
EURASIAN MATHEMATICAL JOURNALISSN 2077-9879Volume 1, Number 1 (2010), 123 � 136CUBATURE FORMULAS OF S.L. SOBOLEV:EVOLUTION OF THE THEORY AND APPLICATIONS 1M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaCommuniated by V.I. BurenkovKeywords and phrases: ubature formulas for multi-dimensional domains, regularboundary layer formulas, bounded boundary layer formulas.Mathematis Subjet Classi�ation: 65D32.Abstrat. The paper ontains the desription of the theory of approximatealulation of integrals over arbitrary multi-dimensional domains. This researhbranh is developed in several researh enters in Russia and, in partiular, in theUfa Mathematial Institute of the Russian Aademy of Sienes. We onsider thebest approximations of linear funtionals on a ertain semi-Banah spae B by linearombinations of the Dira funtions with supports in the nodes of a ertain lattie:
(lN , f) ≡

∫

Ω

f(x)dx−
∑

k∈Zn,
HN k∈Ω

ckf(HNk),where HN is an n × n matrix, suh that detHN 6= 0 and detHN → 0 as N → ∞and f : Rn → C, f ∈ B ⊂ C(Rn).This setting of the problem was given by aademiian Sergei L'vovih Sobolevin the middle of the last entury.1 IntrodutionFor the sake of brevity we give a simpli�ed setting of the problem.The Sobolev ubature formulas Khf = hn
∑

hHk∈Ω

ckf(hHk) allow approximatealulation of integrals If =
∫
Ω

f(x)dx, where Ω is a domain in Rn and {hHk| k ∈
Zn} is a lattie of nodes. Here H is an n×n matrix and h is a small parameter. Thesharpness of the approximation is determined by the norm of the error funtional
I − Kh : B → C, where B ⊂ C(Rn) is a ertain semi-Banah spae. A ubatureformula Kopt

h is alled optimal if
‖I −Kopt

h ‖B∗ = min
ck

‖I −Kh‖B∗ .1Supported by the Russian Foundation for Basi Researh (projet 09-01-00349a) and by theprogramme �Support of young sientists� of the Presidium of the Russian Aademy of Sienes.



124 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaMoreover, a ubature formula Kas
h is alled asymptotially optimal or optimal byorder if

ν(h) =
‖I −Kas

h ‖B∗

‖I −Kopt
h ‖B∗

→ 1 as h→ 0,

lim
h→0

ν(h) <∞ respetively.S.L. Sobolev gave an algorithm of alulation of the oe�ients ck of anasymptotially optimal formula for the ase in whih B is the spae L(m)
2 (Ω) withthe semi-norm

‖f‖m =



∫

Ω

∑

|α|=m

m!

α!
|Dαf(x)|2dx




1
2 where m >

n

2
.His main investigations were arried out in the sixties-seventies of the lastentury � see [11℄ and [12℄.There is a well-known algebrai approah of onstruting ubature formulasof high preision. The parameters of the ubature formula are hosen in suha way that the formula is exat for all polynomials of given degree. One ofexamples is the Gaussian quadrature formula. The main postulate of Sobolev'stheory is the symbiosis of an algebrai and an analytial approahes. He onstrutedasymptotially optimal formulas as the sum of loal formulas with the sizes ofsupports of order O(h) and exat for all polynomials of degree m. He worked out andtheoretially justi�ed the algorithm of his �Sobolev formulas�. Now these formulas areknown as RBL (Regular Boundary Layer) formulas. The words �Regular BoundaryLayer� mean that the oe�ients are alulated only in O(h)-neighbourhood of theboundary Γ and for inner nodes all oe�ients are equal to 1.Let us give the exat desription of the RBL algorithm. Let Ω be the domainof integration and {hk| k ∈ Zn} be the lattie of nodes. We de�ne the elementarymesh of the lattie as

h(Q+ k) = {x| x = hk + hy, y ∈ Q},where Q = [0, 1)n is the unit ube. The elementary ubature formula is
∫

h(Q+k)

f(x)dx ≅ hn
∑

s∈Zn,
|s|≤L

ak,sf(hk + hs). (1)The oe�ients ak,s are determined by the onditions of exatness for allpolynomials of degree M . If ρ(x,Γ) is the distane of x ∈ Ω to Γ and ρ(hk,Γ) > L1hfor some L1 > 0 independent of h and k, then it is assumed that ak,s = as areindependent of k and h. Otherwise the oe�ients ak,s essentially depend on k, sand h.Later on it was proved that these RBL formulas possess the property ofasymptoti optimality not only for B = L
(m)
2 (Ω) but also for some other spaes

B.



Cubature formulas of S.L. Sobolev: evolution of the theory and appliations 125Sobolev's algorithm was modi�ed in order to make it appliable for designingpratial programmes for alulation of integrals, and new BBL (Bounded BoundaryLayer) ubature formulas were onstruted. The programmes using BBL formulaswork for domains of arbitrary shape and for dimensions from 2 to 10.They are designed for multiproessor omputing systems and have high e�ienyof using proessors � around 70�90%. These programmes were, in partiular, appliedfor solving integral equations on domains of arbitrary shapes.Let us give the de�nition of BBL formulas.We say that a ubature formula
KNf ≡ detHN

∑

k∈Zn,
HN k∈Ω

ck,Nf(HNk), N =
|Ω|

detHNis a BBL formula if for some L2 > 0

∀k |ck,N | ≤ L2; ρ(HNk,Γ) > L2h⇒ ck,N = 1.Among these formulas there exist some with bad approximation properties. Forexample, if all oe�ients ck,N are equal to 1, the approximation is only of degree
1, O(h). So it is important to �nd algorithms giving high-preision BBL formulas.We desribe one of suh algorithms. It produes asymptotially optimal formulas.For the sake of simpliity we disuss only the ase of ubi latties of nodes

{hk| k ∈ Z
n}. (2)Let Ω be an n�dimensional bounded domain:

Ω = {x| x ∈ R
n, Φ(x) > 0, Φ ∈ CM , DΦ(x) 6= 0 if Φ(x) = 0}.The boundary Γ = {x| x ∈ Rn, Φ(x) = 0} is smooth and ould be loallyrepresented by graphs of some funtions, i.e. ∀x̂ ∈ Γ ∃ ε(x̂) > 0 suh that, if Ux̂ =

{x| |x− x̂| < ε(x̂)}, then
Γ ∩ Ux̂ = {x| x ∈ Ux̂, ∃ j = j(x̂), xj = ψj(x1, . . . , xj−1, xj+1, . . . , xn), ψj ∈ CM}.Consider a �nite overing of Γ with some Ux̂(α), α = 1, . . . , k. Let Ω0 =

Ω\
k⋃

α=1

Ux̂(α), then
ρ(Ω0,Γ) ≡ ε0 > 0. (3)Let U0 = {x| ρ(x,Ω0) < ε0/2}, then the set {Uα}kα=0 is a �nite overing of Ω.It is well known that there exists a partition of unity {ϕα}Kα=0 subordinated to thisovering

∀α ϕα ∈ CM
0 (Rn), supp ϕα ⊂ Uα,

K∑

α=0

ϕα(x)|x∈Ω ≡ 1.Our BBL formulas are sums of loal formulas for the sets ωα ≡ Uα ∩ Ω:
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hn
∑

k∈Zn,
hk∈Ω

ckf(hk) =
K∑

α=0

hn
∑

k∈Zn,
hk∈ωα

ck,αϕα(hk)f(hk).For the inner domain ω0 we put ck,0 ≡ 1.The loal formulas for all ωα, α = 1, k are onstruted in a similar way. So wedesribe one of them. Let
ω1 = {x| xn ≥ ψ(x1, . . . , xn−1) ≡ ψ(x′), x′ ∈ σ ⋐ R

n−1, ψ ∈ CM(σ)}.Let us hange variables: y′ = x′, yn = xn − ψ(x′). In the variables y theboundary Γ ∩ ω1 is a part of the oordinate hyperplane {y| yn = 0, y′ ∈ σ}. Weonstrut auxiliary RBL ubature formulas as sums of elementary formulas (1) withthe oe�ients ak,s ≡ as independent of k and h and with the additional property
as = 0 for sn < 0. The inverse hange of variables from y to x produes the ubatureformula with the urved lattie of nodes

{x(k)| x(k)
j = hkj for j = 1, n− 1, x(k)

n = hkn + ψ(hk′), k ∈ Z
n}.This lattie of nodes does not oinide with the ubi lattie of nodes (2). Moreover,the distane from a node of the urved lattie to the nearest node of the ubi lattieis the same for all nodes on any ray {x| x = (hk′, t), t ≥ 0}. Furthermore

x(k)
n = hkn + h

ψ(hk′)

h
= h

(
kn +

[
ψ(hk′)

h

])
+ h

{
ψ(hk′)

h

}
,where [α] and {α} denote the integer and the frational parts of the number α.Keeping this in mind we an substitute every value of the given funtion on thenodes of the urved lattie by �nite linear ombinations of the values of this funtionon neighbouring nodes of the ubi lattie, i.e.

f
(
hk′, h

(
kn +

[
ψ(hk′)
h

])
+ h

{
ψ(hk′)
h

})
≈

≈
S∑
s=0

bs(hk
′)f
(
hk′, h

(
kn +

[
ψ(hk′)
h

])
+ s
)
.The oe�ients bs(hk′) are determined by the ondition of exatness of thisformula for any polynomial of degree M . The orresponding algebrai system has asolution if S ≥ M + 1. After hanging all values f(hk′, hkn + ψ(hk′)) by

S∑

s=1

bs(hk
′)f

(
hk′, h

(
kn +

[
ψ(hk′)

h

]))we get the desired ubature formula. This formula has the BBL-property and isasymptotially optimal on any spae W̃m
p (Ω), 1 < p <∞, with m ∈

(
n
p
,M
) and onseveral other spaes whih are often used in numerial mathematis.
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p . For example,if Ω ⊂ Q = [0, 1)n, then

‖f‖
fWm

p (Ω) ≡ inf
g|Ω=f

‖g‖
fWm

p (Q), (4)where g(x) =
∑
k∈Zn

gke
2πikx and

‖g‖
fWm

p (Q) =



∫

Q

∣∣∣∣∣
∑

k∈Zn

gk(1 + |k|2)m/2e2πikx
∣∣∣∣∣

p



1
p

. (5)Next we present the results of numerial experiments for the programme whihuses the BBL ubature formulas desribed above. This programme was designed inthe Institute of Mathematis, Ufa, by Dr. D.Y. Rakhmatullin [4℄.2 Programme
”
CubaInt“The programme

”
CubaInt“ is designed for alulating integrals on multi-dimensionalonvex bounded domains with smooth boundaries. It was tested for the followingparameters:

• dimension n from 2 to 10;
• integrand f(x) =

∑n
i=1 aix

bi
i ;

• domain Ω = {x : Φ(x) > 0, Φ(x) = 1 −∑n
i=1 ci(xi − 0.5)di};

• ubi lattie step h from 10−1 to 10−5;
• smoothness parameter M from 2 to 6;
• number of proessors P from 1 to 7000.For the parameters listed below we ompared alulations with the theoretialevaluations:
a = (2, 1, 2, 1, ..., 2, 1), b = (2, 4, 2, 4..., 2, 4),
c = (6.25, 39.0625, ..., 6.25, 39.0625), d = (2, 4, 2, 4..., 2, 4),We onduted a number of tests with dereasing values of the parameter h. Thuswe had a sequene of the parameters:

h1, h2, h3, . . . with h1 > h2 > h3 > . . .For them we omputed the appropriate values of ubature formulas:
Kh1 , Kh2, Kh3, . . .



128 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaThe absolute error of the alulations at the k -th step was omputed as theabsolute value of the di�erene of the value of the ubature formulas with twosequential values of the parameter h :

△k = |Khk
−Khk+1

|.The theoretial error was onsidered to be the value of the error funtional ‖lh‖∗.We represent every absolute error in the form w1 · 10−w2 with integer number w2and 1 6 w1 < 10.Tables 1�3 demonstrate the degrees of absolute errors (numbers w2) of the resultsobtained by omputer alulations and by theoretial approximations.For example, we have the same auray 10−15 for Ñ = 3200, Ñ := 1/h = N1/nand M = 4 in both the left and the right sides of Table 1.
Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 650 3 3 2 2 1 50 4 6 7 9 11100 4 4 3 2 2 100 4 6 8 10 12200 7 5 4 5 3 200 5 7 10 12 14400 8 9 11 7 7 400 6 8 11 14 16800 8 10 12 13 14 800 6 9 12 15 181600 9 11 13 15 16 1600 7 10 13 17 203200 10 12 15 16 17 3200 8 11 15 18 226400 11 14 16 18 18 6400 8 12 16 20 2312800 12 15 17 18 17 12800 9 13 17 21 25Tab. 1: Experimental (left) and theoretial (right) degrees of the absolute errors,n=2
Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 650 3 3 2 2 1 50 4 6 7 9 11100 4 4 3 3 3 100 4 6 8 10 12200 6 7 5 4 4 200 5 7 10 12 14400 8 8 8 8 7 400 6 8 11 14 16800 9 9 10 9 9 800 6 9 12 15 181600 9 10 11 11 10 1600 7 10 13 17 20Tab. 2: Experimental (left) and theoretial (right) degrees of the absolute errors,n=3The alulations are bad in two ases. First, when rounding errors are signi�ant(we use long double type). Seondly, when h and M are not su�iently small whihprevents inluding 2M lattie nodes along the orresponding rays to the boundarylayer.We must note that the onvexity of a given domain is not neessarily required.Let us take for example the domain (Fig. 1).

Ω =
{
x : 1 − 6.25(x1 − 0.5)2 − 6.25(x2 − 0.6 + 3(x1 − 0.5)2)2 > 0

}
.
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Ñ\M 2 3 4 5 6 Ñ\M 2 3 4 5 625 4 3 3 3 2 25 3 5 6 7 950 4 4 4 3 3 50 4 6 7 9 1175 5 4 4 3 2 75 4 6 8 10 12100 5 4 4 4 3 100 4 6 8 10 12125 6 5 4 4 4 125 5 7 9 11 13150 7 6 5 5 4 150 5 7 9 11 14175 7 7 5 5 4 175 5 7 9 12 14200 7 7 6 5 5 200 5 7 10 12 14Tab. 3: Experimental (left) and theoretial (right) degrees of the absolute errors,n=5

Fig. 1: Non-onvex domain
Ñ\M 2 3 4 5 650 4 3 3 3 2100 4 4 4 4 4200 4 4 4 4 4400 5 5 5 5 5Tab. 4: Numeri results for non-onvex domainNumerial results are shown in the Table 4.Let us analyze the programme speed and the quality of its parallelization. Weuse the speedup and e�ieny parameters:
SP =

T1

TP
, EP =

SP
P
,where TP is time of alulating on P proessors.



130 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaFigure 2 demonstrates both experimental (dark line) and theoretial (bright line)speedups.For example, when n = 2, M = 3, Ñ = 3200, P = 1200, the e�ieny is 0.83.

Fig. 2: Experimental and theoretial speedupsThe e�ieny is gradually dereasing with the growth of the number ofproessors. It is aused by di�erent omputational omplexity in di�erent lattienodes and therefore non-uniform proessors load.



Cubature formulas of S.L. Sobolev: evolution of the theory and appliations 1313 Programme for solving integral equationsThe programme was designed in the Institute of Mathematis, Ufa, by the post-graduate E.L. Bannikova [2℄.AlgorithmWe onsider the integral equation
u(x) −

∫

Ω

K(x, y)u(y)dy = f(x), x ∈ Ω ⊂ R
2. (6)Here Ω is a two-dimensional bounded losed domain with smooth boundary,

K ∈ CM(Ω × Ω) and f ∈ CM(Ω).Assume that ||K||C(Ω×Ω) = θ < 1. This is su�ient for onvergene of suessiveapproximations
u0(x) = f(x), us+1(x) = f(x) +

∫

Ω

K(x, y)us(y)dy, s = 1, 2, . . . .The funtions us(x) are approximations of the solution u of equation (6) in the normof the spae C(Ω).Numerial realization of this method uses BBL ubature formulas on everyiteration.ProgrammeThe program for numerial solution of integral equations was designed on the basethe above algorithms.Calulations stop when the ondition ||us − us−1|| ≤ ε beomes true, where
||u|| = max

x∈Ω
|u(x)|, ε � given auray.The input data of the programme:i. Integration domain Ω de�ned impliitly: Ω = {x|Φ(x) > 0}, Φ(x) ∈ CM(Q),

|Φ(x)| + |DΦ(x)| 6= 0, Ω ⊂ [0, 1)2.ii. Funtion K(x1, y1, x2, y2), max
x,y

|K(x, y)| < 1.iii. Funtion f(x1, x2).iv. Cubi lattie step h < 0.01.v. Smoothness parameter M .vi. Number of proessors P .The approximate solution of the integral equation is the funtion us obtained onthe last iteration. It is displayed as the table of the values of the funtion us(x) inthe nodes x = hk ∈ Ω.



132 M.D. Ramazanov, D.Y. Rakhmatullin, E.L. BannikovaProgramme testsThe programme was tested on the superomputer �MVS-100k� of the JointSuperomputer Center, Russian Aademy of Sienes, Mosow.We demonstrate some experimental results of solving integral equations. In orderto ompare experimental results with the preise solution, we took a funtion thatmust be a solution and alulated f(x). Numerial experiment was done with that
f(x). The preise solution was the funtion u(x) = (x1 − x2)

5 .Here is the input data:i. K(x, y) = (0.1x1y1 + 0.5x2y2)
3.ii. f(x) = (x1−x2)

5− (3.5 ·10−6x2x
2
1 +9.9 ·10−7x3

1−1.4 ·10−5x2
2x1 −1.1 ·10−4x3

2).iii. The integration domain (onvex, see Fig. 3)
Ω1 = {x|Φ1(x) > 0},

Φ1(x) = 1 − ((x1 − 0.5)/0.4)2 − ((x2 − 0.5)/0.4)4 ,
.iv. Cubi lattie step h = 1/200, 1/300.v. Smoothness parameter M = 2, 3.vi. Number of proessors P from from 10 to 1000 .

Fig. 3: The domain Ω1The expeted auray of the alulations is O((h/ε0)
M), where ε0 estimates thethikness of the boundary layer (see (3)).The alulation auray was obtained in two ways � by omparing with thepreise solution and by the Runge rule, i.e. by stability of deimal digits in theresults with dereasing h.Table 5 ontains iterative proess data with given parameters.In Table 5 the auray was alulated by deimal digits stability. Afteromparing last iteration result with the exat solution u(x) = (x1 − x2)

5 we havegot the oinidene of 5 − 6 deimal digits.
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s � iteration number h = 1/200, ‖us − us−1‖ h = 1/300, ‖us − us−1‖1 0.0987 0.09882 0.000776 0.0007783 0.0000268 0.00002694 0.00000310 0.00000310Tab. 5: The ahieved auray for the smoothness parameter M = 2Here the in�uene of 1/ε0 when ε = 0.1 is insigni�ant, beause the domain Ω1is onvex and the number of regions of the partition of the unity is small.Table 6 shows the programme working time for di�erent numbers of proessorsquantity. P 10 20 30 40 50 100

TP 230 127 93 75 63 36
SP 10 18 24.7 36 42.6 63.8
EP 1 0.9 0.8 0.8 0.72 0.63Tab. 6: Running time with di�erent numbers of proessors P , h = 1/200, M = 2.The ahieved auray is 10−5.The next numerial experiment was onduted with the non-onvex domain (seeFig. 4)

Ω2 = {x|Φ2(x) > 0},
Φ2(x) = 1 −

√
8(x1 − 0.5)2 + 8(x2 − 0.5)2 + (2(x1 − 0.5)(x2 − 0.5) sin(1)

+ cos(1)((x1 − 0.5)2 − (x2 − 0.5)2)2)/((x1 − 0.5)2 + (x2 − 0.5)2)2

.

Fig. 4: The domain Ω2In view of the fat that in this test the exat solution of the equation is not known,the auray of alulations is evaluated aording to the stability of deimal digits.We have got that the theoretially expeted auray of the numerial solution of
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M of order 10−5 is ahieved on the �fth iteration with

h = 0.004, M = 3, ε0 = 0.1.Yet another test with the following data:1. K(x, s) = (0.1x1s1 + 0.5x2s2)
3.2. f(x) = (x1 + x2)

3.3. The integration domain (disonneted, see Fig. 5)
Ω3 = {x|Φ3(x) > 0},

Φ3(x) = −(1 − 9(x1 − 0.5)2 − 100((x2 − 0.3) − 2(x1 − 0.5)2)2)·
·(1/144− ((x1 − 0.5) − 1/10)2 − (((x2 − 0.5) + 0.2) − 0.3)2).

Fig. 5: The domain Ω3The auray was alulated by deimal digits stability. Table 7 shows that thetheoretially expeted auray (h/ε0)
M of order 10−5 is ahieved on the fourthiteration with h = 0.005, M = 3, ε0 = 0.3.

s�iteration number 1 2 3 4
||us − us−1|| 0.01 0.0001 0.00001 0.000001Tab. 7: The ahieved aurayThe programme running time for 1000 proessors was 12 seonds.Thus, using of BBL-formulas is good for numerial solution of integral equations.The appliation of the iteration method in ombination with BBL lattie ubatureformulas allows to ahieve auray 10−5 by 5�6 iterations.We must note that this algorithm of solving integral equations allows toparallelize well the omputing programme for use on the multiproessor omputingsystems.4 ConlusionsHere are the most important results of the theory of BBL formulas. In fat theasymptoti optimality and the optimality by order are very lose onepts forubature formulas with the bounded boundary layer. For simpliity, we assumethat the domain Ω belongs to the unit ube Q = [0, 1)n and has the boundary
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Γ ⊂ CM . Let the lattie of nodes be ubial, {h · k | k ∈ Zn}, with lattie step h,i.e., h = 1/Ñ, Ñ ∈ Z+. The spaes W̃m

p (Ω) are de�ned by the norms (4), (5) where
m ∈ (n/p, M) with some natural M > n

p
.Let

Kh : f → hn
∑

hk∈Ω

ck(h)f(hk)be any sequene of BBL formulas.Theorem. Let 1 < p1 < p2 <∞ and n
p1
< m1 < m2 < M. Then the sequene {Kh}is asymptotially optimal in every spae of the family {W̃m

p (Ω)}m∈(m1,m2)
p∈(p1,p2)

if and onlyif it is optimal by order in every of these spaes.Remark. The number M is involved in the design of our BBL formulas desribedabove, ensuring optimality by order for eah of the spaes W̃m
p (Ω) with m < M .Therefore, these formulas are universally asymptotially optimal for every m ∈(

n
p
, M

)
.This is very important for the suess of the programme for approximateintegration of funtions with various smoothness. We name algorithms with thisproperty as onditionally unsaturated algorithms, trying to follow the terminologyproposed in his time by K.I. Babenko [1℄.The same sequene of ubature formulas remains asymptotially optimal on somespaes with anisotropi smoothness. Namely, let the spae W̃ µ

2 (Ω) be de�ned withthe help of the norm
‖f‖

fWµ
2 (Ω) = inf

g|Ω=f
‖g‖

fWµ
2 (Q), g(x) =

∑
k∈Zn

gke
2πikx,

‖g‖
fWµ

2 (Ω) =

(
∫
Q

∑
k∈Zn

|gkµ(2πik)|2 dx
) 1

2

.We assume that |µ(ξ)| ≤ C(1 + |ξ|)m with some m < M and the funtion µ (thatdesribes smoothness) satis�es the estimate
∀α ∈ Z

n
+

|Dαµ(ξ)|
|µ(ξ)| ≤ Cα(1 + |ξ|)−ρ|α| with some ρ > 0.This is exatly the onditions of the hypoelliptiity of pseudodi�erential operator
g(x) →

∑

k∈Zn

gkµ(2πik)e2πikx.See [3℄, [5℄ � [10℄ for details.
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