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d2
Abstract. We study the Sturm-Liouville operator Ly = I(y) = _d—z + q(z)y with

x

Dirichlet boundary conditions y(0) = y(mw) = 0 in the space Ls[0,7]. We assume
that the potential has the form ¢(z) = u'(z), where u € W{[0, 7] with 0 < 8 <
1/2. Here WY[0, 7] = [La, W]y is the Sobolev space. We consider the problem of
equiconvergence in WZ[0, 7]-norm of two expansions of a function f € L0, 7].
The first one is constructed using the system of the eigenfunctions and associated
functions of the operator L. The second one is the Fourier expansion in the series
of sines. We show that the equiconvergence holds for any function f in the space
L2 [O, 7T] .

1 Introduction

In this paper we deal with the Sturm—Liouville operator

Ly =1(y) = —— +q(z)y, (1)

with Dirichlet boundary conditions y(0) = y(7) = 0 in the space Ly[0,7]. We
assume that the potential ¢ is complex-valued and has the form ¢(z) = /(x),
where u € WY[0,7] with 0 < 6 < 1/2. Here the derivative is treated in the
distributional sense, and WJ[0, 7] = [Lqo, W3]s is the Sobolev space with fractional
order of smoothness defined by interpolation. This class of operators was defined in
the papers of A.M. Savchuk and A.A. Shkalikov [7]-[9]. In particular, it was shown
there that L is bounded from below and has purely discrete spectrum.

We consider the problem of equiconvergence in W¢[0, 7]-norm of two expansion
of a function f € L,[0,7]|. The first one is constructed using the system of the
eigenfunctions and associated functions of the operator L, while the second one is
the Fourier expansion in the series of sines.
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The problem of uniform equiconvergence (i.e. in the norm of the space C|0, 7]) is
well studied in the classical theory of Sturm-Liouville operators for regular potentials
q € L1(0, 7). In the monograph of V.A. Marchenko [4] the uniform equiconvergence
was proved for any function f € Ly[0,7]. In 1991 V.A. Il'in [2]| proved this result for
any f € L]0, 7]. V.A. Vinokurov and V.A. Sadovnichii [10] proved a theorem on
the equiconvergence for Sturm-Liouville operators whose potential is the derivative
of a function of bounded variation (and also for any f € L]0, 7]).

The problem of the rate of equiconvergence (for regular potentials) was studied
in the paper of A.M. Gomilko and G.V. Radzievskii [1]. In the author’s paper [5]
results were obtained in the case in which ¢ = v/, u € WY[0, 7] with 0 < 6 < 1/2.
[t was shown that for any f € Ly[0, 7] one can estimate the rate of equiconvergence
uniformly over the ball u € By g = {v € W0, 7] : [vllwg < R}. This result is new
even in the classical case g € L0, 7].

In this paper we prove equiconvergence and obtain a similar estimate of the rate
of equiconvergence in the norm of the space W{[0, 7] with 0 < 6 < 1/2.

2 Preliminary results

We begin with the following results about operator (1).

Let us recall that the operator L is bounded from below and has purely discrete
spectrum. Let {\,}{° be the sequence of all eigenvalues of the operator L. We shall
enumerate the eigenvalues in such a way that |[A;| < |\ < ..., and we assume that
each eigenvalue is repeated as many times as its algebraic multiplicity. By {y,}3°
we denote the system of the eigenfunctions and associated functions. We assume
that the function y, corresponds to the eigenvalue A, and ||y,|/r, = 1 if y, is an
eigenfunction.

Statement 1 (A.M. Savchuk, A.A. Shkalikov). Let u € Ly[0,7|. Then the system
{yn}3° of the eigenfunctions and associated functions of the operator L forms a Riesz
basis in the space Lo[0, ].

By the above there exists the biorthogonal system {w,}°, i.e. (Yn,Wm) = dum
where (f, g) f f(z)g(x)dz. For more details see [5].
Let

0 1/2
TR PR (an%) = [{zablg < o0
n=1

We recall that for any v € WY[0, 7] with 0 < 6 < 1/2
Cillfuntllg < llullwg < Call{untllig

2
where u,, = / —(u(z),sinnz) and C;, Cy > 0 are independent of w.
7T
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Statement 2 (A.M. Savchuk, A.A. Shkalikov). Let R > 0, 0 < 6 < 1/2, and
u € By . Then there exists a natural number > N = Ny g such that for alln > N
the eigenvalues X\, of the operator L are simple,

Yn(x) = \/gsin nx + op(x), wp(zr) = \/gsin nz + (),
y(x) =n <\/gcos nw + 'r]n(:c)) + u(x) <\/% sin na + gon(:c)) :
where the functions @, ¥, and n, are such that the sequence {v,}5% N =

{llen@)lc + 1n(@)llc + |Ina(2)lc}n € 15 and its norm in this space is bounded
by a quantity depending only on 6 and R. Moreover for n > N

(2)

Un () = Yno(2) + Pna (),

where

2 -
Yno(x) = aysinne + B,z cosnx — \/j/u(t) sinn(x — 2t)dt, (3)
T
0

and the numbers a,, 3, and the functions 1,1 are such that the norm of the sequence
{|an| + Bn|}2x in the space 1§ is bounded by a quantity depending only on 6 and
R, and the sequence {||1n1(z)||c}o2 v belongs to the space I] for any T < 26.

Statement 3. Let R >0, 0 < 0 < 1/2 and w € By p. Then there exists a natural
number N = Ny r such that for alln > N the operator

Py (u) : Ly[0, 7] — W3[0, 7], P.(u): fr— Z(f, Wk )Yk
k=1

is continuous on By g, i.e. for any uwy € By r
|Pa) = Pu(uo) 1wy — 0 as [l — uollyg — 0, € By

This statement follows from the results of the paper [8] (Theorem 1.9) and
classical theorems (see [3, Theorems IV.2.23 and IV.3.16]). For detailed proof see

16].

3 Main theorem

Theorem. Let R > 0,0 < 0 < 1/2. Consider operator (1) acting in the spaceLs|0, 7]
with the homogeneous Dirichlet boundary conditions. Suppose that the complex-
valued potential q(x) = u'(x), where u(x) € By g.

Let {y, ()}, be the system of the eigenfunctions and associated functions of
the operator L and {w,(x)}2, be the biorthogonal system.

2Here and in the sequel when we write No.r, Co,r etc we mean that these quantities depend
only on 0 and R.
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For an arbitrary function f € Ly[0, 7] denote

e = (f(z),wn(x)), cno:=V2/m(f(z),sinn).

Then there exist a natural number M = My r and a positive number C = Cy r such
that for all m > M and for all f € Ls|0, 7]

cnyn Z \/j Cp,0 SIN NT
Proof.

Step 1 (operators B,, v and B,,).

1]z
< C Z |Cn,0|2 m 0(1—0) . (4)

n>m179

2

For given integers m, m > N, we introduce the operator B,, y : Ls[0,7] —
W20, 7] defined by

m
2 )
Bunf(x E CnYn( E ;Cn,O sin nx
n=N

and denote By, =: By,. Then for any function f € Ly[0, x| the following equality

holds:
Bunf(z Z \/7 ) sin nz+
+Z\/§(f< sin nt) @, (z —1—2 Yon(x). (5)

Let N = Ny r be the maximal of the p031t1ve integers defined in Statements 2
and 3.

Step 2 (estimation of the norm of the operator B,, v).

There exists a positive number Cy r such that for all natural m satisfying m = N

[ B, v () £, g < Co,r- (6)

Let us estimate each term of the right-hand side in (5) separately. By asymptotic

formulae (2) we have:
1/2
<Z| |2 20) <
W29

Z smnx
m 1/2
& <Z ||f||iQ||¢nlliﬂ29> < Gl f] Lo
n=N

where C, C5 > 0 are independent of f. Consider the second and the third terms.
We will show that {{|¢n|[we}niy € l2 provided that 0 < 6 < 1/2. Asymptotics (2)
imply the estimate

lonllwg < Csllenllz, lenllivy < Callenl 0 lenllz, <
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0
_ 2
< Cillgallty’ ||nn||i2n9+(\£> Jull, + lugal,

< Gsllgal” (Imallzn’ +1) =

1-6 _
= G5 ([lenllzon”) " (Il zon”)” + (0”17, (7)
where C3, Cy, C5 > 0 are independent of n. Here we used the inequality Hf”w; <

V72 + 1| ||z, fulfilled for all f € W3[0, 7] satisfying f(0) = 0. Next we use Holder’s
inequality

S S < (Sa) - (S0)

and note that the sequences {||¢,[lr,n’}oy, {lmnllr.n’ 32y, and {n®~}72, belong
to Iy space for any 0 < 6 < 1/2. Therefore (7) implies the inequality

> lenlltye < Ce, (8)
n=N

where Cg > 0 is independent of m and N. Then

m

Z ,sinnt)p, ()

where f,, = (f(t),sinnt) and C7; = 1/Cs.
For the last term of the right-hand side in (5) we have:

<Y falllenliwg < Gl fllzas (9)

W29 n=N

> DNen@)| <D I lealtnllallenllme <
n=N WG n=N

m 1/2 m 1/2
< I f1es (Z HW\E) (Z H%HZ) < Gsl|f| . (10)
n=N n=N

where Cg > 0 is independent of m and N, because the conditions of our theorem

imply that {||vn|[r.}72x € lo-
We proved inequality (6). Step 2 is completed.

Step 3 (estimation of the norm of the operator B,,).

There exists a positive number Cy g such that for all natural m satisfying m > N

1By ()|l 2, ~wg < Co,r- (11)

Obviously the operator B,,(u) can be represented as the sum:

B (u) = By-1(u) + B n(u) = Py-1(u) = Py-1(0) + By,n(u),
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where P, (u) is the operator defined in statement 3. Hence

1B ()l g,y <2 sup [[Py-1(0)l|,—wg + ([ B v (W)l ppmwwg <

vE€By R

<2 sup [|Pyv—1(0)|[ oy + | Bmv(w) |l py—we-
vEBy R
Let 0 < 6; < 0, say 6; = £. By statement 3 the function | Pn-1(0)|| y—w © Boy,r —
R is continuous on By, g. It is known that the ball By r is a compact subset of
By, g. Therefore the function ||Py_1(v)||,—w; is bounded on By by a constant
depending only on 6 and R. This, together with inequality (6), imply (11). Step 3
is completed.

Step 4 (proof of the equiconvergence).

Let f € Ls[0,7]. Then
Tim (Bl = 0. (12)

First let us check that the system {y;}7° of the eigenfunctions and associated
functions is minimal in the space WZ[0,7]. Assume the converse. Then 3, €
span{yx tx+n (here the closure is taken subject to W¥[0, 7] norm) for some natural
number n. Therefore y, € span{yy}rsn, where the closure is taken subject to
L,]0, 7] norm. It means that the system {y;}$° is not minimal in the space Ls[0, 7]
— contradiction with statement 1. Next, we proved (see (8)) that the system
{yr}$° is close to the orthogonal basis {1/2/7sin kz}$° in the space WJ[0,7]. Let

us now consider the orthonormal basis {\/g(l + k)79 5in kx} and the system
1

{(14 k)72, 3%° in W20, 7]. We see that these two systems are also close in the
space W20, 7). Tt can be easily proved that the system {(1+ k?)7%/2¢,}5° is minimal
in the space WZ[0, w]. Hence, this system forms the Bari basis in the space W0, 7]
and consequently the system {y;}5° is total in this space.

Let us consider the image of the function y; under the map B,,:

m

(Bumi)(x) = Y (ye(x), wn(x)

n=1

>1|w

m
E sm TLZL‘ sinnz.

The first term of the right-hand side in the last equality is equal to 0 for m < k and
is equal to yi(x) for m > k. The second one is the partial sum of the Fourier series
for the function y,. Recall that the function y, € W4. This implies that its Fourier
series converges to y, in W.)-norm. Consequently this series converges to y; in the
space WY. This yields that (12) holds for any function f € span{y;}. To conclude
the proof of the Step 4, it remains to apply completeness of the system {y,} and
inequality (11).

k
Now let us prove inequality (4). Let gr(z) = > c,yn(z), where k > N. It is clear
n=1

that for any function f € Ly[0, 7] and any natural number m

1B flwg < Bm(f = gi)llwyg + | Bmgrllwg- (13)
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Step 5 (estimation of the norm of B,,(f — g;) in the space W{[0,7]).
There exists a positive number Cy r such that for all natural k, m satisfying
k,m > N and for all f € Ly[0, ]

~ 1/2
/1]
IBulf — a0llwg < Cie (Z \cn,o|2> e ) (1)
n=k+1
By asymptotic formula (2) we have:
1f(x) = ge@)llze = || D catm(@)|| <
n=k+1
— 2 . .
< Z —(f(x),sinnz)sinnz|| -+ Z \/7 )sinnz|| +
n:k‘-i-lﬂ- Lo n=k+1 Lo
sinna)pa(r)|| + | D (F@), vnl@)en(@)|| <
n=k+1 Lo n=k+1 Lo
~ 1/2 ~ 1/2
< <Z |Cn,o|2> + ( >, |(f($),¢n($))|2> x
n=k+1 n=k+1
- 1/2
1+ ( > H%HZ) S
n=k+1
. ] c
< 2 1 11 L2 1 0,R 1
(St) M) o)

Now inequality (14) follows from (15) and (11). Step 5 is completed.
Next we estimate the second term in (13). For a given natural m, m > k, we
introduce the operator S,, : W0, 7] — WZ[0, w] defined by

Smh(z) =2/7 Z (h(t),sinnt) sinnz .
n=m-+1
Note that
2 — . .
Bngr(z) = gr(x) — - ;(gk(t), sinnt) sinnx = S,,gx(x) .

(The expression S,,gx(x) is well defined, since all eigenfunctions and associated
functions of the operator L belong to the space W.}[0, 7].) Therefore

[Bmgrllwg < 15m(gk — gn)llwg + 1Smanllwg- (16)
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Step 6 (estimation of the norm of S,,(g; — gn) in the space W{[0, 71]).
There exists a positive number Cy g such that for all natural k, m satisfying m >
k> N and for all f € Ly[0, 7]

15m (g = 93 llwg < Cogll fllom?® k. (17)

First let us recall that y,(z) = \/2/7sinnz + ¢, (x) (see (2)) and represent the
left-hand side of inequality (17) as follows:

k k
1Sm(gr(@) = gn (@) llwe = || D caSmvn(@)|| = D caSmepn(x)
n=N-+1 Wg n=N-+1 W20
Note that 3
k [e%)
D lal < Y el <
n=N-+1 n=N-+1
2 o0 [oe)
z(— ST IS |(f(w),wn(x))l2> 1
n=N-+1 n=N-+1
Therefore
. L 1/2 . 1/2
Z CnSmpn(T) < ( Z |Cn|2> ( Z HSmSOn<x>HI2/V29> S
n=N+1 W29 n=N+1 n=N+1
. 1/2
1
</ Cix Hme(Z Hsmgon(x)H%Vg) -
n=N-+1
Furthermore
- 1/2
1Smn(@)llwe < céié( S GP+ 1>|<son<x>,smjx>|2> =
j=m+1
1/2
] .
( @, 56),008393)|2> < O gz z)|lwy - (18)
j=m+1

Here we applied integration by parts and boundary conditions ¢, (0) = ¢,(7) =
0. By asymptotic formulae (2) we obtain ¢, (x) = nn,(z) + u(x)y,(x), where
{lnn(2)||L, + "1} € 15. Consequently

len (@), < (llm(@)llz, + lu(@)ya(@)12,) = n' 7,

3 Here Céll)z and in the sequel Céjl)z with j = 2,3... are some positive quantities depending only
on 6 and R.
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where |[{7.}H1, < C’(S’I)%. Therefore,

1S men(@) e < om0 =7,

This implies that the first term in (16) satisfies the following inequality:

k 1/2
1S (g = 93) lwe < Coop 1 f I <Z mn) < CE N fllpam® k0.

n=1

Step 6 is completed.

Step 7 (estimation of the norm of S,,gx in the space WY[0, 7]).

Finally we consider the second term in (16). We shall estimate the norm ||.S,,gx||c¢
in the same way as in (18):

7 _ 7 _
ISmgn (@)l < Cspm® gy (@)llz, < Cyhm®Ygnllw; -

Since || Pn(u)l[r,—wp < Cor (see Step 3) and gy = Pyf we have |lgn|lyz <
Co.rl|| fllL,- Therefore,

ISmanllc < Co 1 fllam®™. (19)
Hence inequalities (16), (17) and (19) imply that

I Bungillc < Cyp I £, m® = &, (20)

Let us put & = [m'~% + 1 for any natural number m > NZ2. Inequalities (13), (14)
and (20) imply inequality (4). O
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