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Abstract. In this work an inverse problem of spectral analysis for a quadratic
pencil of operators with general nonselfadjoint nonseparated boundary conditions is
considered. Uniqueness and duality theorems are proved, an algoritm for solving the
problem is presented. Apropriate examples and counterexample are given.

1 Introduction

The inverse Sturm-Liouville problem for the equation

−y′′ + q(x)y = λy = s2y

with separated or nonseparated boundary conditions has been thoroughly investi-
gated (see [1] – [3], [9] – [14], [16]). Inverse problems for operator pencils with
separated boundary conditions were considered, for example, in [4] – [6], [15], [17].
However, inverse problems for operator pencils with nonseparated boundary condi-
tions and their numerical solutions were apparently not studied. In this paper, we
try to fill this gap.

2 Setting up an inverse problem

Consider the following three boundary value problems.

Problem L:

y′′ + (s2 + i s q1(x) + q(x)) y = 0, (1)

U1(y) = y′(0) + (a11 + i s a12) y(0)
+(a13 + i s a14) y(π) = 0,

(2)

U1(y) = y′(π) + (a21 + i s a22) y(0)
+(a23 + i s a24) y(π) = 0,

(3)
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Problem L1 :

y′′ + (µ2 + i µ q1(x) + q(x)) y = 0,

V1(y) = y′(0) + (a11 + i µ a12) y(0) = 0,

V2(y) = y′(π) + (a23 + i µ a24) y(π) = 0,

Problem L2:

y′′ + (ν2 + i ν q1(x) + q(x)) y = 0,

y(0) = 0,

V2(y) = y′(π) + (a23 + i s a24) y(π) = 0.

Here q ∈ L1[0, π] and q1 ∈ W 1
1 [0, π] are complex-valued functions and aij (i = 1, 2, j =

1, 2, 3, 4) are complex numbers such that a12 6= ±1, a24 6= ±1. The conditions
a12 6= ±1, a24 6= 1 exclude from consideration Redzhe type problems, which need a
special consideration (see [5]).

The inverse problem is formulated as follows.

Problem. Given the eigenvalues {sk}, {µk}, and {νk} of problems L, L1, L2 re-
spectively, find the coefficients of the pencil L, i.e., the coefficients q(x), q1(x), aij
(i = 1, 2, j = 1, 2, 3, 4).

3 The duality and uniqueness theorems

Together with problem L, we consider problem L−, that differs from L in the coeffi-
cients a13, a14, a21, a22:

Problem L−:

y′′ + (s2 + i s q1(x) + q(x)) y = 0, (4)

U1(y) = y′(0) + (a11 + i s a12) y(0)
+(−a21 − i s a22) y(π) = 0,

(5)

U1(y) = y′(π) + (−a13 − i s a14) y(0)
+(a23 + i s a24) y(π) = 0,

(6)

In what follows, problems of the types L, L− but with different coefficients q̃, q̃1 in
the equation and with different parameters ãij in the boundary forms is denoted by

L̃, L̃− respectively. Throughout this paper, we assume that a symbol with a tilde in
problem L̃ denotes an object similar to that in problem L.

Theorem 1. If {sk} = {s̃k}, {µk} = {µ̃k}, {νk} = {ν̃k}, then either L = L̃ or

L = L̃−. Thus, given three spectra, the coefficients of (1)–(3) are dually determined:
either q(x) = q̃(x), q1(x) = q̃1(x), aij = ãij, i = 1, 2, j = 1, 2, 3, 4, or q(x) = q̃(x),
q1(x) = q̃1(x), a11 = ã11, a12 = ã12, a13 = −ã21, a14 = −ã22, a21 = −ã13, a22 = −ã14,
a23 = ã23, a24 = ã24.
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Proof. Corollary 1 to Theorem 1 on the uniqueness of a solution to an inverse
problem for L1, and L2 in [4] implies that q(x) = q̃(x), a11 = ã11, a12 = ã12, a23 = ã23,
a24 = ã24.

The remaining equalities a13 = ã13, a14 = ã14, a21 = ã21, a22 = ã22 or a13 = −ã21,
a14 = −ã22, a21 = −ã13, a22 = −ã14 are proved by using linear independence of
certain functions in the expansion of the characteristic determinant ∆(s) of problem
L, which is an entire function of the first order.

Let ϕ(x, s) and ψ(x, s) be solutions of (1) satisfying the conditions

ϕ(0, s) = ψ(π, s) = 1, V1(ϕ) = V2(ψ) = 0.

Then function

∆(s) =

∣∣∣∣ U1(ϕ) U1(ψ)
U2(ϕ) U2(ψ)

∣∣∣∣
is the characteristic function of problem (1)–(3).

We have

∆(s) =

∣∣∣∣ V1(ϕ) + (a13 + i s a14)ϕ(π) V1(ψ) + (a13 + i s a14)ψ(π)
V2(ϕ) + (a21 + i s a22)ϕ(0) V2(ψ) + (a21 + i s a22)ψ(0)

∣∣∣∣
=

∣∣∣∣ 0 + (a13 + i s a14)ϕ(π) V1(ψ) + (a13 + i s a14) · 1
V2(ϕ) + (a21 + i s a22) · 1 0 + (a21 + i s a22)ψ(0)

∣∣∣∣ .
By the equality V2(ϕ) = −V1(ψ) (see [4]) it follows that

∆(s) = (a13 + i s a14) (a21 + i s a22) [ϕ(π)ψ(0)− 1]

+(a13 + i s a14 − a21 − i s a22)V1(ψ) + V 2
1 (ψ)

=
[
−s2 a14 a22 + i s (a13 a22 + a14 a21) + a13 a21

]
f1(s)

+ [a13 − a21 + i s (a14 − a22)] f2(s) + f3(s),

where

f1(s) = ϕ(π, s)ψ(0, s)− 1, f2(s) = V1(ψ(x, s)), f3(s) = V 2
1 (ψ(x, s)).

Similarly, we find that the characteristic function of problem L̃ has the form

∆̃(s) =
[
−s2 ã14 ã22 + i s (ã13 ã22 + ã14 ã21) + ã13 ã21

]
f1(s)

+ [ã13 − ã21 + i s (ã14 − ã22)] f2(s) + f3(s),

As is shown in [4]

ϕ(x, s) =
1− a12

2
exp(isx−Q(x)) [1] +

1 + a12

2
exp(−isx+Q(x)) [1],

ϕ′(x, s) =
1− a12

2
i s exp(isx−Q(x)) [1]− 1 + a12

2
i s exp(−isx+Q(x)) [1],
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ψ(x, s) =
1 + a24

2
exp(is(π − x)−Q(π) +Q(x)) [1]

+
1− a24

2
exp(−is(π − x) +Q(π)−Q(x)) [1],

ψ′(x, s) = −1 + a24

2
i s exp(is(π − x)−Q(π) +Q(x)) [1]

+
1− a24

2
i s exp(−is(π − x) +Q(π)−Q(x)) [1],

for |s| → ∞ uniformly in x ∈ [0, π], where

Q(x) =

∫ x

0

q1(t) dt, [1] = 1 +O

(
1

s

)
.

By the above and the general theory of differential operators [8, pp. 1–27] it follows
that ∆(s) is an entire function of s of the first order. Hence by the and Hadamard
theorem ([7]) it follows that the function ∆(s) can be reconstructed from its zeros up
to the factor C ea s, where a and C are numbers and C 6= 0.

It is known (see [8, pp. 24–27]) that the zeros of the determinant ∆(s) are the
eigenvalues of problem L and the multiplicity of the zero of function ∆(s) coincides
with the algebraic multiplicity of the corresponding eigenvalue of problem L.

Since the eigenvalues of problems L and L̃ are identical and have the same alge-
braic multiplicity, the function ∆(s) of problem L and the function ∆̃(s) of problem

L̃ satisfy the identity
∆(s) ≡ C ∆̃(s) exp(a s). (7)

Let us show that a = 0 with the help of a reducio ad absurdum proof. If a 6= 0
then the functions

f1(s), s f1(s), s
2 f1(s), f1(s) e

as, s f1(s) e
as, s2 f1(s) e

as,

f2(s), s f2(s), f2(s) e
as, s f2(s) e

as, f3(s), f3(s) e
as

form a linearly independent system of functions.
Indeed,

f1(s) = ϕ(π, s)ψ(0, s)− 1 =(
1− a12

2
exp(isπ −Q(π)) [1] +

1 + a12

2
exp(−isπ +Q(π)) [1]

)
×
(

1 + a24

2
exp(isπ −Q(π)) [1] +

1− a24

2
exp(−isπ +Q(π)) [1]

)
− 1(

1− a12

2

1− a24

2
+

1 + a12

2

1 + a24

2

)
[1]− 1

+

(
1− a12

2

1 + a24

2
exp(2isπ − 2Q(π))+

+
1 + a12

2

1− a24

2
exp(−2isπ + 2Q(π))

)
[1]
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=
a12 a24 − 1

2
[1] +

1

2
cos (2 sπ + 2 i Q(π)) · (1− a12 a24) [1]

+
i

2
sin (2 sπ + 2 i Q(π))) · (a24 − a12) [1],

f2(s) = V1(ψ(x, s)) = γ s sin ((s− w)π) [1],

f3(s) = V 2
1 (ψ(x, s)) = γ2 s2 sin2 ((s− w)π) [1],

where (see [4])

γ =
√

(1− a2
12)(1− a2

24), w =
1

2 i π

(
ln

(1 + a12)(1− a24)

(1− a12)(1 + a24)
+

∫ π

0

q1(t) dt

)
.

By (7) it follows that the coefficient γ2 at s2 sin2 ((s− w)π) [1] in the expansion
of

∆(s)− ∆̃(s) exp(as+ b)

equals zero.
However the equality

γ2 = (1− a2
12)(1− a2

24) = 0

contrdicts to the conditions a12 6= ±1, a24 6= ±1.
So a = 0.
Relation (7), together with linear independence of the functions

f1(s), s f1(s), s
2 f1(s), f2(s), s f2(s), f3(s)

implies that

a14 a22 = ã14 ã22, (8)

a13 a22 + a14 a21 = ã13 ã22 + ã14 ã21, (9)

a13 a21 = ã13 ã21, (10)

a13 − a21 = ã13 − ã21, (11)

a14 − a22 = ã14 − ã22. (12)

By (8) and (12) it follows that

a14 = ã14, a22 = ã22, (13)

or
a14 = −ã22, a22 = −ã14. (14)

By (10) and (11) it follows that

a13 = ã13, a21 = ã21, (15)

or
a13 = −ã21, a21 = −ã13. (16)
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Thus, the following four cases are possible:

(i) the equations (13), (15),
(ii) the equations (14), (16),
(iii) the equations (14), (15),
(iv) the equations (13), (16).

Let us show that cases (iii) and (iv) are particular cases of (i) and (ii).
In case (iii) equation (9) can be reduced to the form

(a13 + a21)(a14 + a22) = 0.

Therefore a13 + a21 = 0 a14 + a22 = 0. If a13 + a21 = 0, then

a13 = −a21 = −ã21, a21 = −a13 = −ã13,

i.e. we have case (ii).
If a14 + a22 = 0, then

a14 = −a22 = ã14, a22 = −a14 = ã22,

i.e. we have case (i).
Hence, case (iii) is particular case of (i) and (ii).
In case (iv) equation (9) can be reduced to the form

(a13 + a21)(a14 + a22) = 0.

Therefore a13 + a21 = 0 a14 + a22 = 0. If a13 + a21 = 0, then

a13 = −a21 = ã13, a21 = −a13 = ã21,

i.e. we have case (i).
If a14 + a22 = 0, then

a14 = −a22 = −ã22, a22 = −a14 = −ã14,

i.e. we have case (ii).
Hence, case (iv) is particular case of (i) and (ii).
Thus, only two cases (i) and (ii) are possible. �
As special cases of Theorem 1, we can obtain various uniqueness theorems. Below

are examples.

Theorem 2. If {sk} = {s̃k}, {µk} = {µ̃k}, {νk} = {ν̃k}, a13 = ã13 and a14 = ã14,

then L = L̃. Thus, given three spectra, the coefficients of pencil (1)–(3) are uniquely
determined if a13 and a14 are known.

Proof. Theorem 1 implies that q(x) = q̃(x), a11 = ã11, a12 = ã12, a23 = ã23, a24 = ã24

and one of the cases
(i) the equations (13), (15),
(ii) the equations (14), (16)

is possible.
By the assumptions of the theorem a13 = ã13, a14 = ã14, so we have only one

case (i). �
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Theorem 3. If {sk} = {s̃k}, {µk} = {µ̃k}, {νk} = {ν̃k}, a14, ã14, a22, ã22 ∈ R
and sign a14 = sign ã14, sign a22 = sign ã22, then L = L̃. Thus, given three spectra,
the coefficients of pencil (1)–(3) are uniquely determined if sign a14 and sign a22 are
known.

Proof. Theorem 1 implies that q(x) = q̃(x), a11 = ã11, a12 = ã12, a23 = ã23,
a24 = ã24, and one of the cases:

(i) the equations (13), (15),
(ii) the equations (14), (16)

is possible.
If signs (plus or minus) of coefficients a14 and a22 are known, then only one case

of cases (i) or (ii) is possible. �

Theorem 4. If {sk} = {s̃k}, {µk} = {µ̃k}, {νk} = {ν̃k}, a21 = ã21, a22 = ã22

then L = L̃. Thus, given three spectra, the coefficients of pencil (1)–(3) are uniquely
determined if a21 and a22 are known.

Proof. Theorem 1 implies that q(x) = q̃(x), a11 = ã11, a12 = ã12, a23 = ã23,
a24 = ã24, and one of the cases

(i) the equations (13), (15),
(ii) the equations (14), (16)

is possible.
By the assumptions the theorem a21 = ã21, a22 = ã22, so we have only one case (i).

�

The question arises how, given the spectra, to find the two solutions discribedin
Theorem 1. Below, we propose a method for constructing these two solutions and
prove another (stronger) duality theorem. It differs in that it uses only five eigenvalues
instead of the entire spectrum of problem L.

4 An algorithm for solving the inverse problem

The coefficients q(x), q1(x), a11, a12, a23, and a24 can be found from the spectra of
problems L1 and L2 with the help of the method described in [4].

It remains to show how to find a13, a14, a21, and a22.
Let sk be the eigenvalues of problem (1)–(3). Then they are zeros of the charac-

teristic determinant ∆(s), i.e., satisfy the equalities

[−s2
k b1 + i sk b2 + b3] f1(sk)

+ [b4 + i sk b5] f2(sk) + f3(sk) = 0,
(17)

where f1(s), f2(s), f3(s) are certain functions associated with linearly independent
solutions to equation (1), and

b1 = a14a22, b2 = a13a22 + a14a21, b3 = a13a21,
b4 = a13 − a21, b5 = a14 − a22.

(18)
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If the eigenvalues sk, k = 1, 2, 3, 4, 5 of problem (1)–(3) are such that the deter-
minant of the matrix

‖ − s2
kf1(sk) iskf1(sk) f1(sk) f2(sk) iskf2(sk)‖

of system (17) is nonzero, then the system of algebraic equations with the unknowns
b1, b2, b3, b4, and b5 has a unique solution. The unknown coefficients a13, a14, a21,
and a22 are found using b1, b2, b3, b4, and b5 from the system of nonlinear algebraic
equations (18). This system has two solutions.

The above results in the following.

Theorem 5. If the eigenvalues sk (k = 1, 2, 3, 4, 5) of problem (1)–(3) are such that
the determinant of the matrix

‖ − s2
kf1(sk) iskf1(sk) f1(sk) f2(sk) iskf2(sk)‖

of system (17) is nonzero, then the coefficients q(x), q1(x), a11, a12, a23, and a24 are
uniquely determined and the coefficients a13, a14, a21, and a22 are dually determined
by these five eigenvalues and the spectra of problems L1 and L2.

5 Examples and a counterexample

Example 1. Suppose that the eigenvalues µk and νk of problems L1, L2 respectively,
coincide with the roots of the equation

−2 cosµk π +

(
3

µk
+ µk

)
sinµk π = 0,

cos νk π + 3
sin νk π

νk
= 0,

and let five eigenvalues of problem L be

s1 = 0.9056531 + 0.0614968 i, s2 = 2.0410923 + 0.0617103 i,

s3 = 2.9137034− 0.0504283 i, s4 = 4.0270545 + 0.0804198 i,

s5 = 4.9425939− 0.0746285 i.

The coefficients q(x), q1(x), a11, a12, a23, and a24 are determined by the eigenvalues
µk and νk of problems L1 and L2 by applying the method of [4]: q(x) = q1(x) = a12 =
a24 = 0, a11 = 1, and a23 = 3. To find the coefficients a13, a14, a21, and a22 system
(17) is solved by the Cramer rule. As a result, we have b1 = 8, b2 = 10, b3 = 3, b4 = 2
and b5 = 2 with the accuracy 10−3. Substituting these bi in system (18) and solving
the latter produces two solutions

(i) a13 = 3, a14 = 4, a21 = 1, a22 = 2;
(ii) a13 = −1, a14 = −2, a21 = −3, a22 = −4.

Thus, the indicated spectra can be possessed by the two eigenvalue problems:



Inverse problem for an operator pencil with nonseparated boundary conditions 13

Problem L.
y′′ + s2 y = 0, y′(0) + y(0) + (3 + 4is) y(π) = 0,

y′(π) + (1 + 2is) y(0) + 3 y(π) = 0.

Problem L−.

y′′ + s2 y = 0, y′(0) + y(0) + (−1− 2is) y(π) = 0,

y′(π) + (−3− 4is) y(0) + 3 y(π) = 0.

If, in addition to the spectra of L, L1, and L2, we know that a13 = 3 and a14 = 4,
we obtain one solution (rather than two), namely, that of problem L (Theorem 2).

If two solutions coincide, then we also obtain one solution. This case is considered
in example 2.

Example 2. Suppose that the eigenvalues µk and νk of problems L1, L2 respectively,
coincide with the roots of the equation

−2 cosµk π +

(
3

µk
+ µk

)
sinµk π = 0,

cos νk π + 3
sin νk π

νk
= 0,

and let five eigenvalues of problem L be

s1 = 1.155913754, s2 = 2.163308594, s3 = 3.144507346,

s4 = 4.124456887, s5 = 5.107505070.

The coefficients q(x), q1(x), a11, a12, a23, and a24 are determined by eigenvalues
µk and νk of problems L1 and L2 by applying the method of [4]:

q(x) = q1(x) = a12 = a24 = 0, a11 = 1, a23 = 3.

To find the coefficients a13, a14, a21, and a22 system (17) is solved by the Cramer rule.
As a result, we have

b1 = 0, b2 = 0, b3 = 0, b4 = 0, b5 = 0,

with the accuracy 10−5. Substituting these bi in system (18) and solving the latter
produces one solution: a13 = 0, a14 = 0, a21 = 0, a22 = 0.

Example 3 (Counterexample). In Theorem 3, the condition that the determinant
of the matrix of system (17) is nonzero cannot be omitted. A relevant example is
as follows. Suppose that the eigenvalues µk and νk of problems L1, L2 respectively,
coincide with the roots of the equation

−2 cosµk π +

(
3

µk
+ µk

)
sinµk π = 0,
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cos νk π + 3
sin νk π

νk
= 0,

and let five eigenvalues of L be as follows up to 10−2:

s1 = 100, s2 = 200, s3 = 300,

s4 = 400, s5 = 500.

The coefficients q(x), q1(x), a11, a12, a23, and a24 are determined by the eigenvalues
µk and νk of problems L1 and L2 by applying the method of [4]: q(x) = q1(x) = a12 =
a24 = 0, a11 = 1, and a23 = 3. To find a13, a14, a21, and a22, we solve system (17):

4− 2 b4 − 200 i b5 = 0, 4− 2 b4 − 400 i b5 = 0, 4− 2 b4 − 600 i b5 = 0,

4− 2 b4 − 800 i b5 = 0, 4− 2 b4 − 1000 i b5 = 0.

As a result, we obtain not a unique solution but an infinite set of solutions: b1 =
C1, b2 = C2, b3 = C3, b4 = 2, and b5 = 0.

Thus, it may happen that the indicated spectra are possessed not only by the two
eigenvalue problems

Problem L.
y′′ + s2 y = 0, y′(0) + y(0) + (3 + 4is) y(π) = 0,

y′(π) + (1 + 2is) y(0) + 3 y(π) = 0,

Problem L−.

y′′ + s2 y = 0, y′(0) + y(0) + (−1− 2is) y(π) = 0,

y′(π) + (−3− 4is) y(0) + 3 y(π) = 0,

but by an infinite set of eigenvalue problems.
The reason for this is that the five values sk were not the first five eigenvalues

but the eigenvalues that are far away from zero. In this case, sk are asymptotically
close to the numbers k. As a result, f1(sk), sk f1(sk), and s2

k f1(sk) are close to zero.
Therefore, the determinant of system (17) becomes close to zero.

6 Conclusion

The results explained in the previous sections show that the eigenvalue boundary
problem (1)–(3) for operator pencils with nonseparated boundary conditions can be
reconstructed using three spectra by the numerical methods.
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