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t Classi�
ation: 65D32.Abstra
t. The paper 
ontains the des
ription of the theory of approximate
al
ulation of integrals over arbitrary multi-dimensional domains. This resear
hbran
h is developed in several resear
h 
enters in Russia and, in parti
ular, in theUfa Mathemati
al Institute of the Russian A
ademy of S
ien
es. We 
onsider thebest approximations of linear fun
tionals on a 
ertain semi-Bana
h spa
e B by linear
ombinations of the Dira
 fun
tions with supports in the nodes of a 
ertain latti
e:
(lN , f) ≡

∫

Ω

f(x)dx−
∑

k∈Zn,
HN k∈Ω

ckf(HNk),where HN is an n × n matrix, su
h that detHN 6= 0 and detHN → 0 as N → ∞and f : Rn → C, f ∈ B ⊂ C(Rn).This setting of the problem was given by a
ademi
ian Sergei L'vovi
h Sobolevin the middle of the last 
entury.1 Introdu
tionFor the sake of brevity we give a simpli�ed setting of the problem.The Sobolev 
ubature formulas Khf = hn
∑

hHk∈Ω

ckf(hHk) allow approximate
al
ulation of integrals If =
∫
Ω

f(x)dx, where Ω is a domain in Rn and {hHk| k ∈
Zn} is a latti
e of nodes. Here H is an n×n matrix and h is a small parameter. Thesharpness of the approximation is determined by the norm of the error fun
tional
I − Kh : B → C, where B ⊂ C(Rn) is a 
ertain semi-Bana
h spa
e. A 
ubatureformula Kopt

h is 
alled optimal if
‖I −Kopt

h ‖B∗ = min
ck

‖I −Kh‖B∗ .1Supported by the Russian Foundation for Basi
 Resear
h (proje
t 09-01-00349a) and by theprogramme �Support of young s
ientists� of the Presidium of the Russian A
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ien
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124 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaMoreover, a 
ubature formula Kas
h is 
alled asymptoti
ally optimal or optimal byorder if

ν(h) =
‖I −Kas

h ‖B∗

‖I −Kopt
h ‖B∗

→ 1 as h→ 0,

lim
h→0

ν(h) <∞ respe
tively.S.L. Sobolev gave an algorithm of 
al
ulation of the 
oe�
ients ck of anasymptoti
ally optimal formula for the 
ase in whi
h B is the spa
e L(m)
2 (Ω) withthe semi-norm

‖f‖m =



∫

Ω

∑

|α|=m

m!

α!
|Dαf(x)|2dx




1
2 where m >

n

2
.His main investigations were 
arried out in the sixties-seventies of the last
entury � see [11℄ and [12℄.There is a well-known algebrai
 approa
h of 
onstru
ting 
ubature formulasof high pre
ision. The parameters of the 
ubature formula are 
hosen in su
ha way that the formula is exa
t for all polynomials of given degree. One ofexamples is the Gaussian quadrature formula. The main postulate of Sobolev'stheory is the symbiosis of an algebrai
 and an analyti
al approa
hes. He 
onstru
tedasymptoti
ally optimal formulas as the sum of lo
al formulas with the sizes ofsupports of order O(h) and exa
t for all polynomials of degree m. He worked out andtheoreti
ally justi�ed the algorithm of his �Sobolev formulas�. Now these formulas areknown as RBL (Regular Boundary Layer) formulas. The words �Regular BoundaryLayer� mean that the 
oe�
ients are 
al
ulated only in O(h)-neighbourhood of theboundary Γ and for inner nodes all 
oe�
ients are equal to 1.Let us give the exa
t des
ription of the RBL algorithm. Let Ω be the domainof integration and {hk| k ∈ Zn} be the latti
e of nodes. We de�ne the elementarymesh of the latti
e as

h(Q+ k) = {x| x = hk + hy, y ∈ Q},where Q = [0, 1)n is the unit 
ube. The elementary 
ubature formula is
∫

h(Q+k)

f(x)dx ≅ hn
∑

s∈Zn,
|s|≤L

ak,sf(hk + hs). (1)The 
oe�
ients ak,s are determined by the 
onditions of exa
tness for allpolynomials of degree M . If ρ(x,Γ) is the distan
e of x ∈ Ω to Γ and ρ(hk,Γ) > L1hfor some L1 > 0 independent of h and k, then it is assumed that ak,s = as areindependent of k and h. Otherwise the 
oe�
ients ak,s essentially depend on k, sand h.Later on it was proved that these RBL formulas possess the property ofasymptoti
 optimality not only for B = L
(m)
2 (Ω) but also for some other spa
es

B.
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ations 125Sobolev's algorithm was modi�ed in order to make it appli
able for designingpra
ti
al programmes for 
al
ulation of integrals, and new BBL (Bounded BoundaryLayer) 
ubature formulas were 
onstru
ted. The programmes using BBL formulaswork for domains of arbitrary shape and for dimensions from 2 to 10.They are designed for multipro
essor 
omputing systems and have high e�
ien
yof using pro
essors � around 70�90%. These programmes were, in parti
ular, appliedfor solving integral equations on domains of arbitrary shapes.Let us give the de�nition of BBL formulas.We say that a 
ubature formula
KNf ≡ detHN

∑

k∈Zn,
HN k∈Ω

ck,Nf(HNk), N =
|Ω|

detHNis a BBL formula if for some L2 > 0

∀k |ck,N | ≤ L2; ρ(HNk,Γ) > L2h⇒ ck,N = 1.Among these formulas there exist some with bad approximation properties. Forexample, if all 
oe�
ients ck,N are equal to 1, the approximation is only of degree
1, O(h). So it is important to �nd algorithms giving high-pre
ision BBL formulas.We des
ribe one of su
h algorithms. It produ
es asymptoti
ally optimal formulas.For the sake of simpli
ity we dis
uss only the 
ase of 
ubi
 latti
es of nodes

{hk| k ∈ Z
n}. (2)Let Ω be an n�dimensional bounded domain:

Ω = {x| x ∈ R
n, Φ(x) > 0, Φ ∈ CM , DΦ(x) 6= 0 if Φ(x) = 0}.The boundary Γ = {x| x ∈ Rn, Φ(x) = 0} is smooth and 
ould be lo
allyrepresented by graphs of some fun
tions, i.e. ∀x̂ ∈ Γ ∃ ε(x̂) > 0 su
h that, if Ux̂ =

{x| |x− x̂| < ε(x̂)}, then
Γ ∩ Ux̂ = {x| x ∈ Ux̂, ∃ j = j(x̂), xj = ψj(x1, . . . , xj−1, xj+1, . . . , xn), ψj ∈ CM}.Consider a �nite 
overing of Γ with some Ux̂(α), α = 1, . . . , k. Let Ω0 =

Ω\
k⋃

α=1

Ux̂(α), then
ρ(Ω0,Γ) ≡ ε0 > 0. (3)Let U0 = {x| ρ(x,Ω0) < ε0/2}, then the set {Uα}kα=0 is a �nite 
overing of Ω.It is well known that there exists a partition of unity {ϕα}Kα=0 subordinated to this
overing

∀α ϕα ∈ CM
0 (Rn), supp ϕα ⊂ Uα,

K∑

α=0

ϕα(x)|x∈Ω ≡ 1.Our BBL formulas are sums of lo
al formulas for the sets ωα ≡ Uα ∩ Ω:
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hn
∑

k∈Zn,
hk∈Ω

ckf(hk) =
K∑

α=0

hn
∑

k∈Zn,
hk∈ωα

ck,αϕα(hk)f(hk).For the inner domain ω0 we put ck,0 ≡ 1.The lo
al formulas for all ωα, α = 1, k are 
onstru
ted in a similar way. So wedes
ribe one of them. Let
ω1 = {x| xn ≥ ψ(x1, . . . , xn−1) ≡ ψ(x′), x′ ∈ σ ⋐ R

n−1, ψ ∈ CM(σ)}.Let us 
hange variables: y′ = x′, yn = xn − ψ(x′). In the variables y theboundary Γ ∩ ω1 is a part of the 
oordinate hyperplane {y| yn = 0, y′ ∈ σ}. We
onstru
t auxiliary RBL 
ubature formulas as sums of elementary formulas (1) withthe 
oe�
ients ak,s ≡ as independent of k and h and with the additional property
as = 0 for sn < 0. The inverse 
hange of variables from y to x produ
es the 
ubatureformula with the 
urved latti
e of nodes

{x(k)| x(k)
j = hkj for j = 1, n− 1, x(k)

n = hkn + ψ(hk′), k ∈ Z
n}.This latti
e of nodes does not 
oin
ide with the 
ubi
 latti
e of nodes (2). Moreover,the distan
e from a node of the 
urved latti
e to the nearest node of the 
ubi
 latti
eis the same for all nodes on any ray {x| x = (hk′, t), t ≥ 0}. Furthermore

x(k)
n = hkn + h

ψ(hk′)

h
= h

(
kn +

[
ψ(hk′)

h

])
+ h

{
ψ(hk′)

h

}
,where [α] and {α} denote the integer and the fra
tional parts of the number α.Keeping this in mind we 
an substitute every value of the given fun
tion on thenodes of the 
urved latti
e by �nite linear 
ombinations of the values of this fun
tionon neighbouring nodes of the 
ubi
 latti
e, i.e.

f
(
hk′, h

(
kn +

[
ψ(hk′)
h

])
+ h

{
ψ(hk′)
h

})
≈

≈
S∑
s=0

bs(hk
′)f
(
hk′, h

(
kn +

[
ψ(hk′)
h

])
+ s
)
.The 
oe�
ients bs(hk′) are determined by the 
ondition of exa
tness of thisformula for any polynomial of degree M . The 
orresponding algebrai
 system has asolution if S ≥ M + 1. After 
hanging all values f(hk′, hkn + ψ(hk′)) by

S∑

s=1

bs(hk
′)f

(
hk′, h

(
kn +

[
ψ(hk′)

h

]))we get the desired 
ubature formula. This formula has the BBL-property and isasymptoti
ally optimal on any spa
e W̃m
p (Ω), 1 < p <∞, with m ∈

(
n
p
,M
) and onseveral other spa
es whi
h are often used in numeri
al mathemati
s.
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ations 127We must note that we use some spe
ial norms of the spa
es Wm
p . For example,if Ω ⊂ Q = [0, 1)n, then

‖f‖
fWm

p (Ω) ≡ inf
g|Ω=f

‖g‖
fWm

p (Q), (4)where g(x) =
∑
k∈Zn

gke
2πikx and

‖g‖
fWm

p (Q) =



∫

Q

∣∣∣∣∣
∑

k∈Zn

gk(1 + |k|2)m/2e2πikx
∣∣∣∣∣

p



1
p

. (5)Next we present the results of numeri
al experiments for the programme whi
huses the BBL 
ubature formulas des
ribed above. This programme was designed inthe Institute of Mathemati
s, Ufa, by Dr. D.Y. Rakhmatullin [4℄.2 Programme
”
CubaInt“The programme

”
CubaInt“ is designed for 
al
ulating integrals on multi-dimensional
onvex bounded domains with smooth boundaries. It was tested for the followingparameters:

• dimension n from 2 to 10;
• integrand f(x) =

∑n
i=1 aix

bi
i ;

• domain Ω = {x : Φ(x) > 0, Φ(x) = 1 −∑n
i=1 ci(xi − 0.5)di};

• 
ubi
 latti
e step h from 10−1 to 10−5;
• smoothness parameter M from 2 to 6;
• number of pro
essors P from 1 to 7000.For the parameters listed below we 
ompared 
al
ulations with the theoreti
alevaluations:
a = (2, 1, 2, 1, ..., 2, 1), b = (2, 4, 2, 4..., 2, 4),
c = (6.25, 39.0625, ..., 6.25, 39.0625), d = (2, 4, 2, 4..., 2, 4),We 
ondu
ted a number of tests with de
reasing values of the parameter h. Thuswe had a sequen
e of the parameters:

h1, h2, h3, . . . with h1 > h2 > h3 > . . .For them we 
omputed the appropriate values of 
ubature formulas:
Kh1 , Kh2, Kh3, . . .



128 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaThe absolute error of the 
al
ulations at the k -th step was 
omputed as theabsolute value of the di�eren
e of the value of the 
ubature formulas with twosequential values of the parameter h :

△k = |Khk
−Khk+1

|.The theoreti
al error was 
onsidered to be the value of the error fun
tional ‖lh‖∗.We represent every absolute error in the form w1 · 10−w2 with integer number w2and 1 6 w1 < 10.Tables 1�3 demonstrate the degrees of absolute errors (numbers w2) of the resultsobtained by 
omputer 
al
ulations and by theoreti
al approximations.For example, we have the same a

ura
y 10−15 for Ñ = 3200, Ñ := 1/h = N1/nand M = 4 in both the left and the right sides of Table 1.
Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 650 3 3 2 2 1 50 4 6 7 9 11100 4 4 3 2 2 100 4 6 8 10 12200 7 5 4 5 3 200 5 7 10 12 14400 8 9 11 7 7 400 6 8 11 14 16800 8 10 12 13 14 800 6 9 12 15 181600 9 11 13 15 16 1600 7 10 13 17 203200 10 12 15 16 17 3200 8 11 15 18 226400 11 14 16 18 18 6400 8 12 16 20 2312800 12 15 17 18 17 12800 9 13 17 21 25Tab. 1: Experimental (left) and theoreti
al (right) degrees of the absolute errors,n=2
Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 650 3 3 2 2 1 50 4 6 7 9 11100 4 4 3 3 3 100 4 6 8 10 12200 6 7 5 4 4 200 5 7 10 12 14400 8 8 8 8 7 400 6 8 11 14 16800 9 9 10 9 9 800 6 9 12 15 181600 9 10 11 11 10 1600 7 10 13 17 20Tab. 2: Experimental (left) and theoreti
al (right) degrees of the absolute errors,n=3The 
al
ulations are bad in two 
ases. First, when rounding errors are signi�
ant(we use long double type). Se
ondly, when h and M are not su�
iently small whi
hprevents in
luding 2M latti
e nodes along the 
orresponding rays to the boundarylayer.We must note that the 
onvexity of a given domain is not ne
essarily required.Let us take for example the domain (Fig. 1).

Ω =
{
x : 1 − 6.25(x1 − 0.5)2 − 6.25(x2 − 0.6 + 3(x1 − 0.5)2)2 > 0

}
.
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Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 625 4 3 3 3 2 25 3 5 6 7 950 4 4 4 3 3 50 4 6 7 9 1175 5 4 4 3 2 75 4 6 8 10 12100 5 4 4 4 3 100 4 6 8 10 12125 6 5 4 4 4 125 5 7 9 11 13150 7 6 5 5 4 150 5 7 9 11 14175 7 7 5 5 4 175 5 7 9 12 14200 7 7 6 5 5 200 5 7 10 12 14Tab. 3: Experimental (left) and theoreti
al (right) degrees of the absolute errors,n=5

Fig. 1: Non-
onvex domain
Ñ\M 2 3 4 5 650 4 3 3 3 2100 4 4 4 4 4200 4 4 4 4 4400 5 5 5 5 5Tab. 4: Numeri
 results for non-
onvex domainNumeri
al results are shown in the Table 4.Let us analyze the programme speed and the quality of its parallelization. Weuse the speedup and e�
ien
y parameters:
SP =

T1

TP
, EP =

SP
P
,where TP is time of 
al
ulating on P pro
essors.



130 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaFigure 2 demonstrates both experimental (dark line) and theoreti
al (bright line)speedups.For example, when n = 2, M = 3, Ñ = 3200, P = 1200, the e�
ien
y is 0.83.

Fig. 2: Experimental and theoreti
al speedupsThe e�
ien
y is gradually de
reasing with the growth of the number ofpro
essors. It is 
aused by di�erent 
omputational 
omplexity in di�erent latti
enodes and therefore non-uniform pro
essors load.



Cubature formulas of S.L. Sobolev: evolution of the theory and appli
ations 1313 Programme for solving integral equationsThe programme was designed in the Institute of Mathemati
s, Ufa, by the post-graduate E.L. Bannikova [2℄.AlgorithmWe 
onsider the integral equation
u(x) −

∫

Ω

K(x, y)u(y)dy = f(x), x ∈ Ω ⊂ R
2. (6)Here Ω is a two-dimensional bounded 
losed domain with smooth boundary,

K ∈ CM(Ω × Ω) and f ∈ CM(Ω).Assume that ||K||C(Ω×Ω) = θ < 1. This is su�
ient for 
onvergen
e of su

essiveapproximations
u0(x) = f(x), us+1(x) = f(x) +

∫

Ω

K(x, y)us(y)dy, s = 1, 2, . . . .The fun
tions us(x) are approximations of the solution u of equation (6) in the normof the spa
e C(Ω).Numeri
al realization of this method uses BBL 
ubature formulas on everyiteration.ProgrammeThe program for numeri
al solution of integral equations was designed on the basethe above algorithms.Cal
ulations stop when the 
ondition ||us − us−1|| ≤ ε be
omes true, where
||u|| = max

x∈Ω
|u(x)|, ε � given a

ura
y.The input data of the programme:i. Integration domain Ω de�ned impli
itly: Ω = {x|Φ(x) > 0}, Φ(x) ∈ CM(Q),

|Φ(x)| + |DΦ(x)| 6= 0, Ω ⊂ [0, 1)2.ii. Fun
tion K(x1, y1, x2, y2), max
x,y

|K(x, y)| < 1.iii. Fun
tion f(x1, x2).iv. Cubi
 latti
e step h < 0.01.v. Smoothness parameter M .vi. Number of pro
essors P .The approximate solution of the integral equation is the fun
tion us obtained onthe last iteration. It is displayed as the table of the values of the fun
tion us(x) inthe nodes x = hk ∈ Ω.



132 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaProgramme testsThe programme was tested on the super
omputer �MVS-100k� of the JointSuper
omputer Center, Russian A
ademy of S
ien
es, Mos
ow.We demonstrate some experimental results of solving integral equations. In orderto 
ompare experimental results with the pre
ise solution, we took a fun
tion thatmust be a solution and 
al
ulated f(x). Numeri
al experiment was done with that
f(x). The pre
ise solution was the fun
tion u(x) = (x1 − x2)

5 .Here is the input data:i. K(x, y) = (0.1x1y1 + 0.5x2y2)
3.ii. f(x) = (x1−x2)

5− (3.5 ·10−6x2x
2
1 +9.9 ·10−7x3

1−1.4 ·10−5x2
2x1 −1.1 ·10−4x3

2).iii. The integration domain (
onvex, see Fig. 3)
Ω1 = {x|Φ1(x) > 0},

Φ1(x) = 1 − ((x1 − 0.5)/0.4)2 − ((x2 − 0.5)/0.4)4 ,
.iv. Cubi
 latti
e step h = 1/200, 1/300.v. Smoothness parameter M = 2, 3.vi. Number of pro
essors P from from 10 to 1000 .

Fig. 3: The domain Ω1The expe
ted a

ura
y of the 
al
ulations is O((h/ε0)
M), where ε0 estimates thethi
kness of the boundary layer (see (3)).The 
al
ulation a

ura
y was obtained in two ways � by 
omparing with thepre
ise solution and by the Runge rule, i.e. by stability of de
imal digits in theresults with de
reasing h.Table 5 
ontains iterative pro
ess data with given parameters.In Table 5 the a

ura
y was 
al
ulated by de
imal digits stability. After
omparing last iteration result with the exa
t solution u(x) = (x1 − x2)

5 we havegot the 
oin
iden
e of 5 − 6 de
imal digits.
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s � iteration number h = 1/200, ‖us − us−1‖ h = 1/300, ‖us − us−1‖1 0.0987 0.09882 0.000776 0.0007783 0.0000268 0.00002694 0.00000310 0.00000310Tab. 5: The a
hieved a

ura
y for the smoothness parameter M = 2Here the in�uen
e of 1/ε0 when ε = 0.1 is insigni�
ant, be
ause the domain Ω1is 
onvex and the number of regions of the partition of the unity is small.Table 6 shows the programme working time for di�erent numbers of pro
essorsquantity. P 10 20 30 40 50 100

TP 230 127 93 75 63 36
SP 10 18 24.7 36 42.6 63.8
EP 1 0.9 0.8 0.8 0.72 0.63Tab. 6: Running time with di�erent numbers of pro
essors P , h = 1/200, M = 2.The a
hieved a

ura
y is 10−5.The next numeri
al experiment was 
ondu
ted with the non-
onvex domain (seeFig. 4)

Ω2 = {x|Φ2(x) > 0},
Φ2(x) = 1 −

√
8(x1 − 0.5)2 + 8(x2 − 0.5)2 + (2(x1 − 0.5)(x2 − 0.5) sin(1)

+ cos(1)((x1 − 0.5)2 − (x2 − 0.5)2)2)/((x1 − 0.5)2 + (x2 − 0.5)2)2

.

Fig. 4: The domain Ω2In view of the fa
t that in this test the exa
t solution of the equation is not known,the a

ura
y of 
al
ulations is evaluated a

ording to the stability of de
imal digits.We have got that the theoreti
ally expe
ted a

ura
y of the numeri
al solution of
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M of order 10−5 is a
hieved on the �fth iteration with

h = 0.004, M = 3, ε0 = 0.1.Yet another test with the following data:1. K(x, s) = (0.1x1s1 + 0.5x2s2)
3.2. f(x) = (x1 + x2)

3.3. The integration domain (dis
onne
ted, see Fig. 5)
Ω3 = {x|Φ3(x) > 0},

Φ3(x) = −(1 − 9(x1 − 0.5)2 − 100((x2 − 0.3) − 2(x1 − 0.5)2)2)·
·(1/144− ((x1 − 0.5) − 1/10)2 − (((x2 − 0.5) + 0.2) − 0.3)2).

Fig. 5: The domain Ω3The a

ura
y was 
al
ulated by de
imal digits stability. Table 7 shows that thetheoreti
ally expe
ted a

ura
y (h/ε0)
M of order 10−5 is a
hieved on the fourthiteration with h = 0.005, M = 3, ε0 = 0.3.

s�iteration number 1 2 3 4
||us − us−1|| 0.01 0.0001 0.00001 0.000001Tab. 7: The a
hieved a

ura
yThe programme running time for 1000 pro
essors was 12 se
onds.Thus, using of BBL-formulas is good for numeri
al solution of integral equations.The appli
ation of the iteration method in 
ombination with BBL latti
e 
ubatureformulas allows to a
hieve a

ura
y 10−5 by 5�6 iterations.We must note that this algorithm of solving integral equations allows toparallelize well the 
omputing programme for use on the multipro
essor 
omputingsystems.4 Con
lusionsHere are the most important results of the theory of BBL formulas. In fa
t theasymptoti
 optimality and the optimality by order are very 
lose 
on
epts for
ubature formulas with the bounded boundary layer. For simpli
ity, we assumethat the domain Ω belongs to the unit 
ube Q = [0, 1)n and has the boundary
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Γ ⊂ CM . Let the latti
e of nodes be 
ubi
al, {h · k | k ∈ Zn}, with latti
e step h,i.e., h = 1/Ñ, Ñ ∈ Z+. The spa
es W̃m

p (Ω) are de�ned by the norms (4), (5) where
m ∈ (n/p, M) with some natural M > n

p
.Let

Kh : f → hn
∑

hk∈Ω

ck(h)f(hk)be any sequen
e of BBL formulas.Theorem. Let 1 < p1 < p2 <∞ and n
p1
< m1 < m2 < M. Then the sequen
e {Kh}is asymptoti
ally optimal in every spa
e of the family {W̃m

p (Ω)}m∈(m1,m2)
p∈(p1,p2)

if and onlyif it is optimal by order in every of these spa
es.Remark. The number M is involved in the design of our BBL formulas des
ribedabove, ensuring optimality by order for ea
h of the spa
es W̃m
p (Ω) with m < M .Therefore, these formulas are universally asymptoti
ally optimal for every m ∈(

n
p
, M

)
.This is very important for the su

ess of the programme for approximateintegration of fun
tions with various smoothness. We name algorithms with thisproperty as 
onditionally unsaturated algorithms, trying to follow the terminologyproposed in his time by K.I. Babenko [1℄.The same sequen
e of 
ubature formulas remains asymptoti
ally optimal on somespa
es with anisotropi
 smoothness. Namely, let the spa
e W̃ µ

2 (Ω) be de�ned withthe help of the norm
‖f‖

fWµ
2 (Ω) = inf

g|Ω=f
‖g‖

fWµ
2 (Q), g(x) =

∑
k∈Zn

gke
2πikx,

‖g‖
fWµ

2 (Ω) =

(
∫
Q

∑
k∈Zn

|gkµ(2πik)|2 dx
) 1

2

.We assume that |µ(ξ)| ≤ C(1 + |ξ|)m with some m < M and the fun
tion µ (thatdes
ribes smoothness) satis�es the estimate
∀α ∈ Z

n
+

|Dαµ(ξ)|
|µ(ξ)| ≤ Cα(1 + |ξ|)−ρ|α| with some ρ > 0.This is exa
tly the 
onditions of the hypoellipti
ity of pseudodi�erential operator
g(x) →

∑

k∈Zn

gkµ(2πik)e2πikx.See [3℄, [5℄ � [10℄ for details.
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