γM , 1− δ2,n, c̃, η̃, ρ̃) with respect to the variable (c, η, ρ) is delivered by the formula

∂(c,η,ρ)M1[0, γM , 1− δ2,n, c̃, η̃, ρ̃](c, η, ρ) =

∫
∂Ωi

η dσ +

∫
∂Ωo

ρ dσ ,

∂(c,η,ρ)M2[0, γM , 1− δ2,n, c̃, η̃, ρ̃](c, η, ρ) =
1

2
η + v∗[ω, η]

−Gi ·
{

(1− δ2,n)v[ω, η] +
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ

}
on ∂Ωi ,

∂(c,η,ρ)M3[0, γM , 1− δ2,n, c̃, η̃, ρ̃](c, η, ρ)(t) = −1

2
ρ(t) + v∗[ω, ρ](t)

+
n∑
l=1

(∫
∂Ωi

ηl dσ

)
T (ω,DΓln(ω, t))ν

o(t)

−ao(t) ·
{

Γn(ω, t)

∫
∂Ωi

η dσ + v[ω, ρ](t) + c

}
∀t ∈ ∂Ωo ,

for all (c, η, ρ) ∈ Rn × Xm,α. We now prove that ∂(c,η,ρ)M [0, γM , 1 − δ2,n, c̃, η̃, ρ̃] is a
linear homeomorphism of Rn ×Xm,α onto itself. As a first step, we shall show that
∂(c,η,ρ)M [0, γM , 1− δ2,n, c̃, η̃, ρ̃] is a Fredholm operator of index 0. First we note that
the map of Rn ×Xm,α to itself which takes (c, η, ρ) to(∫

∂Ωi

η dσ +

∫
∂Ωo

ρ dσ,−Gi ·
{
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ

}
,

n∑
l=1

(∫
∂Ωi

ηl dσ

)
T (ω,DΓln(ω, t))ν

o(t) −ao(t) ·
{

Γn(ω, t)

∫
∂Ωi

η dσ + c

})
is compact as a linear map with finite dimensional image. Then we note that the
operator from Rn × Xm,α to itself which takes a triple (c, η, ρ) to the triple (0, (1 −
δ2,n)v[ω, η], v[ω, ρ]) is compact. Indeed, such a map has a range contained in Rn ×
Xm+1,α, which is compactly imbedded in Rn ×Xm,α (cf. e.g., [2, Thm. A.2].) Then
the map from Rn×Xm,α to itself which takes (c, η, ρ) to (0,−(1−δ2,n)Gi ·v[ω, η],−ao ·
v[ω, ρ]) is compact. Hence, ∂(c,η,ρ)M [0, γM , 1− δ2,n, c̃, η̃, ρ̃] is a compact perturbation
of the operator Λ from Rn ×Xm,α to itself defined by

Λ[c, η, ρ] ≡
(

0,
1

2
η + v∗[ω, η],−

1

2
ρ+ v∗[ω, ρ]

)
.

Since a compact perturbation of a Fredholm operator of index 0 is a Fredholm oper-
ator of index 0, it suffices to show that Λ is a Fredholm operator of index 0. Since
Rn \ cl Ωi is connected, a classical result of potential theory implies that the second
component of Λ induces a homeomorphism from Cm−1,α(∂Ωi,Rn) onto itself (cf. e.g.,
[2, Rmk. A.8].) By classical results, the third component of Λ is Fredholm of index 0
in Cm−1,α(∂Ωo,Rn) (cf. e.g., [2, Thm. A.9].) Hence, we immediately deduce that Λ is
Fredholm of index 0. Now that we have proved that ∂(c,η,ρ)M [0, γM , 1− δ2,n, c̃, η̃, ρ̃] is
Fredholm of index 0, it suffices to show that its kernel is trivial. Thus we now assume
that (c, η, ρ) ∈ Rn ×Xm,α and that

∂(c,η,ρ)M [0, γM , 1− δ2,n, c̃, η̃, ρ̃](c, η, ρ) = 0 , (32)
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and we prove that (c, η, ρ) = 0.
If n ≥ 3, we consider the second equation

1

2
η + v∗[ω, η]− Gi · v[ω, η] = 0 ,

of (32). Since Gi satisfies (8), (9), a classical result on the integral equations corre-
sponding to an exterior linear traction boundary value problem implies that η = 0
(cf. e.g., [3, Thm. 2.2 (v)]).

If n = 2, we consider the second equation

1

2
η + v∗[ω, η]−

1

4π

ω + 2

ω + 1
Gi
∫
∂Ωi

η dσ = 0 on ∂Ωi , (33)

of (32). By equality
∫
∂Ωi v∗[ω, η] dσ = 1

2

∫
∂Ωi η dσ, which follows by classical properties

of elastic layer potentials, we obtain that(
I − ω + 2

4π(ω + 1)

∫
∂Ωi

Gi dσ
)(∫

∂Ωi

η dσ

)
= 0 ,

(cf. e.g., [2, (A.7)].) Then by our assumption in case n = 2, we have
∫
∂Ωi η dσ = 0.

Next we go back to equality (33) and we obtain that 1
2
η+v∗[ω, η] = 0, which as above

implies that η = 0. Thus both in cases n ≥ 3 and n = 2, we have η = 0. Hence,
equality (32) implies that

∫
∂Ωo ρ dσ = 0

− 1
2
ρ+ v∗[ω, ρ]− ao · {v[ω, ρ] + c} = 0 on ∂Ωo ,

which is an integral equation corresponding to a linear traction boundary value prob-
lem. Since −ao satisfies (8), (9), we can prove classically that ρ = 0 and c = 0 (cf.
e.g., [2, Thm. 2.2 (ii)]). Then we can invoke the Implicit Function Theorem and
deduce the existence of (C,E,R) as in the statement. �

In order to simplify the notation of (31), we introduce the function ΞM,n from
]0, ε′[ to UγM

by setting

ΞM,n[ε] ≡
(
γ(ε)

εn−1
, (log ε)−δ2,n

)
∀ε ∈]0, ε′[ . (34)

Theorem 3 enables us to introduce our family of solutions.

Definition 1. Let the assumptions of Theorem 3 hold. Then we set

u(ε, t) ≡ uε[C[ε,ΞM,n[ε]], E[ε,ΞM,n[ε]], R[ε,ΞM,n[ε]]](t) ∀t ∈ cl Ω(ε) ,

for all ε ∈]0, ε′[.
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4 A functional analytic representation Theorem for the fam-
ily {u(ε, ·)}ε∈]0,ε′[ and for its energy integral

Theorem 4. Let the assumptions of Theorem 3 hold. Then the following statements
hold.

(i) Let Ω̃ be a bounded open subset of Ωo \ {0} such that 0 /∈ cl Ω̃. Then there exist
εΩ̃ ∈]0, ε′[ and a real analytic operator UΩ̃ from ]−εΩ̃, εΩ̃[×UγM

to Cm,α(cl Ω̃,Rn)
such that Ω̃ ⊆ Ω(ε) for all ε ∈]− εΩ̃, εΩ̃[ and such that

u(ε, t)|cl Ω̃ =
εn−1

γ(ε)
UΩ̃[ε,ΞM,n[ε]](t) ∀t ∈ cl Ω̃ ,

for all ε ∈]0, εΩ̃[. Moreover,

lim
ε→0

γ(ε)

εn−1
u(ε, t) = Γn(ω, t)

∫
∂Ωi

T (ω,Dũi)νi dσ + ũo(t) ∀t ∈ cl Ω̃ ,

where (ũi, ũo) is as in Theorem 3.

(ii) Let U r,1 be the real analytic map from ]− ε′, ε′[×UγM
to Rn defined by

U r,1[ε, ε1, ε2] ≡
ω + 2

4π(ω + 1)

∫
∂Ωi

E[ε, ε1, ε2] dσ

for all (ε, ε1, ε2) ∈]− ε′, ε′[×UγM
. Let Ω̃ be a bounded open subset of Rn \ cl Ωi.

Then there exist εΩ̃,r ∈]0, ε′[, and two real analytic functions U r,j

Ω̃
[·, ·, ·] for j = 2,

3 from ]− εΩ̃,r, εΩ̃,r[×UγM
to Cm,α(cl Ω̃,Rn) such that

Ω̃ ⊆ 1

ε
Ω(ε) ∀ε ∈]− εΩ̃,r, εΩ̃,r[\{0} (35)

and such that

u(ε, εt) =
ε

γ(ε)

{
δ2,nU

r,1[ε,ΞM,n[ε]] log ε+ U r,2

Ω̃
[ε,ΞM,n[ε]](t) (36)

+U r,3

Ω̃
[ε,ΞM,n[ε]](t)ε

n−2

}
∀t ∈ cl Ω̃ ,

for all ε ∈]0, εΩ̃,r[. Moreover,

U r,1[0, γM , 1− δ2,n] =
ω + 2

4π(ω + 1)

∫
∂Ωi

T (ω,Dũi)νi dσ , (37)

U r,2

Ω̃
[0, γM , 1− δ2,n] = ũi|cl Ω̃ ,

U r,3

Ω̃
[0, γM , 1− δ2,n] = ũo(0) ,

where (ũi, ũo) is as in Theorem 3 and

lim
ε→0

γ(ε)

ε
(log ε)−δ2,nu(ε, ε · )

=
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

T (ω,Dũi)νi dσ + (1− δ2,n)ũ
i
|cl Ω̃(·) ,

in Cm,α(cl Ω̃,Rn).
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Proof. We first consider statement (i). Let ε∗
Ω̃
∈]0, ε′[ be such that Ω̃ ⊆ Ω(ε) for

all ε ∈ [−ε∗
Ω̃
, ε∗

Ω̃
]. Let εΩ̃ ∈]0, ε∗

Ω̃
[ be such that εcl Ωi ⊆ ε∗

Ω̃
Ωi for all ε ∈ [−εΩ̃, εΩ̃]. By

definition of u(ε, ·), we have

u(ε, t) ≡ εn−1

γ(ε)

∫
∂Ωi

Γn(ω, t− εs)E[ε,ΞM,n[ε]](s) dσs

+
εn−1

γ(ε)

∫
∂Ωo

Γn(ω, t− s)R[ε,ΞM,n[ε]](s) dσs +
εn−1

γ(ε)
C[ε,ΞM,n[ε]] ,

for all t ∈ cl Ω(ε∗
Ω̃
) and for all ε ∈]0, εΩ̃[. Thus it is natural to define

UΩ(ε∗
Ω̃

)[ε, ε1, ε2](t) ≡
∫
∂Ωi

Γn(ω, t− εs)E[ε, ε1, ε2](s) dσs (38)

+

∫
∂Ωi

Γn(ω, t− s)R[ε, ε1, ε2](s) dσs + C[ε, ε1, ε2] ∀t ∈ cl Ω(ε∗
Ω̃
) ,

for all (ε, ε1, ε2) ∈] − εΩ̃, εΩ̃[×UγM
. Thus we are now reduced to show that the

right hand side of (38) defines a real analytic operator from ] − εΩ̃, εΩ̃[×UγM
to

Cm,α(cl Ω(ε∗
Ω̃
),Rn). Indeed, Ω̃ ⊆ Ω(ε∗

Ω̃
) and thus we can take UΩ̃ equal to UΩ(ε∗

Ω̃
)

composed with the restriction operator from cl Ω(ε∗
Ω̃
) to cl Ω̃. Since cl Ω(ε∗

Ω̃
) ⊆ cl Ωo,

known regularity properties of the elastic layer potentials (cf. e.g., [2, Thm. A.2]), and
the real analyticity of R imply that the map from ]− εΩ̃, εΩ̃[×UγM

to Cm,α(cl Ωo,Rn)
which takes (ε, ε1, ε2) to v+[ω,R[ε, ε1, ε2]] is real analytic. By standard properties
of integral operators with real analytic kernel and with no singularity (see also
[11, Prop. 6.1]), the map from ] − εΩ̃, εΩ̃[×L1(∂Ωi,Rn) to Cm+1(cl Ω(ε∗

Ω̃
),Rn) which

takes (ε, f) to the function
∫
∂Ωi Γn(ω, t − εs)f(s) dσs of the variable t ∈ cl Ω(ε∗

Ω̃
)

is real analytic. Since E is real analytic from ] − εΩ̃, εΩ̃[×UγM
to Cm−1,α(∂Ωi,Rn)

and since Cm−1,α(∂Ωi,Rn) is continuously imbedded into the space L1(∂Ωi,Rn) and
Cm+1(cl Ω(ε∗

Ω̃
),Rn) is continuously imbedded into Cm,α(cl Ω(ε∗

Ω̃
),Rn), we conclude

that the function from ] − εΩ̃, εΩ̃[×UγM
to Cm,α(cl Ω(ε∗

Ω̃
),Rn) which takes a triple

(ε, ε1, ε2) to the function ∫
∂Ωi

Γn(ω, t− εs)E[ε, ε1, ε2](s) dσs

of the variable t ∈ cl Ω(ε∗
Ω̃
) is real analytic. Also, Theorem 3 and definition (38) imply

that

UΩ(ε∗
Ω̃

)[0, γM , 1− δ2,n](t) = Γn(ω, t)

∫
∂Ωi

E[0, γM , 1− δ2,n](s) dσs

+v[ω,R[0, γM , 1− δ2,n]](t) + C[0, γM , 1− δ2,n]

= Γn(ω, t)

∫
∂Ωi

T (ω,Dũi(y))νi(y) dσy + ũo(t) ∀t ∈ cl Ω(ε∗
Ω̃
) ,

where (ũi, ũo) is the solution of the limiting problem (24) of Theorem 3. Here
v[ω,R[0, γM , 1 − δ2,n]] denotes the simple elastic layer potential associated to
R[0, γM , 1− δ2,n].
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We now prove statement (ii). Let ε∗
Ω̃,r

∈]0, ε′[ be such that cl Ω̃ ⊆ 1
ε
Ωo for all

ε ∈ [−ε∗
Ω̃,r
, ε∗

Ω̃,r
] \ {0}. Since the restriction map from Cm,α

(
1
ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

),Rn

)
to

Cm,α(cl Ω̃,Rn) is linear and continuous, it clearly suffices to construct first U r,j
1

ε∗
Ω̃,r

Ω(ε∗
Ω̃,r

)

and then to define U r,j

Ω̃
for j = 2, 3 to be the composition of U r,j

1
ε∗
Ω̃,r

Ω(ε∗
Ω̃,r

)
with the

restriction operator from 1
ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

) to cl Ω̃ for ε ranging in a possibly smaller

interval. Let R̃ > 0 be such that 1
ε∗
Ω̃,r

Ωo ⊆ Bn(0, R̃/2). Let εΩ̃,r ∈]0, ε∗
Ω̃,r

[ be such that

cl Bn(0, R̃εΩ̃,r) ⊆ Ωo. Clearly,

1

ε∗
Ω̃,r

Ωo ⊆ Bn(0, R̃/2) ⊆ Bn(0, R̃) ⊆ cl Bn(0, R̃) ⊆ 1

ε
Ωo

for all ε ∈ [−εΩ̃,r, εΩ̃,r] \ {0}. By definition of u(ε, ·), we have

u(ε, εt) = δ2,n
εn−1 log ε

γ(ε)

ω + 2

4π(ω + 1)

∫
∂Ωi

E[ε,ΞM,n[ε]] dσ

+
ε

γ(ε)
v[ω,E[ε,ΞM,n[ε]]](t) +

εn−1

γ(ε)
(v[ω,R[ε,ΞM,n[ε]](εt) + C[ε,ΞM,n[ε]])

for all t ∈ 1
ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

) and for all ε ∈]− εΩ̃,r, εΩ̃,r[. Then it is natural to set

U r,2
1

ε∗
Ω̃,r

Ω(ε∗
Ω̃,r

)
[ε, ε1, ε2](t) ≡ v[ω,E[ε, ε1, ε2]](t) ,

U r,3
1

ε∗
Ω̃,r

Ω(ε∗
Ω̃,r

)
[ε, ε1, ε2](t) ≡ v[ω,R[ε, ε1, ε2]](εt) + C[ε, ε1, ε2] ,

for all t ∈ 1
ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

) and for all (ε, ε1, ε2) ∈]− εΩ̃,r, εΩ̃,r[×UγM
. By the real analyt-

icity of E and by known properties of the elastic simple layer potential (cf. e.g., [2,
Thm. A.2]), we deduce that the map U r,2

1
ε∗
Ω̃,r

Ω(ε∗
Ω̃,r

)
is real analytic from ]−εΩ̃,r, εΩ̃,r[×UγM

to Cm,α( 1
ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

),Rn). We now prove that U r,3
1

ε∗
Ω̃,r

Ω(ε∗
Ω̃,r

)
is real analytic. By stan-

dard properties of elastic single layer potentials and by the real analyticity of R[·, ·, ·],
the map which takes (ε, ε1, ε2) in ]− εΩ̃,r, εΩ̃,r[×UγM

to v[ω,R[ε, ε1, ε2]] in the space

C0
L[ω](cl Ω

o,Rn) ≡ {u ∈ C0(cl Ωo,Rn) ∩ C2(Ωo,Rn) : L[ω](u) = 0}

endowed with the sup-norm is real analytic. By an analyticity result on the compo-
sition operator which is a variant of a result due to Preciso [19] (see [3, Prop. 6.2 of
the Appendix]), the map from ] − εΩ̃,r, εΩ̃,r[×UγM

to the space C0
L[ω](cl Bn(0, R̃),Rn)

which takes (ε, ε1, ε2) to the map v+[ω,R[ε, ε1, ε2]](εt) of the variable t ∈ cl Bn(0, R̃)
is real analytic. By classical interior estimates for the solutions of equation L[ω]u =
0, one can easily see that the restriction operator from C0

L[ω](cl Bn(0, R̃),Rn) to
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Cm,α( 1
ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

),Rn) is real analytic (cf. e.g., [3, Theorem 6.1 of the Appendix].)

Then the map which takes a triple (ε, ε1, ε2) to the function v+[ω,R[ε, ε1, ε2]](εt) of
t ∈ 1

ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

) is real analytic from ] − εΩ̃,r, εΩ̃,r[×UγM
to Cm,α( 1

ε∗
Ω̃,r

cl Ω(ε∗
Ω̃,r

),Rn).

Then by the real analyticity of C, we deduce that U r,3
1

ε∗
Ω̃,r

Ω(ε∗
Ω̃,r

)
is real analytic. By

Theorems 2 and 3 and by equality∫
∂Ωi

T (ω,Dũi)νi dσ =

∫
∂Ωi

{
1

2
η̃ + v∗[ω, η̃]

}
dσ =

∫
∂Ωi

η̃ dσ ,

we are ready to deduce the validity of the equalities in (37). �

We now consider the energy integral of the family {u(ε, ·)}ε∈]0,ε′[, and we prove
the following.

Theorem 5. Let the assumptions of Theorem 3 hold. Then there exist ε̃ ∈]0, ε′[ and
a real analytic operator F [·, ·, ·] from ]− ε̃, ε̃[×UγM

to R such that

1

2

∫
Ω(ε)

tr

(
T (ω,Dxu(ε, x))(Dxu(ε, x))

t

)
dx =

εn

γ2(ε)
(log ε)δ2,nF [ε,ΞM,n[ε]] , (39)

for all ε ∈]0, ε̃[ (cf. (34).) Moreover,

F [0, γM , 1− δ2,n] = −δ2,n
ω + 2

8π(ω + 1)

∣∣∣∣∫
∂Ωi

T (ω,Dũi)νi dσ

∣∣∣∣2 (40)

+(1− δ2,n)
1

2

∫
Rn\cl Ωi

tr
(
T (ω,Dũi)(Dũi)t

)
dx ,

where (ũi, ũo) is a solution of the limiting boundary value problem (24) satisfying the
assumptions of Theorem 3.

Proof. By the Divergence Theorem, we have∫
Ω(ε)

tr

(
T (ω,Dxu(ε, x))(Dxu(ε, x))

t

)
dx

= −
∫
ε∂Ωi

ut(ε, s)T (ω,Dsu(ε, s))νεΩi(s) dσs

+

∫
∂Ωo

ut(ε, s)T (ω,Dsu(ε, s))νΩo(s) dσs

=
1

γ(ε)

∫
ε∂Ωi

ut(ε, s)Gi

(
s/ε,

γ(ε)

ε(log ε)δ2,n
u(ε, s)

)
dσs

+

∫
∂Ωo

ut(ε, s){ao(s) · u(ε, s) + g(s)} dσs

=
εn−1

γ(ε)

∫
∂Ωi

ut(ε, εs)Gi

(
s,

γ(ε)

ε(log ε)δ2,n
u(ε, εs)

)
dσs

+

∫
∂Ωo

ut(ε, s)ao(s)u(ε, s) dσs +

∫
∂Ωo

ut(ε, s)g(s) dσs
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for all ε ∈]0, ε′[. Hence it suffices to take ε̃ ≡ min
{
εΩ(ε′), ε 1

ε′Ω(ε′),r

}
and to set

F [ε, ε1, ε2] ≡ δ2,n
1

2

∫
∂Ωi

(U r,1[ε, ε1, ε2])
tĜi[ε, ε1, ε2] dσ

+ε2
1

2

∫
∂Ωi

(U r,2
1
ε′Ω(ε′)

[ε, ε1, ε2])
tĜi[ε, ε1, ε2] dσ

+εn−2ε2
1

2

∫
∂Ωi

(U r,3
1
ε′Ω(ε′)

[ε, ε1, ε2])
tĜi[ε, ε1, ε2] dσ

+εn−2ε2
1

2

∫
∂Ωo

(UΩ(ε′)[ε, ε1, ε2])
t · ao · UΩ(ε′)[ε, ε1, ε2] dσ

+εn−2ε1ε2
1

2

∫
∂Ωo

(UΩ(ε′)[ε, ε1, ε2])
tg dσ ,

where Ĝi is defined by

Ĝi[ε, ε1, ε2](t) ≡ Gi

(
t, δ2,nU

r,1[ε, ε1, ε2](t)

+ε2U
r,2
1
ε′Ω(ε′)

[ε, ε1, ε2](t) + εn−2ε2U
r,3
1
ε′Ω(ε′)

[ε, ε1, ε2](t)

)
∀t ∈ ∂Ωi ,

for all (ε, ε1, ε2) ∈] − ε̃, ε̃[×UγM
. We note that Theorems 3, 4 and assumption (29)

ensure that Ĝi[ε, ε1, ε2] depends real analytically upon (ε, ε1, ε2).
Then by Theorem 4, we easily compute that

F [0, γM , 1− δ2,n] (41)

= δ2,n
ω + 2

8π(ω + 1)

(∫
∂Ωi

T (ω,Dũi)νi dσ

)t ∫
∂Ωi

Ĝi[0, γM , 1− δ2,n] dσ

+(1− δ2,n)
1

2

∫
∂Ωi

(ũi)tĜi[0, γM , 1− δ2,n] dσ .

By the second equation of the limiting boundary value problem (24) with ui = ũi,
uo = ũo and by Theorem 4, we deduce that

Ĝi[0, γM , 1− δ2,n] = −T (ω,Dũi)νi . (42)

Now let R > 0 be such that cl Ωi ⊆ Bn(0, R). By applying the Divergence Theorem
to ũi on Bn(0, R) \ cl Ωi, we obtain that∫

Bn(0,R)\cl Ωi

tr

(
T (ω,Dũi)(Dũi)t

)
dx

= −
∫
∂Ωi

(ũi)tT (ω,Dũi)νi dσ +

∫
∂Bn(0,R)

(ũi)tT (ω,Dũi)νBn(0,R) dσ .

Now by taking the limit as R tends to infinity and by exploiting the third and fourth
inequalities of (24), we obtain that∫

Rn\cl Ωi

tr

(
T (ω,Dũi)(Dũi)t

)
dx = −

∫
∂Ωi

(ũi)tT (ω,Dũi)νi dσ if n ≥ 3 . (43)

By equalities (41)–(43), we deduce immediately the validity of (40). �
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5 Local uniqueness for the family {u(ε, ·)}ε∈]0,ε′[

We now show by means of the following theorem, that the family {u(ε, ·)}ε∈]0,ε′[ is
locally essentially unique.

Theorem 6. Let the assumptions of Theorem 3 hold. If {εj}j∈N is a sequence of
]0, ε0[ converging to 0 and if {uj}j∈N is a sequence of functions such that

uj ∈ Cm,α(cl Ω(εj),Rn) ,

uj solves (6) for ε = εj ,

limj→∞ γ(εj)ε
−1
j (log εj)

−δ2,nuj(εj · )|∂Ωi

= (1− δ2,n)ũ
i(·) + δ2,n

4π
ω+2
ω+1

∫
∂Ωi T (ω,Dũi)νi dσ in Cm−1,α(∂Ωi,Rn) ,

(44)

then there exists j0 ∈ N such that uj(·) = u(εj, ·) for all j ≥ j0.

Proof. Since uj solves (6), Theorem 1 ensures that there exist (cj, ηj, ρj) and (c̃, η̃, ρ̃)
in Rn ×Xm,α such that

M [εj,ΞM,n[εj], cj, ηj, ρj] = 0 , M [0, γM , 1− δ2,n, c̃, η̃, ρ̃] = 0 ,

and that

uj = v+[ω, µj] + dj , ũi = v−[ω, η̃] , ũo = v+[ω, ρ̃] + c̃,

where

µj(y) =
εn−1
j

γ(εj)
ρj(y) if y ∈ ∂Ωo , µj(y) =

1

γ(εj)
ηj(y/εj) if y ∈ εj∂Ωi ,

dj =
εn−1
j

γ(εj)
cj .

We now rewrite equation M [ε, ε1, ε2, c, η, ρ] = 0 in the following form

M1[ε, ε1, ε2, c, η, ρ] = 0 , (45)

1

2
η(t) + v∗[ω, η](t) + εn−1

∫
∂Ωo

n∑
l=1

ρl(s)T (ω,DξΓ
l
n(ω, εt− s))νi(t) dσs

−Gi(t) ·
{
ε2v[ω, η](t) +

δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ + εn−2ε2v[ω, ρ](εt) + εn−2ε2c

}
= −Gi

(
t, ε2v[ω, η](t) +

δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ + εn−2ε2v[ω, ρ](εt) + εn−2ε2c

)
−Gi(t) ·

{
ε2v[ω, η](t) +

δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ + εn−2ε2v[ω, ρ](εt) + εn−2ε2c

}
∀t ∈ ∂Ωi,

−1

2
ρ(t) + v∗[ω, ρ](t) +

∫
∂Ωi

n∑
l=1

ηl(s)T (ω,DξΓ
l
n(ω, t− εs))νo(t) dσs

−ao(t)
{∫

∂Ωi

Γn(ω, t− εs)η(s) dσs + v[ω, ρ](t) + c

}
= ε1g(t) ∀t ∈ ∂Ωo.
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Next we denote by N [ε, ε1, ε2, c, η, ρ] ≡ (Nl[ε, ε1, ε2, c, η, ρ])l=1,2,3 the function of the
variable (ε, ε1, ε2, c, η, ρ) in ]− ε0, ε0[×Rn+2×Xm,α to Rn×Xm,α defined by N1 ≡M1

and such that N2 and N3 equal the left hand side of the second and the third equation
in (45), respectively. Thus equation (45) can be rewritten as

N1[ε, ε1, ε2, c, η, ρ] = 0 (46)

N2[ε, ε1, ε2, c, η, ρ](t)

= −Gi

(
t, ε2v[ω, η](t) +

δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ + εn−2ε2v[ω, ρ](εt) + εn−2ε2c

)
−Gi(t) ·

{
ε2v[ω, η](t) +

δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ + εn−2ε2v[ω, ρ](εt) + εn−2ε2c

}
∀t ∈ ∂Ωi,

N3[ε, ε1, ε2, c, η, ρ] = ε1g on ∂Ωo.

By our assumption of analyticity of FGi , we can easily verify that the Fréchet differ-
ential of FGi at a point u ∈ Cm−1,α(∂Ωi,Rn) is necessarily delivered by the formula

dFGi [u](v) =
n∑
l=1

F∂ξl
Gi [u]vl ∀v ∈ Cm−1,α(∂Ωi,Rn) ,

and that F∂ξl
Gi [u] ∈ Cm−1,α(∂Ωi,Rn) for all l ∈ {1, . . . , n} (see [11, Prop. 6.3], where

the scalar case has been worked out, but the proof is the same for vector valued
functions.) Hence, Gi must be an element of Cm−1,α(∂Ωi,Mn(R)) (cf. (30).) Then
by standard properties of integral operators with a real analytic kernel and with no
singularity (see [11, Thm. 6.2]), and by standard properties of elastic layer potentials
(cf. e.g., [2, Thm. A.2]), the mapN is real analytic. Next, we note thatN [ε, ε1, ε2, ·, ·, ·]
is linear for all fixed (ε, ε1, ε2) ∈]−ε0, ε0[×R2. Accordingly, the map from ]−ε0, ε0[×R2

to L(Rn ×Xm,α,Rn ×Xm,α) which takes (ε, ε1, ε2) to N [ε, ε1, ε2, ·, ·, ·] is real analytic.
Here L(Rn ×Xm,α,Rn ×Xm,α) denotes the space of linear and continuous operators
from Rn ×Xm,α to itself. We also note that

N [0, γM , 1− δ2,n, ·, ·, ·] = ∂(c,η,ρ)M [0, γM , 1− δ2,n, c̃, η̃, ρ̃](·, ·, ·) ,

and thus that N [0, γM , 1 − δ2,n, ·, ·, ·] is a linear homeomorphism (see the proof of
Theorem 3.) Since the set of linear homeomorphisms is open in the set of linear and
continuous operators, and since the map which takes a linear invertible operator to
its inverse is real analytic (cf. e.g., Hille and Phillips [7, Thms. 4.3.2 and 4.3.4]), there
exists an open neighborhood W of (0, γM , 1−δ2,n) in ]− ε0, ε0[×R2 such that the map
(ε, ε1, ε2) 7→ N [ε, ε1, ε2, ·, ·, ·](−1) is real analytic from W to L(Rn ×Xm,α,Rn ×Xm,α).
Clearly, there exists j1 ∈ N such that (εj,ΞM,n[εj]) ∈ W for all j ≥ j1. Since
M [εj,ΞM,n[εj], cj, ηj, ρj] = 0, the invertibility of N [εj,ΞM,n[εj], ·, ·, ·] and equality
(46) guarantee that

(cj, ηj, ρj) = N [εj,ΞM,n[εj], ·, ·, ·](−1)

(
0,−FGi [γ(εj)ε

−1
j (log εj)

−δ2,nuj(εj ·)|∂Ωi ]

−Gi ·
(
γ(εj)ε

−1
j (log εj)

−δ2,nuj(εj ·)|∂Ωi

)
,
γ(εj)

εn−1
j

g

)
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for all j ≥ j1. By assumption (29), FGi [·] is continuous in Cm−1,α(∂Ωi,Rn). Then, by
the third assumption in (44), we have

lim
j→∞

−FGi [γ(εj)ε
−1
j (log εj)

−δ2,nuj(εj ·)|∂Ωi ] (47)

−Gi ·
(
γ(εj)ε

−1
j (log εj)

−δ2,nuj(εj ·)|∂Ωi

)
= −FGi

[
(1− δ2,n)ũ

i(·) +
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

T (ω,Dũi)νi dσ

]
−Gi ·

{
(1− δ2,n)ũ

i(·) +
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

T (ω,Dũi)νi dσ

}
in Cm−1,α(∂Ωi,Rn). The analyticity of (ε, ε1, ε2) 7→ N [ε, ε1, ε2, ·, ·, ·](−1) guarantees
that

lim
j→∞

N [εj,ΞM,n[εj], ·, ·, ·](−1) = N [0, γM , 1− δ2,n, ·, ·, ·](−1) , (48)

in L(Rn × Xm,α,Rn × Xm,α). Since the evaluation map from L(Rn × Xm,α,Rn ×
Xm,α)× (Rn ×Xm,α) to Rn ×Xm,α, which takes a pair (A, v) to A[v] is bilinear and
continuous, the limiting relations of (47) and (48) imply that

lim
j→∞

(cj, ηj, ρj) (49)

= lim
j→∞

N [εj,ΞM,n[εj], ·, ·, ·](−1)

(
0,−FGi [γ(εj)ε

−1
j (log εj)

−δ2,nuj(εj ·)|∂Ωi ]

−Gi ·
(
γ(εj)ε

−1
j (log εj)

−δ2,nuj(εj ·)|∂Ωi

)
,
γ(εj)

εn−1
j

g

)
= N [0, γM , 1− δ2,n, ·, ·, ·](−1)(

0,−FGi

[
(1− δ2,n)ũ

i(·) +
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

T (ω,Dũi)νi dσ

]
−Gi ·

{
(1− δ2,n)ũ

i(·) +
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

T (ω,Dũi)νi dσ

}
, γMg

)
in Rn ×Xm,α. Since M [0, γM , 1− δ2,n, c̃, η̃, ρ̃] = 0, the right hand side of (49) equals
(c̃, η̃, ρ̃). Hence,

lim
j→∞

(εj,ΞM,n[εj], cj, ηj, ρj) = (0, γM , 1− δ2,n, c̃, η̃, ρ̃)

in Rn+3 ×Xm,α. Thus Theorem 3 implies that there exists j0 ∈ N such that

cj = C [εj,ΞM,n[εj]] , ηj = E [εj,ΞM,n[εj]] , ρj = R [εj,ΞM,n[εj]] ,

for all j ≥ j0. Accordingly, uj(·) = u(εj, ·) for j ≥ j0 (see Definition 1). �

6 A sufficient condition for the existence of solutions of the
limiting boundary value problem

In Theorem 3, we have assumed that the boundary value problem (24) admits at
least a solution satisfying certain conditions. Here, we present a sufficient condition
on the data to ensure existence of such solutions.
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By Theorem 2, it suffices to show that the integral equation in (23) has a solution
(c̃, η̃, ρ̃) ∈ Rn ×Xm,α such that the assumptions on the matrix valued function Gi of
Theorem 3 with ũi = v−[ω, η̃] are satisfied.

We collect in the following Theorem, some basic facts of classical potential theory.

Theorem 7. Let α ∈]0, 1[, ω ∈]1 − (2/n),+∞[, p ∈]1,+∞[. Let Ω be a bounded
open subset of Rn of class C1,α. Then the following statements hold.

(i) The operator from Lp(∂Ω,Rn) to itself which takes η to 1
2
η+v∗[ω, η] is Fredholm

of index 0.

(ii) If η ∈ Lp(∂Ω,Rn) and 1
2
η + v∗[ω, η] ∈ C0,α(∂Ω,Rn), then η belongs to

C0,α(∂Ω,Rn).

(iii) If Rn\cl Ω is connected, then the operator 1
2
I+v∗[ω, ·] is a linear homeomorphism

from Lp(∂Ω,Rn) onto itself and from C0,α(∂Ω,Rn) onto itself.

(iv) If p > (n−1)/(1−α), then the operator v[ω, ·]|∂Ω is linear and continuous from
the space Lp(∂Ω,Rn) to the space C0,α(∂Ω,Rn).

Proof. For proof of statement (i) in case n = 2, we refer to the book of Muskhelishvili
[16, Ch. 19] (see also Kupradze [9, Ch. VIII, §§5–6].) For a proof in case n ≥ 3, we
refer to the book of Mikhlin and Prössdorf [15, Ch. XIV, §6], who actually worked
out the proof for the case n = 3. However, the proof is the same for n ≥ 3.

For a proof of statement (ii), we refer for example to Ševčenko [21, p. 929 of
Engl. transl.] and to Mikhlin and Prössdorf [15, Ch. XIII, Thm. 7.1]. Statement (iii)
follows by statements (i), (ii) and by the known form of the kernel of 1

2
I + v∗[ω, ·]

(see also [2, Rmk. A.8].)
We now consider statement (iv). Let β ∈]0, 1 − α[. By exploiting the definition

of Γn(ω, ξ), we note that there exists a positive constant C > 0 such that

|Γn(ω, x− y)| ≤ C

|x− y|n−2+δ2,nβ
,

|Γn(ω, x− y)− Γn(ω, x
′ − y)| ≤ C|x− x′|α

inf{|x− y|, |x′ − y|}n−2+α+δ2,nβ

for all x, x′, y ∈ ∂Ω with x 6= y and x′ 6= y. Then the proof of statement (iv) can be
deduced by the regularizing properties of the integral operators with a kernel of class
G1(n − 2 + δ2,nβ, α) with β ∈]0, 1 − α − p−1[ (cf., e.g., Kupradze et al. [10, Ch. IV
Theorem 2.6]) and by a standard argument based on the existence of a partition of
unity subordinated to an atlas of ∂Ω. �

Lemma 1. Let α ∈]0, 1[, p ∈]n−1
1−α ,+∞[, ω ∈]1− (2/n),+∞[, m ∈ N \ {0}. Let Ω be

as in (11). Let B ∈ Cm−1,α(∂Ωi,Mn(R)) be such that

det

(
I − 1

4π

ω + 2

ω + 1

∫
∂Ωi

B dσ

)
6= 0 if n = 2 , (50)

B satisfies (8) and (9) on ∂Ω if n ≥ 3 .
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Let LB, Q be the linear operators in Lp(∂Ω,Rn) defined by

Q[η] ≡ (1− δ2,n)v[ω, η] +
δ2,n
4π

ω + 2

ω + 1

∫
∂Ωi

η dσ (51)

LB[η] ≡ 1

2
η + v∗[ω, η]−B ·Q[η]

for all η ∈ Lp(∂Ω,Rn). Then the following statements hold

(i) The operator LB induces an isomorphism from Lp(∂Ω,Rn) onto itself.

(ii) The operator LB induces an isomorphism from Cj−1,α(∂Ω,Rn) onto itself for
all j ∈ {1, . . . ,m}.

Proof. We first consider statement (i). By Theorem 7, LB is a compact perturbation
of a Fredholm operator of index 0 in Lp(∂Ω,Rn). Thus it suffices to show that LB is
injective.

We first consider case n ≥ 3. Let η ∈ Lp(∂Ω,Rn), LB[η] = 0. By Theorem
7 (iv) and by our assumptions on B, we have Q[η] ∈ C0,α(∂Ω,Rn) and thus 1

2
η +

v∗[ω, η] = B·Q[η] ∈ C0,α(∂Ω,Rn). Then by Theorem 7 (ii), we have η ∈ C0,α(∂Ω,Rn).
Since v−[ω, η] solves the classical homogeneous exterior linear traction boundary value
problem associated to equation LB[η] = 0 and B satisfies (8) and (9), we have η = 0
and thus LB is injective (cf. e.g., [3, Th. 2.2 (v)].)

We now consider case n = 2. By integrating equality LB[η] = 0 on ∂Ω, we obtain
that

0 =

∫
∂Ω

LB[η] dσ =

∫
∂Ω

η dσ − 1

4π

ω + 2

ω + 1

∫
∂Ω

B dσ

∫
∂Ω

η dσ .

Hence, condition (50) for n = 2 implies that
∫
∂Ω
η dσ = 0 and thus LB[η] = 1

2
η +

v∗[ω, η] = 0 and accordingly η = 0 (cf. e.g., Theorem 7 (iii).)
To prove statement (ii), we note that 1

2
I+ v∗[ω, ·] is a Fredholm operator of index

0 in Cj−1,α(∂Ω,Rn) (cf. e.g., [2, Thm. A.9]) and that Q[·] is linear and continuous
from Cj−1,α(∂Ω,Rn) to Cj,α(∂Ω,Rn), which is compactly imbedded in Cj−1,α(∂Ω,Rn)
(cf. e.g., [2, Thm. A.2].) Then LB is a Fredholm operator of index 0 in Cj−1,α(∂Ω,Rn).
Since LB has been proved to be injective in Lp(∂Ω,Rn), LB is also injective on
Cj−1,α(∂Ω,Rn), and thus statement (ii) holds. �

Theorem 8. Let α ∈]0, 1[, ω ∈]1 − (2/n),+∞[, m ∈ N \ {0}. Let Ω be as in (11).
Let υ0 ∈ Rn. Let G ∈ C0(∂Ω× Rn,Rn) satisfy the following conditions.

FG is continuous from C0,α(∂Ω,Rn) to itself and maps (52)

bounded sets of C0,α(∂Ω,Rn) to bounded sets of C0,α(∂Ω,Rn) ,

FG maps Cj−1,α(∂Ω,Rn) to itself for all j ∈ {1, . . . ,m} . (53)

If there exist δ ∈]0, 1[ and B ∈ Cm−1,α(∂Ω,Mn(R)) such that (50) holds and such
that

CG,B ≡ sup
(t,ξ)∈∂Ω×Rn

|G(t, ξ) +B(t)ξ|
(1 + |ξ|)δ

<∞ .
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Then the integral equation

1

2
η + v∗[ω, η] + FG[Q[η] + υ0] = 0 on ∂Ω , (54)

has at least a solution η ∈ Cm−1,α(∂Ω,Rn) (see (51).)

Proof. By Lemma 1 (ii), equation (54) can be rewritten in the form

η = L
(−1)
B [FG̃ [Q[η] + υ0] +Bυ0] (55)

where
G̃(t, ξ) ≡ −G(t, ξ)−B(t)ξ ∀(t, ξ) ∈ ∂Ω× Rn .

We now show that equation (55) admits at least a solution in C0,α(∂Ω,Rn). By classi-
cal results on single layer potentials, Q[·] is linear and continuous from Cj−1,α(∂Ω,Rn)
to Cj,α(∂Ω,Rn), which is compactly imbedded into the space Cj−1,α(∂Ω,Rn) for all
j ∈ {1, . . . ,m} (cf. e.g., [2, Thm. A.2].) Since we have assumed that FG is continuous
in C0,α(∂Ω,Rn) and that B belongs to Cm−1,α(∂Ω,Mn(R)), we can easily see that

the map L
(−1)
B [FG̃ [Q[·] + υ0] +Bυ0] is continuous and maps bounded sets into sets

with a compact closure in C0,α(∂Ω,Rn) (see also Lemma 1 (ii).) Then we now turn
to prove the existence for equation (55) by exploiting the Leray-Schauder degree on
a ball centered at the origin and with sufficiently large radius in the Banach space
C0,α(∂Ω,Rn). To do so, we need to show that there exists R > 0 such that

(λ, η) ∈ [0, 1]× C0,α(∂Ω,Rn), η − λL
(−1)
B [FG̃ [Q[η] + υ0] +Bυ0] = 0 (56)

⇒ ‖η‖C0,α(∂Ω,Rn) < R .

We first fix p ∈]n−1
1−α ,+∞[. By Lemma 1 (i), L

(−1)
B is linear and continuous in

Lp(∂Ω,Rn). Then all solutions η ∈ C0,α(∂Ω,Rn) of the equation in (56) must satisfy
the inequality

‖η‖Lp(∂Ω,Rn) ≤ ‖L(−1)
B ‖L(Lp(∂Ω,Rn),Lp(∂Ω,Rn))‖FG̃ [Q[η] + υ0] +Bυ0‖Lp(∂Ω,Rn)

≤ ‖L(−1)
B ‖L(Lp(∂Ω,Rn),Lp(∂Ω,Rn))(meas(∂Ω))1/p

·
[
CG,B(1 + ‖Q‖L(Lp(∂Ω,Rn),C0,α(∂Ω,Rn))‖η‖Lp(∂Ω,Rn))

δ + ‖Bυ0‖C0,α(∂Ω,Rn)

]
,

an inequality which implies that there exists R1 > 0 such that ‖η‖Lp(∂Ω,Rn) ≤ R1 for
all possible solutions η ∈ C0,α(∂Ω,Rn) of the equation in (56). Then we have

‖Q[η] + υ0‖C0,α(∂Ω,Rn) ≤ ‖Q‖L(Lp(∂Ω,Rn),C0,α(∂Ω,Rn))R1 + ‖υ0‖C0,α(∂Ω,Rn)

for all possible solutions η ∈ C0,α(∂Ω,Rn) of the equation in (56) (see also Theorem

7 (iv).) Then assumption (52) on FG and the linearity and continuity of L
(−1)
B in

C0,α(∂Ω,Rn) imply that there exists R > 0 such that ‖η‖C0,α(∂Ω,Rn) < R for all
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possible solutions η ∈ C0,α(∂Ω,Rn) of the equation in (56). By homotopy invariance

of the Leray-Schauder Degree of I−λL(−1)
B [FG̃ [Q[·] + υ0] +Bυ0] in the ball centered

at 0 and radius R as λ ∈ [0, 1], we deduce that equation (54) has at least a solution
η ∈ C0,α(∂Ω,Rn) with ‖η‖C0,α(∂Ω,Rn) < R.

Next we show by finite induction that η ∈ Cj−1,α(∂Ω,Rn) for all j ∈ {1, . . . ,m}.
We already know that such a membership holds for j = 1. We now assume that
such a membership holds for a fixed j ∈ {1, . . . ,m − 1} and we show that it holds
also for j + 1. By classical results on elastic layer potentials (cf. e.g., [2, Thm. A.2]),

we have Q[η] ∈ Cj,α(∂Ω,Rn). Since FG̃ and L
(−1)
B map Cj,α(∂Ω,Rn) to itself and

Bυ0 belongs to Cm−1,α(∂Ω,Rn) which is contained in Cj,α(∂Ω,Rn), we deduce that

L
(−1)
B [FG̃ [Q[η] + υ0] +Bυ0] ∈ Cj,α(∂Ω,Rn). Hence, equation (55) implies that η ∈

Cj,α(∂Ω,Rn) and the proof is complete. �

We note that assumptions (52) an (53) certainly hold if G is smooth enough (see
also end of [11, App. B].)

Corollary 1. Let the assumptions of Theorem 1 hold. Let γM be in [0,+∞[. Let −ao
satisfy conditions (8), (9). Let the function Gi satisfy the assumptions of Theorem 8
on G with Ω = Ωi. Then equation (23) admits a solution (c̃, η̃, ρ̃) ∈ Rn ×Xm,α.

If n = 2 and if we further assume that

det

(
I +

1

4π

ω + 2

ω + 1

∫
∂Ωi

DξG
i(t, ξ̃) dσt

)
6= 0 ∀ξ̃ ∈ Rn ,

then the matrix Gi of (30) with ũi = v−[ω, η̃] satisfies the assumptions of Theorem 3.
If n ≥ 3 and if we further assume that

ζDξG
i(t, ξ̃)ζt ≤ 0 ∀(t, ξ̃, ζ) ∈ ∂Ωi × Rn × Rn ,

there exists t ∈ ∂Ωi such that detDξG
i(t, ξ̃) 6= 0 ∀ξ̃ ∈ Rn ,

then the matrix Gi of (30) with ũi = v−[ω, η̃] satisfies the assumptions of Theorem 3.

Proof. By Theorem 8 with G = Gi, Ω = Ωi, υ0 = 0, the second component of
equation (23) admits a solution η̃ ∈ Cm−1,α(∂Ωi,Rn). Then by classical results
on linear integral equations associated to interior linear traction boundary value
problems, the first and third components of equation (23) admit a unique solution
(c̃, ρ̃) ∈ Rn × Cm−1,α(∂Ωo,Rn) (cf. e.g., [2, Thm. 2.2 (ii)].) Finally, the last part of
the statement is obvious. �
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[15] S.G. Mikhlin, S. Prössdorf, Singular integral operators. Springer-Verlag, Berlin, 1986.



58 M. Dalla Riva, M. Lanza de Cristoforis

[16] N.I. Muskhelishvili, Singular integral equations. Boundary problems of function theory and
their application to mathematical physics. Translation by J. R. M. Radok, P. Noordhoff N. V.,
Groningen, 1953.

[17] N.I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity. Translation
by J. R. M. Radok, P. Noordhoff N. V., Groningen, 1953.

[18] S. Ozawa, Electrostatic capacity and eigenvalues of the Laplacian. J. Fac. Sci. Univ. Tokyo
Sect. IA Math., 30 (1983), 53 – 62.

[19] L. Preciso, Regularity of the composition and of the inversion operator and perturbation analysis
of the conformal sewing problem in Romieu type spaces. Nat. Acad. Sci. Belarus, Proc. Inst.
Math., 5 (2000), 99 – 104.

[20] G. Prodi, A. Ambrosetti, Analisi non lineare. Editrice Tecnico Scientifica, Pisa, 1973.
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