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Abstract. In this paper, we study the interpolation properties of anisotropic net spaces Np̄,q̄(M),
where p̄ = (p1, ..., pn), q̄ = (q1, ..., qn). It is shown that, with respect to the multidimensional
interpolation method, the following equality holds

(Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄ = Np̄,q̄(M),
1

p̄
=

1− θ̄
p̄0

+
θ̄

p̄1

.
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1 Introduction

LetM be the set of all segments from R. For a function f(x), defined and integrable on each segment
Q of M , we define the function

f̄(t,M) = sup
Q∈M
|Q|>t

1

|Q|

∣∣∣∣∫
Q

f(x)dx

∣∣∣∣ , t > 0,

where the supremum is taken over all segments Q ∈ M , whose length is |Q| > t. The function
f̄(t,M) is called the averaging of the function f over the net M .

We define the net spaces Np,q(M), 0 < p, q ≤ ∞ as the set of all functions f , such that for q <∞

‖f‖Np,q(M) =

(∫ ∞
0

(
t

1
p f̄(t,M)

)q
dt

t

) 1
q

<∞,

and for q =∞
‖f‖Np,∞(M) = sup

t>0
t

1
p f̄(t,M) <∞.

These spaces were introduced in work [18]. Net spaces are an important research tool in the
theory of Fourier series, in operator theory and in other areas [1]-[3], [19]-[23], [24], [28], [29].

It was shown in [17] that the scale of spaces Np,q(M) is closed under the real interpolation method,
i.e. for p0 6= p1 holds

(Np0,q0(M), Np1,q1(M))θ,q = Np,q(M).

If in the definition of the space Np,q(M) instead of f̄(t,M) we consider the function

sup
Q∈M
|Q|>t

1

|Q|

∫
Q

|f(x)|dx,
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then the corresponding space, as can be seen from [9], coincides with the Morrey space Mα
p,q, where

α = 1
p
− 1

q
, but for the scale of these spaces it is known that it is not closed under the real interpolation

method (see [7], [25], [26]).
We consider the following generalization of the space Np,q(M) in the n-dimensional case.
Let τ ∈ Z, by Gτ we denote the set of all segments of the form [0, 2τ}+ kτ , k ∈ Z. Let G =

⋃
Gτ

be the set of all dyadic segments. Let M be a set of all parallelipeds of the form

Q = Q1 × · · · ×Qn

where Qi ∈ G, i = 1, . . . , n. We will call M dyadic net.
For the function f(x) = f(x1, ..., xn) integrable on every set Q ∈M we define

f̄(t;M) = f̄(t1, ..., tn;M) = sup
|Qi|≥ti

1

|Qn|

∣∣∣∣∫
Q

f(x1, ..., xn)dx1...dxn

∣∣∣∣ , ti > 0,

where |Qi| is the length of the segment Qi.
Let 0 < p̄ = (p1, ..., pn) <∞, 0 < q̄ = (q1, ..., qn) ≤ ∞. Denote by Np̄,q̄(M) the set of all functions

f(x) = f(x1, ..., xn), for which

‖f‖Np̄,q̄(M) =

(∫ ∞
0

. . .

(∫ ∞
0

(
t

1
p1
1 ...t

1
pn
n f̄(t1, ..., tn;M)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

<∞,

here and below, when q =∞, the expression
(∫∞

0
(ϕ(t))q dt

t

) 1
q is understood as supt>0 ϕ(t).

As can be seen from the definition of the space Np̄,q̄(M), this is the space of functions that have
different characteristics for each variable. These spaces are called anisotropic net spaces.

For spaces with a mixed metric, anisotropic spaces, the real interpolation method does not work.
For the interpolation of mixed metric spaces, the interpolation method was introduced by D.L. Fer-
nandez [11]-[13] and modified in [14], [17], [20], [21]. An interpolation theorem regarding this method
for Lebesgue spaces Lp̄ with a mixed metric was obtained in [22]: let 0 < p̄i <∞ and pi0 6= pi1, i = 0, 1,
0 < q̄ ≤ ∞, 0 < θ̄ < 1, then

(Lp̄0 , Lp̄1)θ̄,q̄ = Lp̄,q̄,
1

p̄
=

1− θ̄
p̄0

+
θ̄

p̄1

,

where Lp̄,q̄ is the anisotropic Lorentz space. (see [8])
Other applications of this method can be found in [6], [22].
The purpose of this paper is to obtain an interpolation theorem for anisotropic net spaces.
Given functions F and G, in this paper F � G means that F ≤ CG and G ≤ CF , where C

is a positive number, depending only on numerical parameters, that may be different on different
occasions.

2 Lemmas

Let τ = (τ1, ..., τn). The system of all sets Gτ = Gτ1×· · ·×Gτn =
{
Ik = I1

k1
× · · · × Inkn : I iki ∈ Gτi

}
defines the partition of Rn into parallelepipeds, i.e. Rn =

⋃
k∈Z

Ik.

Let E = {ε = (ε1, ..., εn) : εi ∈ {0, 1}} be the vertices of the unit cube in Rn. For a locally
integrable function f(x1, ..., xn) and a set Gτ we define the functions fε(x), ε ∈ E as follows:

fε(x) =
1

n∏
i=1

|I iki |

∫
Inkn

. . .

∫
I1
k1

∆ε
xf(x′1, ..., x

′
n)dx1

′...dxn
′ x ∈ I1

k1
× · · · × Inkn , (2.1)



Interpolation methods for anisotropic net spaces 35

where
∆ε
xf(x′) = ∆εn

xn . . .∆
ε1
x1
f(x′),

∆εi
xi
φ(x′i) =

{
φ(x′i), for ε = 0,

φ(xi)− φ(x′i), for ε = 1.

Note that f(x) =
∑

ε∈E fε(x). These functions {fε}ε∈E will be called the expansion of the function
f(x), corresponding to the partition Gτ .

Lemma 2.1. Let τ = (τ1, ..., τn) ∈ Zn, Gτ be the partition of Rn into rectangles, f(x1, ..., xn) be
locally integrable on Rn. f =

∑
ε∈E fε(x) be the decomposition corresponding to the partition Gτ .

Then for εi = 1

1

|I ik|

∫
Iik

fε(x1, ..., xn)dxi =

{
0, εi = 1

fε(x1, ..., xn), εi = 0
, k ∈ Z.

The proof follows from the definitions of the functions fε.

Lemma 2.2. Let τ = (τ1, ..., τn) ∈ Zn, τi > 0, Gτ be a partition of Rn into rectangles, f(x1, ..., xn)
be locally integrable on Rn and {fε}ε∈E be the decomposition of the function f(x), corresponding to
the partition Gτ . Then for an arbitrary t ∈ Zn

f̄ε(2
t1 , ..., 2tn ;M)

≤

2|ε|
n∏
i=1

min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M), for tiεi < τi, i = 0, n,

0, otherwise,
(2.2)

where |ε| = ε1 + ...+ εn.

Proof. Let Q = Q1 × · · · ×Qn ∈M , |Qi| = 2si . Let us prove the following equality

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ =
1

|Qn|

∣∣∣∣∫
Qn

∆εn
xn

1

|Qn−1|

∫
Qn−1

∆εn−1
xn−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
n

∣∣∣∣ . (2.3)

Since for si ≥ τi the segment Qi splits into segments from Gτ , then if for some index i, si ≥ τi
and εi = 1 are satisfied, then

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ = 0.

Therefore, we assume that if εi = 1, then si < τi. Further, in the case when εi = 0 and si < τi we
have

1

|Qi|

∫
Qi

∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i

= ∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i−1.

And in the case when ε = 0 and si ≥ τi

1

|Qi|

∫
Qi

∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i
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=
∑
Iik⊂Qi

1

|Qi|

∫
Iik

∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i.

By the above equalities, we have

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ ≤ 2|ε|
n∏
i=1

min{2τi−si , 1}f̄(2s1ε1+τ1(1−ε1), ..., 2snεn+τn(1−εn);M).

Taking into account that si ≥ ti we get

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ ≤ 2|ε|
n∏
i=1

min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M).

We will use the classical Hardy inequalities. Let us formulate them as a lemma.

Lemma 2.3 (Hardy’s inequality). Let 1 ≤ q <∞, α > 0, then the inequalities hold(∫ ∞
0

(
tα
∫ ∞
t

ϕ(s)ds

)q
dt

t

) 1
q

≤ α−1

(∫ ∞
0

(
t1+αϕ(t)

)q dt
t

) 1
q

,

(∫ ∞
0

(
t−α
∫ t

0

ϕ(s)ds

)q
dt

t

) 1
q

≤ α−1

(∫ ∞
0

(
t1−αϕ(t)

)q dt
t

) 1
q

.

3 Main result

Let us consider the interpolation method for anisotropic spaces proposed by Nursultanov E.D. [20].
This method is based on the ideas of G. Sparr [27] , D.L. Fernandez [11]-[13] and others [10], [15],
[16]. Some results related to the interpolation of anisotropic net spaces were obtained in papers [4],
[5].

Let A0 = (A0
1, ..., A

0
n), A1 = (A1

1, ..., A
1
n) be two anisotropic spaces, E = {ε = (ε1, ..., εn) : εi = 0,

or εi = 1, i = 1, ..., n}. For arbitrary ε ∈ E we define the space Aε = (Aε11 , ..., A
εn
n ) with the norm

‖f‖Aε = ‖ . . . ‖f‖Aε11
. . . ‖Aεnn .

Let 0 < θ̄ = (θ1, ..., θn) < 1, 0 < q̄ = (q1, ..., qn) ≤ ∞. Via Aθ̄,q̄ = (A0,A1)θ̄,q̄ denote the linear
subset

∑
ε∈E Aε, of all elements, for which

‖f‖Aθ̄,q̄
=

(∫ ∞
0

. . .

(∫ ∞
0

(
t−θ11 . . . t−θnn K(t1, ..., tn; f)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

<∞,

where

K(t, f ;A0,A1) = inf

{∑
ε∈E

tε‖fε‖Aε : f =
∑
ε∈E

fε, fε ∈ Aε

}
,

where tε = tε11 ...t
εn
n .

Lemma 3.1. Let ai > 1, i = 1, ..., n 0 < θ̄ = (θ1, ..., θn) < 1, 0 < q̄ = (q1, ..., qn) ≤ ∞. Then

‖f‖Aθ̄,q̄
�

∑
kn∈Z

. . .

(∑
k1∈Z

(
a−θ1k1

1 . . . a−θnknn K(ak1
1 , ..., a

kn
n ; f)

)q1) q2
q1

. . .

 1
qn

= Jθ̄,q̄(f).
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Proof. From the definition of the space Aθ̄,q̄ we have

‖f‖Aθ̄,q̄
=

(∫ ∞
0

. . .

(∫ ∞
0

(
t−θ11 . . . t−θnn K(t1, ..., tn; f)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

=

∑
kn∈Z

∫ akn+1
n

aknn

. . .

(∑
kn∈Z

∫ a
k1+1
1

a
k1
1

(
t−θ11 . . . t−θnn K(t1, ..., tn; f)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn


1
qn

.

If the function Φ(ti) is monotonically non-decreasing in the variable ti then we get

(
a
−θi(ki+1)
i Φ(a−θikii )

)qi
ln ai ≤

∫ a
k1+1
i

a
k1
i

(
t−θii Φ(ti)

)qi dti
ti
≤
(
a−θ1k1
i Φ(a

−θ1(k1+1)
i )

)qi
ln ai.

Applying this relation and taking into account that K(t1, ..., tn; f) is non-decreasing in each
variable, we obtain

C1Jθ̄,q̄(f) ≤ ‖f‖Aθ̄,q̄
≤ C2Jθ̄,q̄(f),

where

C1 =
n∏
i=1

a−θii (ln ai)
1
qi ,

and

C2 =
n∏
i=1

aθii (ln ai)
1
qi .

Theorem 3.1. Let M be the dyadic net in Rn, 0 < p̄1 = (p1
1, ..., p

1
n) < p̄0 = (p0

1, ..., p
0
n) < ∞,

0 < q̄0, q̄, q̄1 ≤ ∞, 0 < θ̄ = (θ1, ..., θn) < 1, then

(Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄ = Np̄,q̄(M), (3.1)

where 1
p̄

= 1−θ̄
p̄0

+ θ̄
p̄1
.

Proof. Let us prove the continuous embedding

Np̄,q̄(M) ↪→ (Np̄0,v̄(M), Np̄1,v̄(M))θ̄,q̄ , (3.2)

where v̄ = (v, ..., v), v = min1≤i≤n qi.
Let τ = (τ1, ..., τn) ∈ Zn, Gτ be a partition of Rn, f ∈ Np̄,q̄(M), f =

∑
ε∈E fε(x) be the decompo-

sition corresponding to the partition Gτ (fε is defined by the formula (2.1)).
Using Lemma 2.2, we get

‖fε‖Np̄ε,v̄ �

(∑
tn∈Z

. . .
∑
t1∈Z

(
2
t1

p
ε1
1 . . . 2

tn
p
εn
n f̄ε(2

t1 , ..., 2tn ;M)

)v) 1
v

≤ 2|ε|

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

.
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Hence for ai > 1, i = 1, n, we have

K(aτ11 , .., a
τn
n , f ;Np̄ε,v̄, ε ∈ E) =

∑
ε∈E

aε1τ11 . . . aεnτnn ‖fε‖Np̄ε,v̄

≤ 2n
∑
ε∈E

aε1τ11 . . . aεnτnn

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

,

and

‖f‖(Np̄0,v̄(M),Np̄1,v̄(M))θ̄,q̄
�

∑
τn∈Z

. . .

(∑
τ1∈Z

(
a−θ1τ11 . . . a−θnτnn K(aτ11 , ..., a

τn
n , f)

)q1) q2
q1

. . .

 1
qn

≤ C
∑
ε∈E

(∑
τn∈Z

. . .

(∑
τ1∈Z

(
a

(ε1−θ1)τ1
1 . . . a(εn−θn)τn

n ×

×

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

q1
q2
q1

. . .


1
qn

, (3.3)

where C = 2n2
∑n
i=1(1− 1

q1
)+ .

Let ε ∈ E, using the definition of v and the generalized Minkowski inequality, we obtain(∑
τn∈Z

. . .

(∑
τ1∈Z

(
a

(ε1−θ1)τ1
1 . . . a(εn−θn)τn

n ×

×

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

q1
q2
q1

. . .


1
qn

,

≤

∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
2
tn
p
εn
n min{2τn−tn , 1}Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn

,

where

Fn−1(y) =

 ∑
τn−1∈Z

. . .

(∑
τ1∈Z

(
a

(ε1−θ1)τ1
1 . . . a(εn−θn)τn

n ×

×

( ∑
εiti<τi

(
n−1∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., y;M)

)v) 1
v

q1
q2
q1

. . .


1
qn

.

Let an = 2
1

p0n
− 1

p1n . If εn = 0, then we have∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
2
tn
p
εn
n min{2τn−tn , 1}Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn
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=

∑
τn∈Z

2
−θnτn( 1

p0n
− 1

p1n
)

(∑
tn∈Z

(
2
tn
p0n min{2τn−tn , 1}Fn−1(2τn)

)v) 1
v

qn
1
qn

=

∑
τn∈Z

2
−θnτn( 1

p0n
− 1

p1n
)
Fn−1(2τn)

(
τn∑

tn=−∞

(
2
tn
p0n

)v
+

∞∑
tn=τn+1

(
2
tn
p0n 2τn−tn

)v) 1
v

qn
1
qn

�

(∑
τn∈Z

(
2
−θnτn( 1

p0n
− 1

p1n
)
Fn−1(2τn)2

τn
p0n

)qn) 1
qn

=

(∑
τn∈Z

(
2
τn
pnFn−1(2τn)

)qn) 1
qn

.

In the last relation, we used the equality 1
pn

= 1−θn
p0
n

+ θ
p1
n
.

If εn = 1, then we get∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
2
tn
p
εn
n min{2τn−tn , 1}Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn

=

∑
τn∈Z

2
(1−θ)nτn( 1

p0n
− 1

p1n
)

(
τn−1∑
tn=−∞

(
2
tn
p1nFn−1(2tn)

)v) 1
v

qn
1
qn

≤ C

(∑
τn∈Z

(
2
τn
pnFn−1(2τn)

)qn) 1
qn

.

where C>0 is independent of f . Here we have used Hardy’s inequality and the equality 1
pn

= 1−θn
p0
n

+ θ
p1
n
.

Further, applying to Fn−1(2τn) the same procedure as above, after n − 1 steps we obtain the
estimate of the form

∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
min{2τn−tn(1− 1

p
εn
n

)
, 2

tn
p
εn
n }Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn

≤ C

∑
τn∈Z

. . .

(∑
τ1∈Z

(
2
τn
pn . . . 2

τ1
p1 f̄n−1(2τ1 , ..., 2τn ;M)

)q1) q2
q1

. . .

 1
qn

� ‖f‖Np̄,q̄(M).

where C>0 is independent of f.
Substituting the resulting relation into (3.3) we get (3.2). Thus, taking into account that v =

min1≤i≤n qi, we get the continuous embedding

Np̄,q̄(M) ↪→ (Np̄0,v̄(M), Np̄1,v̄(M))θ̄,q̄ ↪→ (Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄.

The reverse continuous embedding (Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄ ↪→ Np̄,q̄(M) was proved in [20] (see
Theorem 1).
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