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Abstract. Mathematical models of thermocontrol processes are considered. In the
model under consideration, the temperature inside a domain is controlled by m con-
vectors acting on the boundary. The control parameter is a vector-function, which
components are equal to the magnitude of output of hot or cold air producing by each
convector. The necessary and sufficient conditions for achieving the given projection
of the temperature into some m-dimensional subspace are studied.

1 Introduction

Consider the heat equation

ut(x, t) = ∆u(x, t) − p(x)u(x, t), p(x) ≥ 0, x ∈ Ω, t > 0, (1)

with the boundary conditions

∂u(x, t)

∂n
= µk(t)ak(x), x ∈ Γk, t > 0, (2)

and
∂u(x, t)

∂n
+ h(x)u(x, t) = 0, x ∈ ∂Ω \ Γ, t > 0, (3)

and the initial condition
u(x, 0) = 0. (4)

Here Ω ⊂ Rn is a domain with piecewise smooth boundary ∂Ω, Γk are some
disjoint subsets of ∂Ω (convectors, i.e. heaters or coolers) with piecewise smooth

boundaries ∂Γk and Γ =
m⋃
k=1

Γk.

We suppose that h(x) (the thermal conductivity of the walls) and ak(x) (the power
density of the k-th convector) are given piecewise smooth non-negative functions,
which are not identically zeros, and the function p(x) is sufficiently smooth in Ω =
Ω ∪ ∂Ω.
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Boundary conditions (2) and (3) mean that each convector produces a hot or cold
flow with magnitude of output given by a measurable real-valued function µk(t), and
on the surface ∂Ω \ Γ a heat exchange takes place according to Newton’s law (see,
e.g. [11], Sec. III.4).

We extend the functions h(x) and ak(x) to the whole boundary ∂Ω by setting
h(x) = 0 for x ∈ Γ and ak(x) = 0 for x ∈ ∂Ω \ Γk.

Introduce the vector-function a : ∂Ω → Rm by

a(x) = (a1(x), a2(x), ...am(x)), x ∈ ∂Ω, (5)

and the vector-function µ : [0,+∞) → Rm by

µ(t) = (µ1(t), µ2(t), ..., µm(t)), t ≥ 0. (6)

With this notation we may rewrite the conditions (2) and (3) in the following
form

∂u(x, t)

∂n
+ h(x)u(x, t) = µ(t) · a(x), x ∈ ∂Ω, t > 0, (7)

where u · v denotes the scalar product of two vectors u and v in Rm.

We say that the function µ : [0,+∞) → Rm is an admissible control if all of the
functions µj(t) are measurable and for t ≥ 0 satisfy the following constraints

|µj(t)| ≤ 1, j = 1, 2, ...,m, t ≥ 0. (8)

Consider the following eigenvalue problem for the Laplace operator

−∆v(x) + p(x)v(x) = λv(x), x ∈ Ω, (9)

with the boundary condition

∂v(x)

∂n
+ h(x)v(x) = 0, x ∈ ∂Ω. (10)

We define the generalized solution of problem (9)-(10) as the function v(x) in the
Sobolev space W 1

2 (Ω), which satisfies the equality∫
Ω

[∇v(x) · ∇η(x) + p(x)v(x)η(x)] dx +

∫
∂Ω

h(x)v(x)η(x)dσ(x) =

= λ

∫
Ω

v(x)η(x)dx, (11)

for an arbitrary function η ∈ W 1
2 (Ω) (see [9], Sec. III.6, formula (6.3)).

We consider this problem in real Hilbert space L2(Ω) with the scalar product

(u, v) =

∫
Ω

u(x)v(x)dx
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and the norm ‖u‖ =
√

(u, u).
It is well known that under the above assumptions there exists a sequence of

positive eigenvalues {λk}∞k=1 such that

0 < λ1 ≤ λ2 ≤ ... ≤ λk ≤ ... , lim
k→∞

λk = ∞,

and the corresponding eigenfunctions vk(x) form an orthonormal basis {vk}∞k=1 in
L2(Ω) (see, e. g. [9], Sec. III.6) .

Set

Hm = {u ∈ L2(Ω) : u =
m∑
j=1

αjvj(x), αj ∈ R}. (12)

Let Pm be the orthogonal projector onto Hm, i. e.

Pmu(x) =
m∑
j=1

(u, vj)vj(x).

Note that the solution u(x, t) of initial-boundary value problem (1)-(4) for every
fixed t ≥ 0 belongs to L2(Ω) as a function of x, and therefore this function may be
decomposed via the eigenfunctions:

u(x, t) =
∞∑
k=1

ck(t)vk(x), t ≥ 0, x ∈ Ω.

We denote by Cm[0,+∞) the space of all vector-functions f : [0,+∞) → Rm such
that all components of f are continuous on [0,+∞).

In the present work we consider the following problem.

Problem HC. For a given vector-function f ∈ Cm[0,∞) a heat control problem
HC consists in finding the admissible control µ ensuring that the solution u(x, t) of
initial-boundary value problem (1)-(4) exists, is unique and for all t ≥ 0 satisfies the
equalities ∫

Ω

u(x, t) vk(x)dx = fk(t), k = 1, 2, ...,m, t ≥ 0. (13)

Note that the detailed information on the control problems for distributed param-
eter systems is given in the monographs [10] and [5]. More recent results concerned
with the heat control problem for partial differential equations of parabolic type were
established in [2]-[4] and [6].

For the solving the problem HC we need some spectral properties of the corre-
sponding elliptic operator.

Consider the following boundary value problem for the Laplace equation

−∆wk(x) + p(x)wk(x) = 0, x ∈ Ω, (14)
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with the boundary condition

∂wk(x)

∂n
+ h(x)wk(x) = ak(x), x ∈ ∂Ω. (15)

The physical meaning of the function wk(x) is clear: this is the temperature at
the point x ∈ Ω in the case where only k-th convector works and it produces heat or
cold with maximal capacity (output).

Set

Lm = {w ∈ L2(Ω) : w =
m∑
k=1

βkwk(x), βk ∈ R}. (16)

Let Qm be the orthogonal projector onto Lm.
Introduce the following characteristic of closeness of the subspaces Lm and Hm,

which is known as the aperture of these subspaces (see [1], Chapter III, sec. 39), or
the gap between these subspaces (see [7], Chapter IV, Sec. 2):

θ(Lm, Hm) = ‖Pm −Qm‖L2(Ω)→L2(Ω). (17)

It is well known that θ(Lm, Hm) ≤ 1, and the less is θ the closer are subspaces
Lm and Hm.

We show that this characteristic is essential for describing the set of functions
f for which the problem HC has a unique solution. First of all we may note that
according to (4) the function f must satisfy the condition

f(0) = 0. (18)

Furthermore, because of inertness of heat conduction, it is reasonable to assume
that the function f does not change very quickly, i.e. the derivatives of all components
are bounded.

Consider the matrix

Ê(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−λ1t 0 0 . . . 0

0 e−λ2t 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 0 e−λmt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(19)

Every time when a vector from Rm is on the right-hand side of some matrix m×m
we assume that this is a column-vector.

Let a ∈ Rm and b ∈ Rm be two vectors with non-negative components: aj ≥
0, bj ≥ 0. We say that vector a precedes vector b and denote this by a ≺ b, if aj ≤ bj
for all j = 1, 2, ...,m.

For an arbitrary vector b ∈ Rm set

[b] = (|b1|, |b2|, ..., |bm|).
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We suppose that the function f has the derivative f ′ ∈ Cm[0,∞) and for some
b ∈ Rm this derivatives satisfy the following condition

[f ′(t)] ≺ Ê(t)[b], t ≥ 0. (20)

In the case in which the convectors are properly disposed conditions (18) and (20)
are sufficient for solvability of the problem HC.

Theorem 1. Let the condition

θ(Lm, Hm) < 1 (21)

be satisfied. Then there exists an m-dimensional polyhedron P ⊂ Rm such that:
i) P is a convex neighborhood of the origin;
ii) for any b ∈ P and for any continuously differentiable vector-function f , which

satisfies conditions (18) and (20), the solution of the problem HC exists and is unique;
iii) for every b /∈ P there exists a function f which satisfies both conditions (18)

and (20) but the solution of the problem HC does not exists.

The set P contains the ball with the center at the origin, hence, the following
statement is valid.

Corollary 1. Let the inequality (21) be satisfied. Then there exists R > 0 such that
for any continuously differentiable vector-function f , which satisfies conditions (18)
and the condition

|f ′j(t)| ≤ Re−λjt, (22)

the solution of the problem HC exists and is unique.

The next theorem shows that condition (21) is essential for solvability of the
problem HC.

Theorem 2. Let
θ(Lm, Hm) = 1. (23)

Then for any R > 0 there exists a continuously differentiable vector-function f
which satisfies conditions (18) and (22), but the solution of the problem HC does not
exist.

To prove these theorems we show that the unknown function µ satisfies the fol-
lowing Volterra integral equation of the first kind

t∫
0

K̂(t− s)µ(s)ds = f(t), t ≥ 0. (24)

Here the kernel K̂ is a matrix-function defined by the Green function of the initial-
bounded value problem for the heat conduction equation. Since this integral operator
is compact and has no inverse bounded operator it is necessary to regularize equation
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(24). With this purpose we differentiate this equation and consider the following
Volterra integral equation of the second kind

K̂(0)µ(t) +

t∫
0

K̂ ′(t− s)µ(s)ds = f ′(t). (25)

In Section 2 we study the properties of the kernel K̂ and its derivative K̂ ′. In
Section 3 we prove the solvability of equations (24) and (25) with constraint (8), and
in Section 4 we prove Theorem 2.

2 Properties of the kernel of the main integral equation

To prove Theorem 1 we consider the Green functionG , which we define by its spectral
expansion:

G(x, y, t) =
∞∑
j=1

e−λjtvj(x)vj(y), x ∈ Ω ∪ ∂Ω, y ∈ Ω ∪ ∂Ω, t > 0. (26)

The following statements are evident and some of them are well known (see, e.g.,
[8] and [12]).

We suppose that h(x) ≥ 0 for all x ∈ ∂Ω and h 6≡ 0. Then the Green function is
non-negative:

G(x, y, t) ≥ 0, (x, y) ∈ Ω× Ω, t > 0,

and solution of initial-boundary value problem (1)+(4)+(7) may be represented by
the Green function:

u(x, t) =

t∫
0

ds

∫
∂Ω

G(x, y, t− s) µ(s) · a(y) dσ(y), (27)

where vectors a and µ are defined by equalities (5) and (6).
By the definition of the scalar product we may write

u(x, t) =
m∑
k=1

t∫
0

µk(s)ds

∫
∂Ω

G(x, y, t− s)ak(y) dσ(y) (28)

By condition (13), for t > 0 the following equation∫
Ω

u(x, t)vj(x) dx =

=

∫
Ω

vj(x) dx
m∑
k=1

t∫
0

µk(s)ds

∫
∂Ω

G(x, y, t− s)ak(y) dσ(y) = fj(t) (29)
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must be satisfied.
It follows by (26) that∫

Ω

G(x, y, t)vj(x)dx = vj(y)e
−λjt, y ∈ Ω ∪ ∂Ω, t > 0.

Then equation (29) takes the following form

m∑
k=1

t∫
0

eλj(s−t)µk(s)ds

∫
∂Ω

vj(y)ak(y)dσ(y) = fj(t), t > 0. (30)

Set

ajk =

∫
∂Ω

vj(y)ak(y)dσ(y). (31)

Now we introduce the kernel of the main integral operator as a matrix K̂(t) =
||Kjk(t)|| with the elements

Kjk(t) = ajk e
−λjt. (32)

Hence we may rewrite equation (30) as follows

m∑
k=1

t∫
0

Kjk(t− s)µk(s)ds = fj(t), t > 0. (33)

It is clear that the matrices Â = ||ajk|| and K̂ satisfy the equality

K̂(t) = Ê(t)Â,

where Ê is the matrix defined by (19).

Introduce the following integral operator with matrix kernel:

Kµ(t) =

t∫
0

K̂(t− s)µ(s)ds, t > 0. (34)

Equation (33) takes the form of the following Volterra integral equation of the
first kind

t∫
0

Ê(t− s)Âµ(s)ds = f(t), t > 0, (35)

which is the main equation of the considered problem HC. Since the integral operator
in the left hand side is compact and quasinilpotent, we need to study not only the
kernel (34) of this operator but also its derivatives.

After differentiating equality (35) we get the equation (since Ê(0) = I)
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Âµ(t) +

t∫
0

Ê ′(t− s)Âµ(s)ds = f ′(t), t > 0. (36)

It is clear that in the case in which f ′ ∈ Cm[0,+∞) and the function f satisfies
condition (18) equations (35) and (36) are equivalent.

Set
ω(t) = Âµ(t).

Then

ω(t) +

t∫
0

Ê ′(t− s)ω(s)ds = f ′(t), t > 0, (37)

and this is a Volterra integral equation of the second kind.
It is well known that equation (37) has unique solution for every f ′ ∈ Cm[0,+∞).

The problem is to find the solution ω for which ω(t) = Âµ(t) and µ(t) satisfies
restrictions (8).

We note that vector equation (37) splits up into m scalar equations

ωj(t) − λj

t∫
0

e−λj(t−s)ωj(s)ds = f ′j(t), t > 0. (38)

Set

Sjv(t) = λj

t∫
0

e−λj(t−s)v(s)ds. (39)

Then we may rewrite equation (38) as follows:

(I − Sj)ωj(t) = f ′j(t). (40)

We need the following two properties of integral operator (39).

Proposition 1. Let v be a measurable function on the half-line [0,+∞), bounded on
the segment [0, T ] for any T > 0. If

(I − Sj)v(t) ≥ 0

then
v(t) ≥ 0

almost everywhere on [0,+∞).

Proof. Follows by the positiveness of the eigenvalues. Indeed, since λj > 0 the kernel
of integral operator (39) is a positive function. Hence, if we set g(t) = (I − Sj)v(t),
then

v(t) =
∞∑
k=0

Skj g(t) ≥ 0. �
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Proposition 2. Let v be a measurable function on the half-line [0,+∞), bounded on
the segment [0, T ] for any T > 0. If for some M > 0 the inequality

|(I − Sj)v(t)| ≤ Me−λjt

is satisfied, then
|v(t)| ≤ M

almost everywhere on [0,+∞).

Proof. Set v±(t) = M ± v(t). Then

(I − Sj)v±(t) = (I − Sj)M ± (I − Sj)v(t).

Note that

(I − Sj)M = M −Mλj
1− e−λjt

λj
= Me−λjt.

Hence
(I − Sj)v±(t) = Me−λjt ± (I − Sj)v(t) ≥ 0,

and, according to Proposition 1, v±(t) ≥ 0. �

3 Existence and uniqueness of the solution of the prob-
lem HC

First we study the properties of the matrix A = ||ajk|| defined by (31).

Proposition 3. The elements of the matrix Â have the following form:

ajk = λj

∫
Ω

vj(x)wk(x) dx. (41)

Here λj and vj are the eigenvalues and eigenfunctions of the problem (9)-(10) and
wk are the solutions of boundary value problem (14)-(15).

Proof. Indeed, it follows immediately by the Green formula∫
Ω

[vj(x)∆wk(x)− wk(x)∆vj(x)] dx =

=

∫
∂Ω

[
vj(x)

∂wk(x)

∂n
− wk(x)

∂vj(x)

∂n

]
dσ(x)

that ∫
∂Ω

vj(x) ak(x) dσ(x) = λj

∫
Ω

vj(x)wk(x) dx,

and taking into account definition (31) we get required equality (41). �
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Proposition 4. Let the condition (21) be satisfied. Then det Â 6= 0.

Proof. It follows from condition (21) that the vector u ∈ Hm, which is orthogonal
to Lm, must be equal to 0 (see [1], Sec. 34).

Assume that there exists cj such that

m∑
j=1

cj ajk = 0. (42)

According to (41),

m∑
j=1

cj ajk =

∫
Ω

[
m∑
j=1

cjλjvj(x)

]
wk(x) dx. (43)

Set

φ(x) =
m∑
j=1

cjvj(x).

It is clear that φ ∈ Hm and (−∆ + p)φ ∈ Hm. It follows by (42) and (43) that∫
Ω

(−∆ + p)φ(x)wk(x) dx = 0.

Hence (−∆ + p)φ(x) is orthogonal to Lm and, since (−∆ + p)φ ∈ Hm, due to
assumption (21),

(−∆ + p)φ(x) ≡ 0.

Because of orthogonality λjcj = 0 for all j = 1, 2, ...,m, and since λj > 0 we

may state that all cj = 0. This means that the rows of the matrix Â are linearly

independent. Hence det Â 6= 0. �

Corollary 2. Let condition (21) be satisfied. Then there exists the inverse ma-

trix Â−1.

Proof of Theorem 1. Set

Q = {u ∈ Rm : |uj| ≤ 1, j = 1, 2, ...,m}. (44)

Denote the image of this cube under transform Â by Q̃:

Q̃ = {v ∈ Rm : v = Âu, u ∈ Q}. (45)

The set Q̃ is a convex polyhedron of dimension m and, according to Proposition 4,
this polyhedron contains a ball centered at the origin.

We introduce the set

P = {b ∈ Q̃ : [a] ≺ [b] ⇒ a ∈ Q̃}.
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It is clear that P is a convex polyhedron and a neighborhood of the origin.
1) Let b ∈ P . If the function f satisfies condition (20) then, according to Propo-

sitions 1 and 2, the solution ω of the equation (37) satisfies the condition

[ω(t)] ≺ [b].

Hence, due to the definition of the set P we may state that ω(t) ∈ Q̃ for all t ≥ 0.

Consequently, the vector µ(t) = Â−1ω(t) ∈ Q, or

|µj(t)| ≤ 1, j = 1, 2, ...,m.

This means that µ is an admissible control.
2) Assume now that b /∈ P . Then we may find a vector b∗ such that [b∗] ≺ [b] and

b∗ /∈ Q̃.
Indeed, if b /∈ Q̃ then we just set b∗ = b. In the case in which b ∈ Q̃ the existence

of such a vector b∗ follows by the definition of the set P .
Set

fj(t) =
b∗j
λj

(
1− e−λjt

)
.

The corresponding vector-function f satisfies conditions (18) and (20). Indeed,

f ′j(t) = b∗je
−λjt

and

[f ′(t)] = Ê(t)[b∗] ≺ Ê(t)[b].

Note that the solution ω of equation (37) is continuous and ω(0) = f ′(0) = b∗ /∈ Q̃.

Since Q̃ is closed, there exists T > 0 such that ω(t) /∈ Q̃ for 0 ≤ t ≤ T . Then

µ(t) = Â−1ω(t) /∈ Q for 0 ≤ t ≤ T . Hence, there is no admissible control and the
problem HC has no solution. �

4 Non-existence of the solution

Proposition 5. Let condition (23) be satisfied. Then det Â = 0.

Proof. First we show that the next statement follows from [1]: if

θ(Lm, Hm) = 1,

then there exists a vector v ∈ Lm such that v ⊥ Hm, or there exists a vector u ∈ Hm

such that u ⊥ Lm.
Indeed, we may use the formula (see [1], Chapter III, Section 39, formula (2))

θ(Lm, Hm) = max

{
sup

v∈Lm,‖v‖=1

‖(I − Pm)v‖, sup
u∈Hm, ‖u‖=1

‖(I −Qm)u‖

}
.
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In the case in which

sup
v∈Lm,‖v‖=1

‖(I − Pm)v‖ = 1,

we may state that there exists v ∈ Lm such that ‖v‖ = 1 and

‖(I − Pm)v‖ = 1.

Hence

1 = ‖v‖2 = ‖Pmv‖2 + ‖(I − Pm)v‖2 = ‖Pmv‖2 + 1

and, consequently, ‖Pmv‖ = 0 or v ⊥ Hm.
Analogously, if

sup
u∈Hm,‖u‖=1

‖(I −Qm)u‖ = 1,

then there exists u ∈ Hm such that ‖u‖ = 1 and

‖(I −Qm)u‖ = 1.

Hence

1 = ‖u‖2 = ‖Qmu‖2 + ‖(I −Qm)u‖2 = ‖Qmu‖2 + 1

and, consequently, ‖Qmu‖ = 0 or u ⊥ Lm.

Assume that there exists u ∈ Hm such that u ⊥ Lm. Set

u(x) =
m∑
j=1

αjvj(x), where
m∑
j=1

α2
j = 1.

Then for any k = 1, 2, ...,m

0 = (u,wk) =
m∑
j=1

∫
Ω

αjvj(x)wk(x) dx =
m∑
j=1

αj
λj
ajk.

Hence the rows of the matrix Â are linearly dependent and therefore det Â = 0.
Analogously, if there exists v ∈ Lm such that v ⊥ Hm, and

v(x) =
m∑
k=1

βkwk(x), where
m∑
k=1

β2
k = 1,

then for any j = 1, 2, ...,m

0 = (v, vj) =

∫
Ω

[
m∑
k=1

βkwk(x)

]
vj(x) dx =

1

λj

m∑
k=1

βkajk.

Hence, the columns of the matrix Â are linearly dependent and therefore det Â = 0.
�
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Corollary 3. Let condition (23) be satisfied. Then det Â∗ = 0 where Â∗ is the

transpose of matrix Â.

Corollary 4. Let condition (23) be satisfied. Then there exists a vector µ̃ ∈ Rm such
that |µ̃| = 1 and the following equality is valid:

Â ∗µ̃ = 0.

Proof of Theorem 2. Consider, for λ ≥ λm and for sufficiently small ε > 0, the
following function

f(t) = εµ̃
(
1− e−λt

)
, t ≥ 0.

It is clear that f(0) = 0 and

f ′(t) = ελµ̃e−λt, t ≥ 0.

If equation (36) has a solution µ(t), then obviously the vector Âµ(t) is continuous
and, putting t = 0, we get

Âµ(0) = f ′(0) = ελµ̃.

Hence
Âµ(0) · µ̃ = ελµ̃ · µ̃ = ελ > 0.

But on the other hand

Âµ(0) · µ̃ = µ(0) · Â ∗µ̃ = 0.

This contradiction proves the theorem. �
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