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under which the Hardy-type inequality holds were found in [13] for the case 1 < p ≤ q <∞, in [14]
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extend the result of [13] with a two-sided estimate of the inequality constant.
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1 Introduction

For arbitrary non-negative sequences f = {fi}∞i=1 the modern form of the discrete Hardy-type in-
equality can be written as follows:(

∞∑
i=1

uqi

(
i∑

j=1

ai,jfj

)q) 1
q

≤ C

(
∞∑
i=1

vpi fi
p

) 1
p

, (1.1)

where u = {ui}∞i=1 and v = {vi}∞i=1 are weight sequences of positive real numbers, and

(Af)i =
i∑

j=1

ai,jfj (1.2)

is a matrix operator with the kernel a := {ai,j}∞i,j=1, i ≥ j, such that ai,j ≥ 0 for i ≥ j ≥ 1 and C > 0
depends only on p, q, u, v, and a.

In the case ai,j ≡ 1, the problem of finding necessary and sufficient conditions on the weight
sequences u = {ui}∞i=1 and v = {vi}∞i=1 such that inequality (1.1) holds for any non-negative sequences
f = {fi}∞i=1 has been solved for all possible relations between the parameters 0 < p < ∞ and
0 < q <∞ (see [1, 2, 3, 4, 6, 8]).

Suppose that ai,j ≥ 0 for i ≥ j ≥ 1 and there exists a number d > 1 such that

1

d
(ai,k + ak,j) ≤ ai,j ≤ d(ai,k + ak,j), ∀ i ≥ k ≥ j ≥ 1. (1.3)

This condition is an analogue of the Oinarov condition for kernels of integral operators introduced
in [5] and [12]. Characterizations of the validity of inequality (1.1) for the operators satisfying
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discrete Oinarov condition (1.3) were found in [13] for the case 1 < p ≤ q < ∞, in [14] for the case
1 < q < p <∞ and in [15] for the case 0 < p ≤ q <∞, 0 < p ≤ 1.

In [12], the integral weighted Hardy-type inequality for the operator satisfying the Oinarov condi-
tion was characterized in the case 1 < p ≤ q <∞. In 2021, in paper [9] this result was extended with
a two-sided estimate of the inequality constant. Since estimates of the best constants of Hardy-type
inequalities have important applications in the oscillation theory of differential inequalities, paper
[9] has got many citations over the past two years. In this paper, motivated by the development in
the continuous case, we aim to find a two-sided estimate of the best constant C > 0 in inequality
(1.1) also in the case 1 < p ≤ q < ∞. The obtained result will be used to establish the oscillatory
properties of difference equations.

Let lp,v denote the space of all sequences f = {fi}∞i=1 of real numbers whose norm ‖f‖p,v ≡ ‖vf‖p =(
∞∑
i=1

|vifi|p
) 1

p

is finite. Then inequality (1.1) can be rewritten in the form: ‖Af‖q,u ≤ C‖f‖p,v. The

validity of this inequality is equivalent to the boundedness of matrix operator (1.2) from lp,v into lq,u,
while for the best constant C > 0 we have that C = ‖A‖p,v→q,u, where ‖A‖p,v→q,u denotes the norm
of operator (1.2) from lp,v to lq,u.

Let p′ = p
p−1

. To prove the main result we need the following theorem proved in [4].
Theorem A. Let 1 < p ≤ q <∞. Then for any non-negative f ∈ lp,v the inequality(

∞∑
i=1

uqi

(
i∑

j=1

fj

)q) 1
q

≤ C

(
∞∑
i=1

vpi fi
p

) 1
p

, (1.4)

holds if and only if

A = sup
k≥1

(
∞∑
n=k

uqn

) 1
q
(

k∑
j=1

v−p
′

j

) 1
p′

<∞.

Moreover, A ≤ C ≤ C̃A, where C̃ =
(

1 + q
p′

) 1
q
(

1 + p′

q

) 1
p′ and C is the best constant in (1.4).

Remark 1. In the case p = q = 2, we have that C̃ =
(
1 + 2

2

) 1
2
(
1 + 2

2

) 1
2 = 2.

Note that the Hardy inequality has a long history (see [10]), and its various generalizations and
applications have grown into a separate field called the “theory of Hardy-type inequalities”, with
many papers published every year (see, e.g., most recent publications [7], [11] and [16]).

2 Main result

Theorem 2.1. Let 1 < p ≤ q < ∞ and a matrix (ai,j) satisfy condition (1.3). Then for any
non-negative f ∈ lp,v inequality (1.1) holds if and only if B = max {B1, B2} <∞, where

B1 = sup
k≥1

(
∞∑
n=k

aqn,ku
q
n

) 1
q
(

k∑
j=1

v−p
′

j

) 1
p′

,

B2 = sup
k≥1

(
∞∑
n=k

uqn

) 1
q
(

k∑
j=1

ap
′

k,j v
−p′
j

) 1
p′

.

Moreover, B ≤ C ≤ CB, where C =
(

2(d+ 1)q + (d+ 1)2q(1 + d C̃q)
) 1
q and C is the best constant

in (1.1).
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Proof. Necessity. Let inequality (1.1) hold. To estimate C from below, we follow the same steps as

in paper [13]. Putting the test sequence g = {gj}∞j=1 such that gj =

{
v−p

′

j , 1 ≤ j ≤ k,
0, j > k,

for k ≥ 1,

into the right-hand side and then into the left-hand side of inequality (1.1), we get B1 ≤ C. Putting

one more test sequence h = {hj}∞j=1 such that hj =

{
ap
′−1
k,j v−p

′

j , 1 ≤ j ≤ k,

0, j > k,
for k ≥ 1 into the both

sides of inequality (1.1), we have B2 ≤ C. Combining the obtained estimates, we find that

B ≤ C. (2.1)

Sufficiency. Let B < ∞. For any i ≥ 1 the set of positive numbers Si is defined as follows:
Si = {k ∈ Z : (d+ 1)k ≤ (Af)i}, where d is the number from (1.3). If k(i) = maxSi, then

(d+ 1)k(i) ≤ (Af)i ≤ (d+ 1)k(i)+1. (2.2)

Let m1 = 1 and M1 = {i ∈ N : k(i) = k(1) = k(m1)}. We define m2 as m2 = supM1 + 1. It
is obvious that m2 > m1. Moreover, if the set M1 is bounded from above, then m2 < ∞ and
m2 − 1 = maxM1 = supM1. Suppose that for s ≥ 1 the numbers 1 = m1 < m2 < ... < ms <∞ are
defined. We define the next number ms+1 as ms+1 = supMs+1, whereMs = {i ∈ N : k(i) = k(ms)}.

Let N = {s ∈ N : ms <∞}. For s ∈ N the definition of ms and (2.2) give that

(d+ 1)k(ms) ≤ (Af)i ≤ (d+ 1)k(ms)+1, ms ≤ i ≤ ms+1 − 1, (2.3)

and N =
⋃
s∈N [ms,ms+1). Hence,

‖Af‖qq,u =
∑
s∈N

ms+1−1∑
j=ms

uqj(Af)qj .

We assume that
ms+1−1∑
j=ms

uqj(Af)qj = 0 if ms =∞. Then ‖Af‖qq,u can be presented as follows:

‖Af‖qq,u =

m2−1∑
j=m1

uqj(Af)qj +

m3−1∑
j=m2

uqj(Af)qj +
∑
s≥3

ms+1−1∑
j=ms

uqj(Af)qj . (2.4)

Since m1 = 1 <∞, it belongs to N . Thus, from (2.3) we have

m2−1∑
j=m1

uqj(Af)qj ≤
m2−1∑
j=1

uqj(d+ 1)(k(m1)+1)q ≤ (d+ 1)q(d+ 1)k(m1)q

∞∑
j=1

uqj

≤ (d+ 1)q(Af)q1

∞∑
j=1

uqj ≤ (d+ 1)q

(
1∑
s=1

ap
′

1,sv
−p′
s

) q
p′ ∞∑

j=1

uqj ‖f‖qp,v ≤ (d+ 1)qBq
2 ‖f‖qp,v. (2.5)

If m2 =∞, then ms =∞ for all s ≥ 2. Therefore, arguing as above, we get

‖Af‖qq,u ≤ (d+ 1)qBq
2‖f‖qp,v.

If m2 <∞, then s = 2 belongs to N . Thus, from (2.3) we have

m3−1∑
j=m2

uqj(Af)qj ≤ (d+ 1)q(d+ 1)k(m2)q

∞∑
j=m2

uqj ≤ (d+ 1)q(Af)qm2

∞∑
j=m2

uqj
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= (d+ 1)q

(
m2∑
i=1

am2,ifi

)q ∞∑
j=m2

uqj ≤ (d+ 1)q

(
m2∑
i=1

ap
′

m2,i
v−p

′

i

) q
p′ ∞∑
j=m2

uqj

(
m2∑
i=1

vpi f
p
i

) q
p

≤ (d+ 1)q

( m2∑
i=1

ap
′

m2,i
v−p

′

i

) 1
p′
(
∞∑

j=m2

uqj

) 1
q

q

‖f‖qp,v ≤ (d+ 1)qBq
2 ‖f‖qp,v. (2.6)

If m3 =∞, then from (2.4), (2.5) and (2.6) we get

‖Af‖qq,u ≤ 2(d+ 1)qBq
2‖f‖qp,v.

Let us consider s ≥ 3 such that s belongs to N . Since k(ms−2) < k(ms−1) < k(ms), we have that
k(ms−2) + 1 ≤ k(ms)− 1. Therefore, using (2.3) and (1.3), we obtain

(d+ 1)k(ms)−1 = (d+ 1)k(ms) − d(d+ 1)k(ms)−1 ≤ (d+ 1)k(ms) − d(d+ 1)k(ms−2)+1

< (Af)ms − d(Af)ms−1−1 =
ms∑
i=1

ams,ifi − d
ms−1−1∑
i=1

ams−1−1,ifi

=
ms∑

i=ms−1

ams,ifi +

ms−1−1∑
i=1

[
ams,i − dams−1−1,i

]
fi

≤
ms∑

i=ms−1

ams,ifi +

ms−1−1∑
i=1

[
d(ams,ms−1−1 + ams−1−1,i)− dams−1−1,i

]
fi

=
ms∑

i=ms−1

ams,ifi + d

ms−1−1∑
i=1

ams,ms−1−1fi.

The latter, together with (2.3), for s ≥ 3 gives that

∑
s≥3

ms+1−1∑
j=ms

uqj(Af)qj <
∑
s≥3

ms+1−1∑
j=ms

uqj(d+ 1)(k(ms)+1)q = (d+ 1)2q
∑
s≥3

(d+ 1)(k(ms)−1)q

ms+1−1∑
j=ms

uqj

≤ (d+ 1)2q
∑
s≥3

 ms∑
i=ms−1

ams,ifi + d

ms−1−1∑
i=1

ams,ms−1−1fi

q
ms+1−1∑
j=ms

uqj

≤ (d+ 1)2q

∑
s≥3

 ms∑
i=ms−1

ams,ifi

q
ms+1−1∑
j=ms

uqj

+d
∑
s≥3

(
ms−1−1∑
i=1

ams,ms−1−1fi

)q ms+1−1∑
j=ms

uqj

]
= (d+ 1)2q(I1 + d I2). (2.7)

We estimate I1 and I2 separately. Using the Hölder and Jensen inequalities, we obtain

I1 =
∑
s≥3

 ms∑
i=ms−1

ams,ifi

q
ms+1−1∑
j=ms

uqj ≤
∑
s≥3

 ms∑
i=ms−1

ap
′

ms,i
v−p

′

i


q
p′
 ms∑
i=ms−1

vpi f
p
i


q
p
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×
ms+1−1∑
j=ms

uqj ≤

sup
k≥1

(
k∑
i=1

ap
′

k,iv
−p′
i

) 1
p′
(
∞∑
j=k

uqj

) 1
q

q∑
s≥3

 ms∑
i=ms−1

vpi f
p
i


q
p

≤ Bq
2

∑
s≥3

ms∑
i=ms−1

vpi f
p
i


q
p

≤ Bq
2‖f‖qp,v. (2.8)

Let us turn to the estimate of I2. By Theorem A, we have

I2 =
∑
s≥3

aqms,ms−1−1

ms+1−1∑
j=ms

uqj

(
ms−1−1∑
i=1

fi

)q

≤ C̃q

sup
k≥1

 ∑
ms−1−1≥k

aqms,ms−1−1

ms+1−1∑
j=ms

uqj

 1
q ( k∑

j=1

v−p
′

j

) 1
p′


q

‖f‖qp,v. (2.9)

Since ai,j is non-decreasing in i and non-increasing in j, we deduce that

∑
ms−1−1≥k

aqms,ms−1−1

ms+1−1∑
j=ms

uqj ≤
∑

ms−1−1≥k

ms+1−1∑
j=ms

aqj,ku
q
j ≤

∞∑
j=k

aqj,ku
q
j .

Using the latter, from (2.9) we find
I2 ≤ C̃qBq

1‖f‖qp,v. (2.10)

Combining (2.4), (2.5), (2.6), (2.7), (2.8), and (2.10), we get

‖Af‖qq,u ≤ (d+ 1)qBq
2 ‖f‖qp,v + (d+ 1)qBq

2 ‖f‖qp,v + (d+ 1)2q(Bq
2 ‖f‖qp,v + d C̃qBq

1‖f‖qp,v)

≤
(

2(d+ 1)q + (d+ 1)2q(1 + d C̃q)
)
Bq ‖f‖qp,v. (2.11)

Therefore, from (2.11) we obtain

C ≤
(

2(d+ 1)q + (d+ 1)2q(1 + d C̃q)
) 1
q
B,

which, together with (2.1), gives that B ≤ C ≤ CB.

Remark 2. Taking into account Remark 1, in the case p = q = 2 and d = 1, we have that
C = (2(1 + 1)2 + (1 + 1)4(1 + 1 · 22))

1
2 = 88

1
2 ≈ 9.38.
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