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1 Introduction

Definition 1. Let n ∈ N, µ ∈ N0. Let M∗µ(Rn) denote the set all real valued trigonometric polynomials of
order less than or equal to µ:

Tµ(x) = Tµ(x1, . . . , xn) =
∑

−µ≤kj≤µ
j=1,...,n

ckje
ik·x (1.1)

=
∑

−µ≤k1≤µ
· · ·

∑
−µ≤kn≤µ

ck1,...,kne
i(k1x1+...knxn).

where x1, . . . , xn ∈ R, ck1,...,kn ∈ C are constant coefficients such that c−k = c̄k (hence Tµ(x) ∈ R for any
x ∈ Rn).

Let hereafter 0 < p ≤ ∞. A function f ∈ L∗p if it is 2π-periodic Lebesgue measurable and

‖f‖∗Lp = ‖f‖Lp(Q(0,π)) <∞, (1.2)

where Q(x, r) = {y ∈ Rn : |xj − yj | < r, j = 1, . . . , n}.

In book [9] the following inequalities are proven for trigonometric polynomials Tµ ∈M∗µ,p(Rn), where the
space M∗µ,p(Rn) is M∗µ(Rn) equiped with the quasinorm ‖ · ‖∗Lp .

1. (Bernstein’s inequality) Let 1 ≤ p ≤ ∞, then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)

∥∥∥∥∂Tµ∂xj

∥∥∥∥∗
Lp

≤ µ‖Tµ‖∗Lp , j = 1, . . . , n. (1.3)
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2. (Inequality of different metrics) Let 1 ≤ p < q ≤ ∞, then for any trigonometric polynomials Tµ ∈
M∗µ,p(Rn)

‖Tµ‖∗Lq ≤ 3nµ
n( 1
p
− 1
q

)‖Tµ‖∗Lp . (1.4)

3. (Inequality of different dimensions) Let 1 ≤ p ≤ ∞ , 1 ≤ m < n , x = (u, v), u = (x1, . . . , xm) ∈
Rm, v = (xm+1, . . . , xn) ∈ Rn−m, then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)∥∥∥∥‖Tµ(u, v)‖L∞,v(Rn−m)

∥∥∥∥∗
Lp,u

≤ 3n−mµ
n−m
p ‖Tµ‖∗Lp , (1.5)

in particular,
‖Tµ(u, 0)‖∗Lp ≤ 3n−mµ

n−m
p ‖Tµ‖∗Lp . (1.6)

The purpose of this work is to present similar inequalities in which the space L∗p is replaced by the
periodic Morrey space (Mλ

p )∗.
Note also that Bernstein’s inequality, inequalities of different metrics and different dimensions for entire

functions of exponential type for the spaces Lp(Rn) were proved by S.M. Nikolsky [9], and for the Morrey
spaces in the works [2], [3]

2 Morrey spaces

The spaces Mλ
p (Rn), now called Morrey spaces, were first considered by Charles Morrey [8] in connection

with the study of the regularity of solutions of partial differential equations.

Definition 2. Let 0 < p ≤ ∞ and 0 ≤ λ ≤ n
p , then f ∈M

λ
p (Rn), if f ∈ Llocp (Rn) and

‖f‖Mλ
p (Rn) = sup

x∈Rn
sup
r>0

r−λ‖f‖Lp(B(x,r)) <∞, (2.1)

where B(x, r) = {y ∈ Rn : |x− y| < r}.

Periodic analogues (Mλ
p )∗(Rn) of the Morrey space were considered in [10]

Definition 3. Let 0 < p ≤ ∞ and 0 ≤ λ ≤ n
p , then f ∈ (Mλ

p )∗(Rn), if it has period 2π, is Lebesgue
measurable on Rn and

‖f‖∗Mλ
p

= sup
x∈Q(0,π)

sup
0<r≤π

r−λ‖f‖Lp(Q(x,r)) <∞. (2.2)

We note some properties of these spaces.
1. It is immediately clear from the definition that for λ = 0

‖f‖∗M0
p

= ‖f‖∗Lp .

2. For λ = n
p

‖f‖∗
M

n
p
p

= ‖f‖∗L∞ ,

3. If λ < 0 or λ > n
p , then the spaces (Mλ

p )∗(Rn) consist only of functions equivalent to 0 on Q(0, π).

4. Note that the space (Mλ
p )∗(Rn) has the property of monotonicity with respect to the parameter λ:

(Mλ
p )∗ ⊂ (Mµ

p )∗, 0 ≤ µ < λ ≤ n

p
, 0 < p <∞ (2.3)
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and

‖f‖∗Mµ
p
≤ πλ−µ‖f‖∗Mλ

p
. (2.4)

In particular, for µ = 0

(Mλ
p )∗(Rn) ⊂ (Lp)

∗(Rn)

and
‖f‖∗Lp ≤ π

λ‖f‖∗Mλ
p
. (2.5)

5. In [4] it is proven that for any f ∈ (Mλ
p )∗

‖f‖∗Mλ
p

= ‖f‖∗∗Mλ
p
≡ sup

x∈Rn
sup

0<r≤π
r−λ‖f‖∗Lp(Q(x,r)). (2.6)

6. (Shift invariance) For any f ∈ (Mλ
p )∗

‖f(y + h)‖∗Mλ
p

= ‖f(y)‖∗Mλ
p
∀h ∈ Rn. (2.7)

3 Inequalities for trigonometric polynomials in periodic Morrey spaces

3.1 Bernstein’s inequality
In the one-dimensional case, the interpolation formula for an arbitrary trigonometric polynomial Tµ of order
µ > 0 has the form (see [9]):

T ′µ(x) =
1

4µ

2µ∑
k=1

(−1)k+1 1

sin2 xk
2

Tµ(x+ xk), (3.1)

where xk are the zeros of the polynomial cos(nx).
If Tµ(x) = sin(µx) and x = 0, then we get

µ =
1

4µ

2µ∑
k=1

1

sin2 xk
2

. (3.2)

Theorem 3.1. Let Z∗ be a normed space of 2π-periodic functions in each variable, and let ‖ · ‖∗Z be a shift
invariant norm, i.e. for any function f ∈ Z∗

‖f(x+ h)‖∗Z = ‖f‖∗Z ∀h ∈ Rn. (3.3)

Then for any trigonometric polynomials Tµ ∈ Z∗(Rn)∥∥∥∥∂Tµ∂xj

∥∥∥∥∗
Z

≤ µ‖Tµ‖∗Z , j = 1, . . . , n. (3.4)

The proof is based on representation (3.1).

Corollary 3.1. Let 1 ≤ p ≤ ∞ , 0 ≤ λ ≤ n
p , then for any trigonometric polynomial Tµ ∈ (Mλ

p )∗∥∥∥∥∂Tµ∂xj

∥∥∥∥∗
Mλ
p

≤ µ‖Tµ‖∗Mλ
p
, j = 1, . . . , n. (3.5)
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3.2 Inequality of different metrics
Definition 4. Let 1 ≤ p ≤ ∞, 0 ≤ λ ≤ n

p , r > 0, µ,N ∈ N, Tµ ∈M∗µ,p(Rn) and

((Tµ))∗
Mλ
p,N

= sup
x∈Q(0,π)

sup
0<r≤π

r−λ
((

r

N

)n N−1∑
k1=−N

· · ·
N−1∑

kn=−N∣∣∣∣Tµ(x1 +
r

N
k1, . . . , xn +

r

N
kn

)∣∣∣∣p)1/p

.

Lemma 3.1. Let 1 ≤ p ≤ ∞, n, µ,N ∈ N, 0 ≤ λ ≤ n
p , then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)

‖Tµ‖∗Mλ
p
≤ ((Tµ))∗

Mλ
p,N
≤ (1 +

π

N
µ)n‖Tµ‖∗Mλ

p
. (3.6)

Lemma 3.2. Let 1 ≤ p ≤ q ≤ ∞ n, µ,N ∈ N, 0 ≤ λ ≤ n
q , then for any trigonometric polynomial

Tµ ∈M∗µ,p(Rn)

((Tµ))∗

M
λ−n( 1

p−
1
q )

q,N

≤ Nn( 1
p
− 1
q

)
((Tµ))∗

Mλ
p,N
. (3.7)

Theorem 3.2. Let 1 ≤ p ≤ q ≤ ∞, n
(

1
p−

1
q

)
≤ λ ≤ n

p , then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)

‖Tµ‖∗
M
λ−n( 1

p−
1
q )

q

≤ (1 + π)nµ
n( 1
p
− 1
q

)‖Tµ‖∗Mλ
p
. (3.8)

Consider the convolution of functions ϕ, g ∈ L1(Q(0, π)) 2π− periodic in each variable

(ϕ ∗ g)(x) =

∫
Q(0,π)

ϕ(x− y)g(y)dy, x ∈ Rn. (3.9)

Recall that ∀k ∈ Zn
ck(ϕ ∗ g) = (2π)nck(ϕ)ck(g). (3.10)

If ck(ϕ) = (2π)−n then
ck(g) = ck(ϕ ∗ g). (3.11)

Lemma 3.3. Let n ∈ N, µ ∈ N, ϕ ∈ L1(Q(0, π)) be a 2π-periodic trigonometric polynomial in each variable.
In order for any trigonometric polynomial Tµ of order µ to satisfy the equality

Tµ = ϕ ∗ Tµ, (3.12)

it is necessary and sufficient condition that

ck(ϕ) = (2π)−n ∀k ∈ Zn : |kj | ≤ µ, j = 1, . . . , n. (3.13)

Definition 5. (Dirichlet kernel) Let

Dµ(x) =
1

2

µ∑
k=−µ

eikx =
1

2
+

µ∑
k=1

cos(kx) =
sin(µ+ 1

2)x

2 sin x
2

(3.14)

and
D̃µ(x) =

1

π
Dµ(x). (3.15)

Note that

‖D̃µ‖∗L2
=

√
2µ+ 1

2π
(3.16)
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and
‖D̃µ‖∗L∞ =

2µ+ 1

2π
. (3.17)

From equalities (3.16) and (3.17) it follows that for any 2 < p <∞

‖D̃µ‖∗Lp ≤
(

2µ+ 1

2π

)1− 1
p

. (3.18)

A special case of equality (3.12) is the well-known equality

Tµ(x) = D̃µ(x) ∗ Tµ(x).

Remark 1. If ϕ is a trigonometric polynomial of order µ in each variable, then equality (3.12) holds for any
trigonometric polynomials Tµ of order µ in each variable if and only if

ϕ(x) =
1

(2π)n

∑
|kj |≤µ
j=1,...,n

eik·x =
1

(2π)n

n∏
j=1

∑
|kj |≤µ

eikjxj =
1

πn

n∏
j=1

Dµ(xj) =

n∏
j=1

D̃µ(xj).

Remark 2. Let α, n ∈ N

∆α(j) = {k ∈ Zn, |kj | ≤ α}

and
∆α = ∆α(1)× · · · ×∆α(n).

If ϕ is a trigonometric polynomial of order ν > µ in each variable, then equality (3.12) holds for any
trigonometric polynomials Tµ of order µ in each variable if and only if

ϕ(x) =
∑
k∈∆ν

cke
ik·x =

n∏
j=1

D̃µ(xj) +
∑

k∈∆ν\∆µ

cke
ik·x. (3.19)

(
In particular, for n = 1 ϕ(x) = D̃µ(x) +

(∑−µ−1
k=−ν +

∑ν
k=µ+1

)
cke

ik·x.

)
Definition 6. Let, for µ ∈ N, J∗µ denote the set of all 2π-periodic functions ϕ ∈ L1(Q(0, π)), satisfying
condition (3.13) (hence, having form (3.19) for some ν ∈ N, ν ≥ µ).

According to Lemma 3.3 for such functions ϕ equality (3.12) holds.

Definition 7. (see [10]) Let µ, ν ∈ N and ν > µ. The Vallee Poussin kernels are defined as follows:

Vµ,ν(x) = (ν − µ)−1
ν−1∑
l=µ

Dl(x), x ∈ R, (3.20)

in particular,
Vµ(x) = Vµ,2µ(x), µ ≥ 1, V0(x) = 1, x ∈ R. (3.21)

Remark 3. For ν > µ we represent the Dirichlet kernel as

Dν(x) =
1

2
+ cosx+ · · ·+ cosµx+ (cos(µ+ 1)x+ · · ·+ cos νx) (3.22)

= Dµ(x) +Dµ,ν(x), (3.23)

where

Dµ,ν(x) =
ν∑

l=µ+1

cos lx. (3.24)
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Then for ν > µ+ 1

Vµ,ν(x) = Dµ(x) +
1

ν − µ

ν−1∑
l=µ+1

Dµ,l(x). (3.25)

Let us put

Ṽµ,ν(x) =
1

π
Vµ,ν(x), D̃µ,ν(x) =

1

π
Dµ,ν(x), (3.26)

then

Ṽµ,ν(x) = D̃µ(x) +
1

ν − µ

ν−1∑
l=µ+1

D̃µ,l(x). (3.27)

in particular,

Ṽµ(x) = D̃µ(x) +
1

µ

2µ−1∑
l=µ+1

D̃µ,l(x). (3.28)

A special case of equality (3.12) is the equality

Tµ(x) = Ṽµ,ν(x) ∗ Tµ(x), (3.29)

in particular,
Tµ(x) = Ṽµ(x) ∗ Tµ(x).

Remark 4. Note that
D̃µ(x), Ṽµ,ν , ν > µ, Ṽµ ∈ J∗µ (3.30)

Theorem 3.3 (see, for example, [10]). Let µ ∈ N, 1 ≤ p ≤ ∞, then

‖Ṽµ‖∗Lp ≤ 3nµn(1−1/p). (3.31)

Theorem 3.4. (Corollary of the Young-type inequality for periodic Morrey spaces, see [4] )

Let
0 ≤ λ < n

p
, 1 ≤ r, p < q ≤ ∞, 1 +

1

q
=

1

r
+

1

p
,

f1 ∈ Lr(Rn) and f2 ∈ (Mλ
p )∗. Then

‖f1 ∗ f2‖∗
M

pλ
q
q

≤ ‖f1‖∗Lr(‖f2‖∗Mλ
p

)
p
q (‖f2‖∗Lp)

1− p
q . (3.32)

Theorem 3.5. Let 1 ≤ r, p < q ≤ ∞, n, µ ∈ N 0 ≤ λ ≤ n
p , 1 + 1

q = 1
r + 1

p . Then

‖Tµ‖∗
M

pλ
q
q

≤ c(‖Tµ‖∗Mλ
p

)
p
q (‖Tµ‖∗Lp)

1− p
q (3.33)

for any Tµ ∈ (Mλ
p )∗, where

c = c(µ, r) = inf
ϕ∈J∗µ

‖ϕ‖∗Lr . (3.34)

Corollary 3.2. Let 1 ≤ p ≤ q ≤ ∞, n, µ ∈ N 0 ≤ λ ≤ n
p , then for any Tµ ∈ (Mλ

p )∗

‖Tµ‖∗
M

pλ
q
q

≤ 3nµ
n( 1
p
− 1
q

)
(‖Tµ‖∗Mλ

p
)
p
q (‖Tµ‖∗Lp)

1− p
q . (3.35)

Inequality (3.35) follows from inequalities (3.31) and (3.33) since Ṽµ ∈ J∗µ and in (3.33) c ≤ ‖Ṽµ‖∗Lr .
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Corollary 3.3. If 1 ≤ p ≤ 2, q ≥ 2p
2−p , then for any Tµ ∈ L∗p

‖Tµ‖∗
M

pλ
q
q

≤
(

2µ+ 1

2π

)n( 1
p
− 1
q

)

(‖Tµ‖∗Mλ
p

)
p
q (‖Tµ‖∗Lp)

1− p
q , (3.36)

in particular, for 0 ≤ λ ≤ n
2

‖Tµ‖∗
LM

λ
2

2

≤
(

2µ+ 1

2π

)n
2

(‖Tµ‖∗LMλ
1
‖Tµ‖∗L1

)
1
2 , (3.37)

and

‖Tµ‖∗L∞ ≤
(

2µ+ 1

2π

)n
2

‖Tµ‖∗L2
. (3.38)

Inequality (3.38) follows from inequalities (3.31), (3.33) and (3.16) since D̃µ ∈ J∗µ and in (3.33) c ≤ ‖D̃µ‖∗L2
.

In the last inequality the constant is sharp, the equality is attained for Tµ(x) =
∏n
l=1 D̃µ(xl). Regarding

generalizations, see [7].

Corollary 3.4. By inequality (2.5) inequalities (3.33)-(3.36) imply that

‖Tµ‖∗
M

pλ
q
q

≤ cπλ(1− p
q

)‖Tµ‖∗Mλ
p
, (3.39)

‖Tµ‖∗
M

pλ
q
q

≤ 3nπ
λ(1− p

q
)
µ
n( 1
p
− 1
q

)‖Tµ‖∗Mλ
p
, (3.40)

‖Tµ‖∗
M

pλ
q
q

≤
(

2µ+ 1

2π

)n( 1
p
− 1
q

)

π
λ(1− p

q
)‖Tµ‖∗Mλ

p
. (3.41)

Remark 5. Inequality (3.35) is a periodic analogue of the inequality of different metrics for entire functions
of exponential type (see [2],[3]).

Remark 6. Note that inequailies (2.4) and (3.40) imply that

‖Tµ‖∗
M
λ−n( 1

p−
1
q )

q

≤ π(λp−n)( 1
p
− 1
q

)‖Tµ‖∗
M

λp
q
q

≤ 3n(πµ)
n( 1
p
− 1
q

)‖Tµ‖∗Mλ
p
. (3.42)

So, inequality (3.40) has a better exponent pλ
q compared with the exponent λ− n(1

p −
1
q ) in (3.8). However,

for some values of λ, p, q the constant (1 + π)n in (3.8) is better than the constant 3nπ
λ(1− p

q
) in (3.40).

3.3 Inequality of different dimensions
Definition 8. Let

0 < p1, p2 ≤ ∞, m1,m2 ∈ N

0 ≤ λ1 ≤
m1

p1
, 0 ≤ λ2 ≤

m2

p2
.

Let us define the space
(Mλ1

p1
)∗(R)m1 × (Mλ2

p2
)∗(Rm2) (3.43)

with a mixed quasinorm as the set of all measurable functions f on Rm1+m2 for which

‖Tµ‖∗
M
λ1
p1

(Rm1 )×Mλ2
p2

(Rm2 )
= ‖‖Tµ(u1, u2)‖∗

M
λ1
p1,u1

(Rm1 )
‖∗
M
λ2
p2,u2

(Rm2 )

= sup
y∈Qm2 (0,π)

sup
0<ρ≤π

ρ−λ2‖ sup
x∈Qm1 (0,π)

sup
0<r≤π

r−λ1‖Tµ(u1, u2)‖Lp1,u1 (Q(x,r))‖Lp2,u2 (Q(x,r)), (3.44)

where Qm1(0, π) = {u1 ∈ Rm1 : |u1j | < π, j = 1, . . . ,m1} and Qm2(0, π) is defined similarly.
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Let us note some properties of these spaces.

Lemma 3.4. Let 0 < p ≤ ∞, m1,m2 ∈ N, 0 < λ1 ≤ m1
p , 0 < λ2 ≤ m2

p , f1 ∈ (Mλ1
p )∗(Rm1) f2 ∈ (Mλ2

p )∗(Rm2)
f1 ∼ 0 on Rm2 f2 ∼ 0 on Rm1, then

‖f1f2‖∗
M
λ1
p (Rm1 )×Mλ2

p (Rm2 )
= ‖f1‖∗

M
λ1
p (Rm1 )

‖f2‖∗
M
λ2
p (Rm2 )

(3.45)

Lemma 3.5. Let 0 < p ≤ ∞, m1,m2 ∈ N, 0 ≤ λ1 ≤ m1
p , 0 ≤ λ2 ≤ m2

p . Then

(Mλ1
p )∗(Rm1)× (Mλ2

p )∗(Rm2) ⊂ (Mλ1+λ2
p )∗(Rm1+m2), (3.46)

and
‖f‖∗

M
λ1+λ2
p (Rm1+m2 )

≤ ‖f‖∗
M
λ1
p (Rm1 )×Mλ2

p (Rm2 )
(3.47)

for any f ∈ (Mλ1
p )∗(Rm1)× (Mλ2

p )∗(Rm2).
If 0 < λ1 + λ2 <

m1+m2
p , then inclusion (3.46) is strict.

Theorem 3.6. Let 1 ≤ p <∞, m, n ∈ N, m < n, 0 ≤ λ ≤ n
p , then

‖Tµ‖∗L∞(Rn−m)×Mλ
p (Rm) ≤ 3n−mµ

n−m
p ‖Tµ‖∗Lp,v(Rn−m)×Mλ

p (Rm), (3.48)

in particular, if x = (u, v), u = (x1 . . . xm), v = (xm+1, . . . , xn), then

‖Tµ(u, 0)‖∗Mλ
p (Rm) ≤ 3n−mµ

n−m
p ‖Tµ‖∗Lp(Rn−m)×Mλ

p (Rm). (3.49)

Remark 7. If λ = 0, then it is obvious that

L∗p(Rn−m)× (M0
p )∗(Rm) = L∗p(Rn−m)× L∗p(Rm) = L∗p(Rn) (3.50)

however, for 0 < λ ≤ m
p according to Lemma 3.5

L∗p(Rn−m)× (Mλ
p )∗(Rm) ⊂ (Mλ

p )∗(Rn), (3.51)

but
L∗p(Rn−m)× (Mλ

p )∗(Rm) 6= (Mλ
p )∗(Rn). (3.52)
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