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1 Introduction

The study of nonlinear boundary value problems involving variable exponents has received consid-
erable attention in the last decades. This is motivated by the developments in elastic mechanics,
electrorheological fluids, and image restoration [4, 7, 12, 13, 21, 32, 33].

In this work, we aim to prove the existence of a weak solution for the following nonlocal elliptic
system of (p(x), q(x))-Kirchhoff type with the Dirichlet boundary conditions:

T1(u) = λh(x, u,∇u) +Q(x)|u|r1(x)−2u in Ω,

T2(v) = κg(x, v,∇v) +O(x)|v|r2(x)−2v in Ω,

u = v = 0 on ∂Ω,

(1.1)

where

T1(u) = −N1

(∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x))dx

)
× div

(
a1(x,∇u) + |∇u|p(x)−2∇u

)
,

and
T2(v) = −N2

(∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x))dx

)
× div

(
a2(x,∇v) + |∇v|q(x)−2∇v

)
.

Here and in the sequel, Ω designates a bounded open set in RN(N ≥ 2), with a Lipschitz boundary
denoted by ∂Ω. p, q, r ∈ C+(Ω), λ and κ are two real parameters, −div ai(x,∇u) (i = 1, 2) are
Leray-Lions operators, h, g : Ω × R × RN → R are two Carathéodory’s functions that satisfy the
assumption of growth, Q,O ∈ L∞(Ω) and Ni : R+ → R+ are functions that satisfy some conditions
which will be stated later. As is well known, problem (1.1) is related to the stationary problem of
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a model presented by Kirchhoff in 1883 [16]. More precisely, Kirchhoff introduced a model given by
the equation

ρ
∂2u

∂t2
−
(ρ0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0, (1.2)

which extends the classical d’Alembert’s wave equation that takes into account the effects of length
changes of the string produced by transverse vibrations, the parameters in (1.2) have the following
meanings: h is the cross-section area, E is the Young modulus, ρ is the mass density, L is the length
of the string, and ρ0 is the initial tension.

The Kirchhoff type equations involving variable exponent growth conditions have been a very
interesting topic in recent years, it has been studied in many papers; we refer to [10, 11, 19, 23, 29] in
which variational methods have been used to get the existence and multiplicity of solutions, on the
other hand, many authors used the topological degree methods to prove the existence of solutions
see for example (see, for example,[9, 24, 25, 27, 28]).

The purpose of this work is to study the existence of solutions to the problem (1.1) in the
Sobolev spaces with variable exponents by using another approach based on the topological degree
of Berkovits based on the Leray-Schauder principle, presented in [5, 6] for a class of demicontinuous
operators of generalized (S+) type, and the theory of the variable-exponent Sobolev spaces.

This article is arranged as follows. In Section 2, we recall some basic facts about the variable
exponent Lebesgue and Sobolev spaces and we introduce, some classes of operators of generalized
(S+) type and the topological degree, while Section 3 is devoted to the existence of at least one weak
solution for problem (1.1).

2 Preliminary results

2.1 The generalized Lebesgue-Sobolev spaces:

First, we introduce some definitions and basic properties of the Lebesgue-Sobolev spaces with variable
exponents Lp(x)(Ω) and W 1,p(x)(Ω). In this context, we refer to [14, 18, 31] for more details.

Let us set C+(Ω) =
{
p : p ∈ C(Ω) and is such that p(x) > 1 for all x ∈ Ω

}
.

For each p ∈ C+(Ω), we define p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
.

For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{
v : Ω→ R is measurable and such that

∫
Ω

|v(x)|p(x)dx < +∞
}
,

equipped with the Luxemburg norm given by

|v|p(x) = inf
{
ε > 0,

∫
Ω

∣∣v(x)

ε

∣∣p(x)
dx ≤ 1

}
,

(
Lp(·)(Ω), | · |p(·)

)
, we call it the generalized Lebesgue space, is a separable, and reflexive Banach space

(see, [18]).

Proposition 2.1 ([14]). Set

%p(x)(v) =

∫
Ω

|v(x)|p(x)dx, ∀ v ∈ Lp(x)(Ω),
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then,

|v|p(x) < 1(respectively = 1;> 1) ⇔ %p(x)(v) < 1(respectively = 1;> 1), (2.1)

|v|p(x) > 1⇒ |v|p
−

p(x) ≤ %p(x)(v) ≤ |v|p
+

p(x), (2.2)

|v|p(x) < 1 ⇒ |v|p
+

p(x) ≤ %p(x)(v) ≤ |v|p
−

p(x), (2.3)

lim
n→∞

|vk − v|p(x) = 0 ⇔ lim
n→∞

%p(x)(vk − v) = 0. (2.4)

Remark 1. From (2.2) and (2.3), we can deduce the follwingin inequalities:

|v|p(x) ≤ %p(x)(v) + 1, (2.5)

%p(x)(v) ≤ |v|p
−

p(x) + |v|p
+

p(x). (2.6)

Proposition 2.2 ([18]). The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω) where 1
p(x)

+ 1
p′(x)

= 1, ∀x ∈ Ω.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the Hölder-type inequality∣∣∣ ∫
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2. If k1, k2 ∈ C+(Ω) with k1(x) ≤ k2(x) for any x ∈ Ω then, the embedding Lk2(x)(Ω) ↪→
Lk1(x)(Ω) is continuous.

Lp(x),q(x)(Ω) refers to the generalized Lebesgue space Lp(x)(Ω)×Lq(x)(Ω) equipped with the norm
‖ · ‖p(x),q(x) given by

‖(u, v)‖p(x),q(x) = |u|p(x) + |v|q(x), ∀(u, v) ∈ Lp(x),q(x)(Ω).

Now, we define the generalized Sobolev space W 1,p(x)(Ω), for all p ∈ C+(Ω):

W 1,p(x)(Ω) =
{
v ∈ Lp(x)(Ω) such that |∇v| ∈ Lp(x)(Ω)

}
,

equipped with the norm
|v|1,p(x) = |v|p(x) + |∇v|p(x).

We define W 1,p(·)
0 (Ω) as the subspace of W 1,p(·)(Ω), which is the closure of C∞0 (Ω) with respect to the

norm | · |1,p(x).

Proposition 2.3 ([15, 22]). If the exponent p(·) satisfies the log-Hölder continuity condition, i.e.

there is a constant α > 0 such that for every x, y ∈ Ω, x 6= y with |x− y| ≤ 1

2
one has

|p(x)− p(y)| ≤ α

− log |x− y|
, (2.8)

then we have the Poincaré inequality, i.e. the exists a constant C > 0 depending only on Ω and the
function p such that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈ W 1,p(·)
0 (Ω). (2.9)

In particular, the space W 1,p(x)
0 (Ω) has the norm ‖v‖1,p(x) which is equivalent to |v|1,p(x), defined by

‖v‖1,p(x) = |∇v|p(x).
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Proposition 2.4 ([14, 18]). The spaces
(
W 1,p(x)(Ω), |·|1,p(x)

)
and

(
W

1,p(x)
0 (Ω), ‖·‖1,p(x)

)
are separable

and reflexive Banach spaces.
Furthermore, we have the compact embedding W 1,p(·)

0 (Ω) ↪→ Lp(·)(Ω) (see [18]).

Remark 3. The dual space of W 1,p(x)
0 (Ω) denoted W−1,p′(x)(Ω), is equipped with the norm

‖u‖−1,p′(x) = inf
{
|u0|p′(x) +

N∑
i=1

|ui|p′(x)

}
, ∀u ∈ W−1,p′(x)(Ω)

where the infinimum is taken on all possible decompositions u = u0 − divF with
u0 ∈ Lp

′(x)(Ω) and F = (u1, . . . , uN) ∈ (Lp
′(x)(Ω))N

In the sequel, the notation X 1,p(x),q(x)(Ω) refers to the Orlicz-Sobolev spaceW 1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω),
equipped with th norm ‖(u, v)‖ = ‖(u, v)‖1,p(x),q(x) given by

‖(u, v)‖ = ‖(u, v)‖1,p(x),q(x) = ‖u‖1,p(x) + ‖v‖1,q(x), ∀(u, v) ∈ X 1,p(x),q(x)(Ω)(
X 1,p(x),q(x)(Ω)

)∗
= X−1,p′(x),q′(x)(Ω) is the dual space of X 1,p(x),q(x)(Ω), corresponding to the Orlicz-

Sobolev space W−1,p′(x)(Ω)×W−1,q′(x)(Ω) equipped with the norme

‖(ϕ, φ)‖−1,p′(x),q′(x) = ‖ϕ‖−1,p′(x) + ‖ϕ‖−1,q′(x), ∀(ϕ, φ) ∈ X−1,p′(x),q′(x)(Ω).

The continuous pairing between X 1,p(x),q(x)(Ω) and X−1,p′(x),q′(x)(Ω) is denoted by 〈·, ·〉1,p(x),q(x) satis-
fying

〈(u, v), (ϕ, φ)〉1,p(x),q(x) = 〈u, ϕ〉1,p(x) + 〈v, φ〉1,q(x),

for all (ϕ, φ) ∈ X−1,p′(x),q′(x)(Ω) and (u, v) ∈ X 1,p(x),q(x)(Ω).

2.2 Topological degree theory

Let X be a real separable and reflexive Banach space, X ∗ its dual space with dual pairing 〈 · , · 〉 and
D be a nonempty subset of X . Strong (weak) convergence is represented by the symbol → (⇀), and
let O be the collection of all bounded open sets in X . The readers can find more information about
the history of this theory in [1, 8, 25, 27, 17].

Definition 1. Let Y be a real Banach space. An operator F : D ⊂ X → Y is said to be

1) bounded, if it takes any bounded set into a bounded set.

2) demicontinuous, if for any (un) ⊂ D, un → u implies F (un) ⇀ F (u).

3) compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 2. A mapping F : D ⊂ X → X ∗ is said to be

1) of type (S+), if for any sequence (un) ⊂ D with un ⇀ u and lim sup
n→∞

〈Fun, un − u〉 ≤ 0, it

follows that un → u.

2) quasimonotone, if for any sequence (un) ⊂ D with un ⇀ u, it follows that lim sup
n→∞

〈Fun, un −

u〉 ≥ 0.
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For any bounded operator T : D1 ⊂ X → X ∗ such that D ⊂ D1 and for any operator F : D ⊂ X →
X , we say that F of type (S+)T , if for any sequence (un) ⊂ D with un ⇀ u, yn := Tun ⇀ y and
lim sup
n→∞

〈Fun, yn − y〉 ≤ 0, we have un → u.

Remark 4 (see [30]). 1) If a mapping is compact in a set, then it is quasi-monotone in that set.

2) If the mapping is demicontinuous and satisfies the condition (S+) in a set, then it is quasi-
monotone in that set.

In the sequel, we consider the following classes of operators :

F1(D) :=
{
F : D → X ∗ | F is bounded, demicontinuous and of type (S+)

}
,

FT (D) :=
{
F : D → X | F is demicontinuous and of type (S+)T

}
,

FT,B(D) := {F : D → X| F is bounded, demicontinuous and of class (S+)T }.

An operator T ∈ F1(E) is called an essential inner map to F .

Lemma 2.1 ([17]). Let T ∈ F1(G) be continuous and S : DS ⊂ X ∗ → X be demicontinuous such that
T (G) ⊂ Ds, where G ∈ O. Then the following statements are true:

1) if S is quasimonotone, then I + S ◦ T ∈ FT (G), where I denotes the identity operator,

2) if S is of type (S+), then S ◦ T ∈ FT (G).

Definition 3. Let G ∈ O, T ∈ F1(G) be continuous and consider the mappings F, S : G ⊂ X → X ∗. The
affine homotopy H : [0, 1]×G→ X , defined by

H(t, u) := (1− t)Fu+ tSu for all (t, u) ∈ [0, 1]×G,

is called an admissible affine homotopy with the common continuous essential inner map T .

Lemma 2.2 ([17]). If the mappings F, S ∈ FT (G), then the affine homotopy H : [0, 1]×G → X defined in
Definition 3 of type (S+)T .

Now we give the Berkovits topological degree for a class of demicontinuous operators satisfying condition
(S+)T for more details, see [17].

Theorem 2.1. There exists a unique degree function

d : M =
{

(F,G, h) | G ∈ O, T ∈ F1(G), F ∈ FT (G), h 6∈ F (∂G)
}
−→ Z

which satisfies the following properties.

1) (Existence) If d(F,G, h) 6= 0, then the equation Fu = h has a solution in G.

2) (Normalization) For any h ∈ F (G), we have d(I, E, h) = 1.

3) (Additivity) Let F ∈ FT,B(G). If G1 and G2 are two disjoint open subsets of G such that h 6∈
F (G\(G1 ∪G2)) then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

4) (Homotopy invariance) If H: [0, 1]×G→ X is a bounded admissible affine homotopy with a common
continuous essential inner map and h: [0, 1]→ X is a continuous path in X such that h(t) 6∈ H(t, ∂G)
∀t ∈ [0, 1], then

d(H(t, ·), G, h(t)) = constant for all t ∈ [0, 1].
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3 Assumptions and main results

In this section, we will discuss the existence of a weak solution to problem (1.1).

Let ξ, ξ′ ∈ RN with ξ 6= ξ′. For almost every x in Ω and i = 1, 2, we assume the following hypothesis:
ai(x, ξ) : Ω × RN −→ RN is a Carathéodory function, is the gradient with respect to ξ of the mapping
Ai(x, ξ) : Ω× RN −→ R, that is ai(x, ξ) = ∇ξAi(x, ξ), and is such that

(M1) Ai(x, 0) = 0,

(M2) σ|ξ|p(x) ≤ a1(x, ξ) · ξ ≤ p(x)A1(x, ξ) and ι|ξ|q(x) ≤ a2(x, ξ) · ξ ≤ q(x)A2(x, ξ),

(M3)
∣∣a1(x, ξ)

∣∣ ≤ η(ρ(x) + |ξ|p(x)−1
)
and

∣∣a2(x, ξ)
∣∣ ≤ β(θ(x) + |ξ|q(x)−1

)
,

(M4)
[
ai(x, ξ)− ai(x, ξ′)

]
·
(
ξ − ξ′

)
> 0,

where σ, η, ι, θ, β are some positive constants, ρ(x) is a positive function belonging to Lp′(x)(Ω) and θ(x) is
a positive function belonging to Lq′(x)(Ω), (p′(x) is the conjugate exponent of p(x)).

(H1) h : Ω× R× RN −→ R is a Carathéodory function satisfying the following growth condition:

|h(x, ξ, ξ′)| ≤ µ(γ(x) + |ξ|r1(x)−1 + |ξ′|r1(x)−1),

where µ > 0, γ ∈ Lp′(x)(Ω) and 1 ≤ r−1 ≤ r1(x) ≤ r+
1 < p−.

(H2) g : Ω× R× RN −→ R is a Carathéodory function satisfying the following growth condition:

|g(x, ξ, ξ′)| ≤ α(e(x) + |ξ|r2(x)−1 + |ξ′|r2(x)−1).

where α > 0 and e ∈ Lq′(x)(Ω) and 1 ≤ r−2 ≤ r2(x) ≤ r+
2 < q−.

(M5) Ni: R+ → R+ (i = 1, 2) are continuous and nondecreasing function, for which there exist two functions
l, j such that,

k0t
l(x)−1 ≤ N1(t) ≤ k1t

l(x)−1,

m0t
j(x)−1 ≤ N2(t) ≤ m1t

j(x)−1,

where mi, ki (i = 0, 1) are positive constants l, j ∈ C+(Ω) 1 ≤ l− ≤ l(x) ≤ l+ < p−, and 1 ≤ j− ≤ j(x) ≤
j+ < q−.

Finally, we recall that the Q,O ∈ L∞(Ω) and Q(x),O(x) > 0 for almost every x in Ω.

The definition of a weak solution for problem(1.1) can be stated as follows:

Definition 4. A couple (u, v) ∈ X 1,p(x),q(x)(Ω) is called a weak solution of (1.1) if

〈fpu, ϕ〉+ 〈fqv, ψ〉+

∫
Ω
Q(x)|u|r1(x)−2uϕ(x)dx+

∫
Ω
O(x)|v|r2(x)−2vψ(x)dx

=

∫
Ω
λh(x, u,∇u)ϕ(x)dx+

∫
Ω
κg(x, v,∇v)ψ(x)dx,

where

〈fpu, ϕ〉 = N1

(∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx

) [ ∫
Ω
a1(x,∇u)∇ϕ+

∫
Ω
|∇u|p(x)−2∇u∇ϕ

]
,

and

〈fqv, ψ〉 = N2

(∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x)) dx

) [ ∫
Ω
a2(x,∇v)∇ψ +

∫
Ω
|∇v|q(x)−2∇v∇ψ

]
,

for every (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω).
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Lemma 3.1 ([2]). Let g ∈ Lr(x)(Ω) and (gn) ⊂ Lr(x)(Ω) such that sup
n∈N
‖gn‖r(x) < ∞, If gn(x) → g(x)

for almost every x ∈ Ω, then gn ⇀ g weakly in Lr(x)(Ω).

Lemma 3.2 ([2]). Assume that (M2)-(M4) hold. Let (um)m be a sequence in W
1,n(x)
0 (Ω) such that um ⇀

u weakly in W
1,n(x)
0 (Ω) and ∫

Ω

[
a(x,∇um)− a(x,∇u)

]
∇(um − u)dx −→ 0, (3.1)

then um −→ u strongly in W 1,n(x)
0 (Ω).

Before giving our main result, we first give two important lemmas that will be used later.
Let us consider the following functionals:

L(u, v) := N̂1

(
J1(u)

)
+ N̂2

(
J2(v)

)
:= N̂1

(∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx

)
+ N̂2

(∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x))dx

)
,

for all (u, v) ∈ X 1,p(x),q(x)(Ω), where the functionals J1 : W
1,p(x)
0 (Ω) −→ R and J2 : W

1,q(x)
0 (Ω) −→ R, are

defined by

J1(u) =

∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx and J2(v) =

∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x)) dx,

then J1 ∈ C1(W
1,p(x)
0 (Ω),R), and J2 ∈ C1(W

1,q(x)
0 (Ω),R), N̂i : [0,+∞[−→ [0,+∞[ be the primitive of the

functions Ni (i = 1, 2), defned by

N̂i(t) =

∫ t

0
Ni(ξ) dξ.

On the other hand, we consider the functional J : X 1,p(x),q(x)(Ω)→ R defined by:

J(u, v) = J1(u) + J2(v)

=

∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx+

∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x)) dx,

for all (u, v) ∈ X 1,p(x),q(x)(Ω), then J ∈ C1
(
X 1,p(x),q(x)(Ω),R

)
and,

〈J′(u, v) , (ϕ,ψ)〉 = 〈J ′1(u, ϕ)〉+ 〈J ′2(v, ψ)〉

=

∫
Ω
a1(x,∇u)∇ϕdx+

∫
Ω
|∇u|p(x)−2∇u∇ϕdx+

∫
Ω
a2(x,∇v)∇ψ dx

+

∫
Ω
|∇v|q(x)−2∇v∇ψ dx.

It is obvious that the functional L is defined and continuously Gâteaux differentiable and whose Gâteaux
derivative at the point (u, v) ∈ X 1,p(x),q(x)(Ω) is the functional F := L′(u, v) ∈ (X 1,p(x),q(x)(Ω))∗ given by

〈L′(u, v), (ϕ,ψ)〉 = 〈F(u, v), (ϕ,ψ)〉 = 〈fpu, ϕ〉+ 〈fqv, ψ〉.

Lemma 3.3. Suppose that hypotheses (M1)-(M5) hold, then

i) F is continuous, bounded, strictly monotone operator.

ii) F is a mapping of type (S+).
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Proof. i) It is obvious that F is continuous because F is the Fréchet derivative of L. Now, we verify that
F is bounded. For all (u, v) and (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω) we have,

|〈F(u, v), (ϕ,ψ)〉| ≤
∣∣∣N1

(
J1(u)

) [ ∫
Ω
a1(x,∇u)∇ϕdx+

∫
Ω
|∇u|p(x)−2∇u∇ϕdx

]∣∣∣
+
∣∣∣N2

(
J2(v)

) [ ∫
Ω
a2(x,∇v)∇ψ dx+

∫
Ω
|∇v|q(x)−2∇v∇ψdx

]∣∣∣.
Applying (M5) and Hölder’s inequality, from the last inequality, it follows that

|〈F(u, v), (ϕ,ψ)〉| ≤ k1

(
J1(u)

)l(x)−1
[ ∫

Ω
|a1(x,∇u)∇ϕ|dx+

∫
Ω
|∇u|p(x)−1|∇ϕ|dx

]
+m1

(
J2(v)

)j(x)−1
[ ∫

Ω
|a2(x,∇v)∇ψ|dx+

∫
Ω
|∇v|q(x)−1|∇ψ|dx

]
≤ C1

((∫
Ω
A1(x,∇u)dx

)l(x)−1
+
(∫

Ω
|∇u|p(x)dx

)l(x)−1)
×
[
|a1(x,∇u)|p′(x)|∇ϕ|p(x) + |∇up(x)−1|p′(x)|∇ϕ|p(x)

]
+ C2

((∫
Ω
A2(x,∇v)dx

)j(x)−1
+
(∫

Ω
|∇v|q(x)dx

)j(x)−1)
×
[
|a2(x,∇v)|q′(x)|∇ψ|q(x) + |∇vq(x)−1|q′(x)|∇ψ|q(x)

]
.

Bearing (2.5) and (2.6) in mind, we obtain

|〈F(u, v), (ϕ,ψ)〉| ≤ C3

((∫
Ω
A1(x,∇u)dx

)l(x)−1
+ ‖u‖p

−(l(x)−1)
1,p(x) + ‖u‖p

+(l(x)−1)
1,p(x)

)
×
[
|a1(x,∇u)|p′(x) + %p′(x)(∇up(x)−1) + 1

]
‖ϕ‖1,p(x)

+ C4

((∫
Ω
A2(x,∇v)dx

)j(x)−1
+ ‖v‖q

−(j(x)−1)
1,q(x) + ‖v‖q

+(j(x)−1)
1,q(x)

)
×
[
|a2(x,∇v)|q′(x) + %q′(x)(∇vq(x)−1) + 1

]
‖ψ‖1,q(x)

≤ C5

((∫
Ω
A1(x,∇u)dx

)l(x)−1
+ ‖u‖p

−(l(x)−1)
1,p(x) + ‖u‖p

+(l(x)−1)
1,p(x)

)
×
[
|a1(x,∇u)|p′(x) + ‖u‖p

−

1,p(x) + ‖u‖q
+

1,p(x) + 1
]
‖ϕ‖1,p(x)

+ C6

((∫
Ω
A2(x,∇v)dx

)j(x)−1
+ ‖v‖q

−(j(x)−1)
1,q(x) + ‖v‖q

+(j(x)−1)
1,q(x)

)
×
[
|a2(x,∇v)|q′(x) + ‖v‖q

−

1,q(x) + ‖v‖q
+

1,q(x) + 1
]
‖ψ‖1,q(x),

where C1, ..., C6 > 0 are independent of u and v.

By (M1), we have for any x ∈ Ω, ξ ∈ Rn and (i = 1, 2),

Ai(x, ξ) =

∫ 1

0

d

ds
Ai(x, sξ)ds =

∫ 1

0
ai(x, sξ)ξds,

by combining (M3), Fubini’s theorem and Young’s inequality, we have∫
Ω
A1(x,∇u)dx =

∫
Ω

∫ 1

0
a1(x, s∇u)∇uds dx =

∫ 1

0

[ ∫
Ω
a1(x, s∇u)∇udx

]
ds

≤
∫ 1

0

[
c0

∫
Ω

∣∣a1(x, s∇u)
∣∣p′(x)

dx+ c1

∫
Ω
|∇u|p(x)dx

]
ds
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≤
∫ 1

0

[
c2

∫
Ω
|ρ(x)|p′(x) + |s∇u|p(x) dx+ c1

∫
Ω
|∇u|p(x)dx

]
ds

≤ c3 + c4%p(x)(∇u)

≤ c3 + c4

(
‖u‖p−1,p(x) + ‖u‖p+1,p(x)

)
≤ c5

(
‖u‖p−1,p(x) + ‖u‖p+1,p(x) + 1

)
, (3.2)

where c0, ..., c5 > 0 are independent of u and v.

The same reasoning is used to prove that,∫
Ω
A2(x,∇v)dx ≤ c6

(
‖v‖q−1,q(x) + ‖v‖q+1,q(x) + 1

)
.

From (M3), we can easily show that |a1(x,∇u)|p′(x) and |a2(x,∇v)|q′(x) are bounded for all (u, v) in
X 1,p(x),q(x)(Ω) . Therefore,

|〈F(u, v), (ϕ,ψ)〉| ≤ C7

(
‖ϕ‖1,p(x) + ‖ψ‖1,q(x)

)
,

where C7 > 0 is independent of φ and ψ. Hence, the operator F is bounded.

Next, we prove that the operator F is coercive. For each (u, v) ∈ X 1,p(x,q(x))(Ω), we have

〈F(u, v), (u, v)〉
‖(u, v)‖

=

N1

(
J1(u)

) [ ∫
Ω
a1(x,∇u)∇u+

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+

N2

(
J2(v)

) [ ∫
Ω
a2(x,∇v)∇v +

∫
Ω
|∇v|q(x)dx

]
‖(u, v)‖

.

From (M2) and (M5), we obtain

〈F(u, v), (u, v)〉
‖(u, v)‖

≥ k0

(∫
Ω

(A1(x,∇u) +
1

p+
|∇u|p(x)) dx

)l(x)−1 [
σ

∫
Ω
|∇u|p(x) +

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+m0

(∫
Ω

(A2(x,∇v) +
1

q+
|∇v|q(x)) dx

)j(x)−1 [
ι

∫
Ω
|∇v|q(x) +

∫
Ω
|∇v|q(x)dx

]
‖(u, v)‖

≥ k0

(
σ
p+

∫
Ω
|∇u|p(x) +

1

p+

∫
Ω
|∇u|p(x)) dx

)l(x)−1 [
σ

∫
Ω
|∇u|p(x) +

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+m0

(
ι
q+

∫
Ω
|∇v|q(x) +

1

q+

∫
Ω
|∇v|q(x)) dx

)j(x)−1
×
[
(1 + ι)

∫
Ω
|∇v|q(x) dx

]
‖(u, v)‖

≥ k0

(
σ
p+

∫
Ω
|∇u|p(x) +

1

p+

∫
Ω
|∇u|p(x)) dx

)l(x)−1 [
σ

∫
Ω
|∇u|p(x) +

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+ ≥ m0

(
ι
q+

∫
Ω
|∇v|q(x) +

1

q+

∫
Ω
|∇v|q(x)) dx

)j(x)−1
×
[
(1 + ι)

∫
Ω
|∇v|q(x) dx

]
‖(u, v)‖

≥ C1

‖u‖γl(x)
1,p(x) + ‖v‖βj(x)

1,q(x)

‖(u, v)‖

≥ C1

‖u‖γl
−

1,p(x) + ‖v‖βj
−

1,q(x)

‖u‖1,p(x) + ‖v‖1,q(x)
,
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where C1 > 0 is independent of u and v, γ =

{
p− if ‖u‖ ≤ 1
p+ if ‖u‖ ≥ 1.

and β =

{
q− if ‖v‖1,a(x) ≤ 1

q+ if ‖v‖1,q(x) ≥ 1.

Since lim
x+y−→∞

xs+yt

x+y = +∞ for s, t > 1, then lim
‖(u,v)‖→∞

〈F(u, v)〉
‖(u, v)‖

=∞.

Next, we prove that F is a strictly monotone operator, we show first the monotonicity of J ′i (i = 1, 2).
Using (M4) and taking into account the following inequality (see [20]), for all x, y ∈ RN ,

(|x|p−2x− |y|p−2y)(x− y) · (|x|p + |y|p)
2−p
p ≥ (p− 1)|x− y|p if 1 < p < 2,

(|x|p−2x− |y|p−2y) · (x− y) ≥ (
1

2
)p|x− y|p if p ≥ 2,

we obtain, for all (u1, v1), (u2, v2) ∈ X 1,p(x),q(x)(Ω) with (u1, v1) 6= (u2, v2), that

〈J ′1(u1)− J ′1(u2), u1 − u2〉 > 0 and 〈J ′2(v1)− J ′2(v2), v1 − v2〉 > 0,

which implies that J ′1, J ′2 are strictly monotone.

Thus, by [30, Proposition 25.10 ], Ji are strictly convex. Furthermore, asNi (i = 1, 2) are nondecreas-
ing, then N̂i are convex in R+. So, for each (u1, v1), (u2, v2) ∈ X 1,p(x),q(x)(Ω) with (u1, v1) 6= (u2, v2), and
every s, t ∈ (0, 1) with s+ t = 1, we have

N̂1(J1(su1 + tu2)) < N̂1(sJ1(u1) + tJ1(u2)) ≤ sN̂1(J1(u1)) + tN̂1(J1(u2)),

and
N̂2(J2(sv1 + tv2)) < N̂2(sJ2(v1) + tJ2(v2)) ≤ sN̂2(J2(v1)) + tN̂2(J2(v2)).

This proves that L = N̂1

(
J1

)
+ N̂2

(
J2

)
is strictly convex. Since L′(u, v) = F(u, v) for all (u, v) ∈

X 1,p(x),q(x)(Ω), finally, we infer that F is strictly monotone on
(
X 1,p(x),q(x)(Ω)

)∗.
ii) Now, we verify that the operator F is of type (S+). Assume that (un, vn) ⇀ (u, v) in X 1,p(x),q(x)(Ω)

lim sup
n→∞

〈F(un, vn), (un − u, vn − v)〉 ≤ 0.
(3.3)

We will show that (un, vn)→ (u, v) in X 1,p(x),q(x)(Ω). By the strict monotonicity of F we get,

lim sup
n→∞

〈F(un, vn)−F(u, v), (un − u, vn − v)〉 = lim
n→∞

〈F(un, vn)−F(u, v), (un − u, vn − v)〉 = 0.

Then,
lim
n→∞

〈F(un, vn), (un − u, vn − v)〉 = 0.

Therefore,
lim
n→∞

〈fp(un), un − u〉+ 〈fq(vn), vn − v〉 = 0.

Since fp and fq are monotone,

lim
n→∞

〈fp(un), un − u〉 = 0 and lim
n→∞

〈fq(vn), vn − v〉 = 0. (3.4)

which means that

lim
n→∞

N1

(
J1(u)

) [ ∫
Ω
a1(x,∇un)∇(un − u) +

∫
Ω
|∇un|p(x)−2∇un∇(un − u)dx

]
= 0, (3.5)

lim
n→∞

N2

(
J2(v)

) [ ∫
Ω
a2(x,∇vn)∇(vn − v) +

∫
Ω
|∇un|q(x)−2∇vn∇(vn − v)dx

]
= 0.
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By (3.2), we infer that J1(un) and J2(vn) are bounded.
As N1 is continuous, up to a subsequence there is y, z ≥ 0 such that

N1(J1(un)) −→ N1(y) ≥ k0y
l(x)−1 as n→∞, (3.6)

N2(J2(vn)) −→ N2(z) ≥ m0z
j(x)−1 as n→∞.

From (3.5) and (3.6), we get

lim
n→∞

∫
Ω
a1(x,∇un)∇(un − u)dx+

∫
Ω
|∇un|p(x)−2∇un(∇un −∇u)dx = 0.

Using the continuous embedding W 1,r(x)
0 (Ω) ↪→ Lr(x)(Ω), we have

lim
n→∞

∫
Ω
|∇un|p(x)−2∇un(∇un −∇u)dx = 0 and lim

n→∞

∫
Ω
|∇vn|q(x)−2∇vn(∇vn −∇v)dx = 0.

Then,

lim
n→∞

∫
Ω
a1(x,∇un)∇(un − u)dx = 0. and lim

n→∞

∫
Ω
a2(x,∇vn)∇(vn − v)dx = 0.

In the light of Lemma 3.2, we obtain

(un, vn) −→ (u, v) strongly in X 1,p(x),q(x)(Ω),

which implies that F is of type (S+).

Lemma 3.4. Assume that assumptions (H1) and (H2) hold, then the operator

S : X 1,p(x),q(x)(Ω) −→
(
X 1,p(x),q(x)(Ω)

)∗
, defined for all (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω) by

〈S(u, v), (ϕ,ψ)〉 = −λ
∫

Ω
h(x, u,∇u)ϕdx− κ

∫
Ω
g(x, v,∇v)ψdx

+

∫
Ω
Q(x)|u|r1(x)−2uϕ(x)dx+

∫
Ω
O(x)|v|r2(x)−2vψ(x)dx,

where λ, κ ∈ R, is compact.

Proof. In order to prove this lemma, we proceed in three steps.
Step 1. Let us define the operator Ψ : X 1,p(x),q(x)(Ω)→ Lp

′(x),q′(x)(Ω) by

Ψ(u, v) :=
(
Q(x)|u|r1(x)−2u , O(x)|v|r2(x)−2v

)
,

that is for all (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω) by

〈Ψ(u, v), (ϕ,ψ)〉 =

∫
Ω
Q(x)|u|r1(x)−2uϕdx+

∫
Ω
O(x)|v|r2(x)−2vψdx.

We will show that Ψ is bounded and continuous.
It is clear that Ψ is continuous. Next, we prove that Ψ is bounded. Let (u, v) ∈ X 1,p(x),q(x)(Ω). Since

r+
1 < p− < p(x) and r+

2 < q− < q(x), then

|Ψ(u, v)|p′(x),q′(x) = |Q(x)|u|r1(x)−2u|p′(x) + |O(x)|v|r2(x)−2v|q′(x)

≤ %p′(x)(Q(x)|u|p(x)−2u) + %q′(x)(O(x)|v|q(x)−2v) + 2

=

∫
Ω
|Q(x)|u|p(x)−2u|p′(x)dx+

∫
Ω
|O(x)|v|q(x)−2v|q′(x)dx+ 2

≤
∫

Ω
|Q(x)|p′(x)|u|p(x)dx+

∫
Ω
|O(x)|q′(x)|v|q(x)dx+ 2

≤ ‖Qp′+‖∞%p(x)(u) + ‖Oq′+‖∞%q(x)(v) + 2

≤ C1

(
|u|p+p(x) + |u|p−p(x) + |v|q+q(x) + |v|q−q(x)

)
≤ C2

(
‖u‖p+1,p(x) + ‖u‖p−1,p(x) + ‖v‖q+1,q(x) + |v‖q−1,q(x)

)
,
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where C1, C2 > 0 are independent of u, v. Consequently, Ψ is bounded on X 1,p(x),q(x)(Ω).
Step 2. Let us define the operator ς : X 1,p(x),q(x)(Ω)→ Lp

′(x),q′(x)(Ω) by

ς(u, v) :=
(
− λh(x, u,∇u),−κg(x, v,∇v)

)
,

that is for (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω), by

〈ς(u, v), (ϕ,ψ)〉 = −λ
∫

Ω
h(x, u,∇u)ϕdx− κ

∫
Ω
g(x, v,∇v)ψdx.

We will show that ς is bounded. Let (u, v) ∈ X 1,p(x),q(x)(Ω), then

|ς(u, v)|p′(x),q′(x) ≤ |λh(x, u,∇u)|p′(x) + |κg(x, v,∇v)|q′(x)

=

∫
Ω
|λh(x, u,∇u)|p′(x)dx+

∫
Ω
|κg(x, v,∇v)|q′(x)dx+ 2

≤
(
|λ|p+ + |λ|p−

) ∫
Ω

∣∣∣µ(γ(x) + |u|r1(x)−1 + |∇u|r1(x)−1
)∣∣∣p′(x)

dx

+
(
|κ|q+ + |κ|q−

) ∫
Ω

∣∣∣α(e(x) + |v|r2(x)−1 + |∇v|r2(x)−1
)∣∣∣q′(x)

dx

≤ C1

∫
Ω

(|u|p(x) + |∇u|p(x))dx+ C2

∫
Ω

(|v|q(x) + |∇v|q(x))dx

≤ C3

(
‖u‖p+1,p(x) + ‖u‖p−1,p(x)

)
+ C4

(
‖v‖q+1,q(x) + ‖v‖q−1,q(x)

)
≤ C5

(
‖u‖p+1,p(x) + ‖u‖p−1,p(x) + ‖v‖q+1,q(x) + ‖v‖q−1,q(x)

)
,

where C1, ..., C5 > 0 are independent of u and v. Therefore, ς is bounded.
Next, we show that ς is continuous. Let (un, vn) → (u, v) in X 1,p(x),q(x)(Ω) then,(un, vn) → (u, v) in

Lp(x),q(x)(Ω) and (∇un,∇vn)→ (∇u,∇v) in (Lp(x),q(x)(Ω))N . Then

‖ς(un, vn)− ς(u, v)‖p′(x),q′(x) = ‖λ
(
f(x, un,∇un)− f(x, u,∇u)

)
‖p′(x)

+‖κ
(
h(x, vn,∇vn)− h(x, v,∇v)

)
‖q′(x).

First, we prove that
lim

n→+∞
‖λ
(
h(x, un,∇un)− h(x, u,∇u)

)
‖p′(x) = 0.

By Proposition 2.4, it is equivalent to prove that

lim
n→+∞

%p′(x)

(
λ
(
h(x, un,∇un)− h(x, u,∇u)

))
= 0.

Since un → u in Lp(x),q(x)(Ω) and ∇un → ∇u in(Lp(x),q(x)(Ω))N . Then, there exist a subsequence still
denoted by (un) and δ in Lp(x) and Υ in (Lp(x)(Ω))N such that

un(x)→ u(x) and ∇un(x)→ ∇u(x), (3.7)

|un(x)| ≤ δ(x) and |∇un(x)| ≤ Υ(x), (3.8)

for almost every x ∈ Ω and all n ∈ N. Thus, from assumption (H1) and (3.7), we have

h(x, un,∇un)→ h(x, u,∇u) asn→∞, for almost every x ∈ Ω,

by (3.8) and (H1), we can deduce

|h(x, un(x),∇un(x))| ≤ µ(γ(x) + |δ(x)|p(x)−1 + |Υ(x)|p(x)−1),
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for almost every x ∈ Ω and for all n ∈ N. Taking into account that

γ(x) + |δ(x)|p(x)−1 + |Υ(x)|q(x)−1 ∈ Lp′(x)(Ω),

by applying Lebesgue’s theorem, we have

lim
n→+∞

%p′(x)

(
λh(x, un,∇un)− λh(x, u,∇u)

)
= 0.

The same reasoning is used to prove that

lim
n→+∞

%q′(x)

(
κg(x, vn,∇vn)− κg(x, v,∇v)

)
= 0.

We conclude that ζ is continuous.
Step 3. Since the embedding i : X 1,p(x),q(x)(Ω) → Lp(x),q(x)(Ω) is compact, then the adjoint operator
i∗ : Lp

′(x),q′(x)(Ω) →
(
X 1,p(x),q(x)(Ω)

)∗ is also compact. Hence, the compositions i∗ ◦ Ψ : X 1,p(x),q(x)(Ω) →(
X 1,p(x),q(x)(Ω)

)∗ and i∗ ◦ ζ : X 1,p(x),q(x)(Ω)→
(
X 1,p(x),q(x)(Ω)

)∗ are compact, that means S = i∗ ◦Ψ + i∗ ◦ ζ
is compact. With this last step the proof of Lemma 3.4 is completed.

Our main result is the following existence theorem.

Theorem 3.1. Assume that assumptions (M1)-(M5) and (H1),(H2) are satisfied. Then problem (1.1),
admits at least one weak solution (u, v) in X 1,p(x),q(x)(Ω).

Proof. The couple (u, v) ∈ X 1,p(x),q(x)(Ω) is a weak solution of (1.1) if and only if

F(u, v) = −S(u, v), (3.9)

where F ,S are defined as in Lemmas 3.3 and 3.4, respectively by

F : X 1,p(x),q(x)(Ω) −→
(
X 1,p(x),q(x)(Ω)

)∗
〈F(u, v), (ϕ,ψ)〉 = 〈fpu, ϕ〉+ 〈fqv, ψ〉,

and
S : X 1,p(x),q(x)(Ω) −→

(
X 1,p(x),q(x)(Ω)

)∗
〈S(u, v), (ϕ,ψ)〉 = −λ

∫
Ω
h(x, u,∇u)ϕdx− κ

∫
Ω
g(x, v,∇v)ψdx

+

∫
Ω
Q(x)|u|r1(x)−2uϕ(x)dx+

∫
Ω
O(x)|v|r2(x)−2vψ(x)dx.

By Lemma 3.3, the operator F is continuous, bounded, strictly monotone and of class (S+), therefore, by
the Minty-Browder Theorem (see [30]), the inverse operator

T := F−1 : (X 1,p(x),q(x)(Ω))∗ → X 1,p(x),q(x)(Ω),

T (φ, ψ) = (Tpφ, Tqψ),

is also bounded, continuous, strictly monotone, and of class (S+). The operator T is such that

T (φ, ψ) = (u, v) if and only if (φ, ψ) = F(u, v).

Consequently, following Zeidler’s terminology [30], equation (3.9) is equivalent to the following abstract
Hammerstein equation

(u, v) = T (φ, ψ) and (φ, ψ) + S ◦ T (φ, ψ) = 0, (3.10)

for all (u, v) ∈ X 1,p(x),q(x)(Ω) and (φ, ψ) ∈ (X 1,p(x),q(x)(Ω))∗. To say that a couple (u, v) ∈ X 1,p(x),q(x)(Ω) is
a solution to (3.9) is equivalent to say that (φ, ψ) is a dual solution of (3.10). Then to solve (3.9) it suffices
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to solve (3.10), and we will apply the Berkovits topological degree introduced in Section 2.2. To do this, we,
first, claim that the set

B :=
{

(φ, ψ) ∈ (X 1,p(x),q(x)(Ω))∗ : ∃ t ∈ [0, 1] such that (φ, ψ) + tSoT (φ, ψ) = 0
}
.

is bounded. To verify this, we show that the set
{
T (φ, ψ)| (φ, ψ) ∈ B

}
is bounded. Indeed, taking into

account that
‖T (φ, ψ)‖1,p(x),q(x) = ‖(u, v)‖1,p(x),q(x) = ‖∇u‖p(x) + ‖∇v‖q(x).

We denote D = X 1,p(x),q(x)(Ω) ∩ T (B) and define

D1 =
{

(u, v) ∈ D
∣∣ 1 ≥ ‖∇u‖p(x), ‖∇v‖q(x)

}
,

D2 =
{

(u, v) ∈ D
∣∣ 1 < ‖∇u‖p(x), ‖∇v‖q(x)

}
,

D3 =
{

(u, v) ∈ D
∣∣ 1 < ‖∇u‖p(x) and ‖∇v‖q(x) < 1

}
,

D4 =
{

(u, v) ∈ D
∣∣ 1 > ‖∇u‖p(x) and ‖∇v‖q(x) > 1

}
.

Then we have the following cases:
First case. If (u, v) ∈ D1, then ‖T (φ,Ψ)‖1,p(x),q(x) is bounded by definition.
Second case. If (u, v) ∈ D2, we deduce from (2.2), (M2)-(M3) that

‖T (φ, ψ)‖1,p(x),q(x) ≤ ‖∇u‖
p−
p(x) + ‖∇v‖q−q(x) ≤ %p(x)(∇u) + %q(x)(∇v)

≤ 1

σ

∫
Ω
|∇u|p(x)dx+

1

ι

∫
Ω
|∇v|q(x)dx

≤
∫

Ω
a1(x,∇u)∇u dx+

∫
Ω
a2(x,∇v)∇v dx

≤ max{ 1

σ
,
1

ι
} 〈F(u, v), (u, v)〉1,p(x),q(x)

= −t max{ 1

σ
,
1

ι
} 〈SoT (φ, ψ), T (φ, ψ)〉1,p(x),q(x).

Moreover, by assumptions (H1)-(H2), Young’s inequality and bearing (2.7), (2.6) in mind, we obtain

‖T (φ, ψ)‖1,p(x),q(x) ≤ C1

(∫
Ω
λf(x, u,∇u)udx+

∫
Ω
κh(x, v,∇v)vdx+

∫
Ω
λQ(x)|u|r1(x)dx

+

∫
Ω
κO(x)|v|r2(x)dx

)
≤ C2

[
%p(x)(u) + %q(x)(v) +

∫
Ω
µ(γ(x) + |u|r1(x)−1 + |∇u|r1(x)−1)u dx

+

∫
Ω
α(e(x) + |v|r2(x)−1 + |∇v|r2(x)−1)v dx

]
≤ C3

[
ρp(x)(u) + ρq(x)(v) +

∫
Ω
γ(x)udx+

∫
Ω
|u|p(x)−1u dx+

∫
Ω
|∇u|p(x)−1u dx

+

∫
Ω
e(x)v dx+

∫
Ω
|∇v|q(x)−1v dx+

∫
Ω
|v|q(x)−1v dx

]
≤ C4

[
|u|p−p(x) + |u|p+p(x) + |v|q−q(x) + |v|q+q(x) + |γ|p′(x)|u|p(x) + |e|q′(x)|v|q(x)

+ C5 %p(x)(∇u) + C6 %p(x)(u) + C7 %q(x)(∇v) + C8 %q(x)(v)
]

≤ C9

[
‖u‖p−p(x) + ‖u‖p+p(x) + ‖v‖q−q(x) + ‖v‖q+q(x)

]
,
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where C1, ..., C9 > 0 are independent of u, v. Hence, ‖T (φ, ψ)‖1,p(x),q(x) is bounded.
Third case. If (u, v) ∈ D3, then

‖T (φ, ψ)‖1,p(x),q(x) = ‖∇u‖p(x) + ‖∇v‖q(x)

≤ ‖∇u‖p−p(x) + 1 ≤ 1 + ‖∇u‖p−p(x) + ‖∇v‖q+q(x)

≤ %p(x)(∇u) + %q(x)(∇v) + 1.

From here, we proceed in the same manner as in the prior case to arrive at the conclusion that
‖T (φ, ψ)‖1,p(x),q(x) is bounded.
Fourth case. Similarly to the previous case, if (u, v) ∈ D4 inversing the positions of u and v, we get that{
T (φ, ψ) : (φ, ψ) ∈ B

}
is bounded.

On the other hand, we have that the operator S is bounded. Thus, thanks to (3.10), we have that the
set B is bounded in (X 1,p(x),q(x)(Ω))∗. Consequently, there exists R > 0 such that

‖(φ, ψ)‖1,p′(x),q′(x) < R for all (φ, ψ) ∈ B .

Hence, it follows that

(φ, ψ) + tS ◦ T (φ, ψ) 6= 0 for all (φ, ψ) ∈ ∂BR(0) and t ∈ [0, 1].

Moreover, S is compact, then it is known that S is continuous, quasimonotne and by Lemma 2.1, we conclude
that

I + S ◦ T ∈ FT (BR(0)) and I = F ◦ T ∈ FT (BR(0)).

Since I,S and T are bounded, then

I + S ◦ T ∈ FT ,B(BR(0)) and I = FoT ∈ FT ,B(BR(0)).

Consequently, the homotopy

H : [0, 1]× BR(0)→ (X 1,p(x),q(x)(Ω))∗

(t, φ, ψ) 7→ H(t, φ, ψ) := (φ, ψ) + tS ◦ T (φ, ψ)

is such that H ∈ FT ,B(BR(0)), and thanks to the homotopy invariance and normalization property of the
degree d, seen in Theorem 2.1, we obtain

d(I + S ◦ T ,BR(0), 0) = d(I,BR(0), 0) = 1 6= 0,

which implies that there exists (φ, ψ) ∈ BR(0) satisfying the equality

(φ, ψ) + S ◦ T (φ, ψ) = 0.

Finally, we conclude that (u, v) = T (φ, ψ) is a weak solutions of (1.1).
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[28] S. Yacini, M.El. Ouaarabi, C. Allalou, K. Hilal, p(x)-Kirchhoff-type problem with no-flux boundary conditions
and convection. Nonautonomous Dynamical Systems, 10 (2023), no. 1, 2023-0105.

[29] Z. Yucedag, Existence of weak solutions for p(x)-Kirchhoff-type equation. Int. J. Pure Appl. Math., 92 (2014),
61-71.

[30] E. Zeidler, Nonlinear functional analysis and its applications: II/B: nonlinear monotone operators. Springer
Science and Business Media, 2013.

[31] D. Zhao, W.J. Qiang, X.L. Fan, On generalized Orlicz spaces Lp(x)(Ω). J. Gansu Sci, 9 (1997), no. 2, 1-7.

[32] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Mathematics of the
USSR-Izvestiya, 29 (1987), no. 1, 33.

[33] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya Rossiiskoi
Akademii Nauk. Seriya Matematicheskaya, 50 (1986), no. 4, 675-710,.

Soukaina Yacini, Chakir Allalou, Khalid Hilal
Laboratory of Applied Mathematics and Scientific computing (LMACS)
Faculty of Science and Technology, Beni Mellal, Sultan Moulay Slimane University
23 000, Beni Mellal, Morocco
E-mails: yacinisoukaina@gmail.com, chakir.allalou@yahoo.fr, hilalkhalid2005@gmail.com

Received: 12.01.2024


