
ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2024, Volume 15, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University

the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University

and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice–Editors–in–Chief
K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (Kazakhstan), O.V. Besov (Russia),
N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud
(France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov
(Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan),
B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin
(Great Britain), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan),
P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), F. Lanzara (Italy), V.G. Maz’ya (Sweden),
K.T. Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Para-
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Abstract. In the paper, the Lorentz space Lq,τ (Tm) of periodic functions of several variables,
the Nikol’skii–Besov class Srq,τ,θB and the associated class W a,b,r

q,τ for 1 < q, τ < ∞, 1 6 θ 6 ∞ are
considered. Estimates are established for the bestM -term trigonometric approximations of functions
of the classes W a,b,r

q,τ1
and Srq,τ1,θB in the norm of the space Lp,τ2(Tm) for different relations between

the parameters q, τ1, p, τ2, a, θ. The proofs of the theorems are based on the constructive method
developed by V.N. Temlyakov.
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1 Introduction

Let N, Z, R– be the sets of all natural, integer, real numbers, respectively, and Z+ = N ∪ {0},
Rm—m-dimensional Euclidean point space x = (x1, . . . , xm) with real coordinates; Tm = [0, 2π)m

and Im = [0, 1)m — m-dimensional cube.
Lp,τ (Tm) will denote the Lorentz space of all real-valued Lebesgue-measurable functions f that

have a 2π-period in each variable and for which the quantity

‖f‖p,τ =

τp
1∫

0

(
f ∗(t)

)τ
t
τ
p
−1dt


1
τ

, 1 < p <∞, 1 6 τ <∞,

is finite, where f ∗(t) is the non-increasing rearrangement of the function |f(2πx)|, x ∈ Im (see [34],
pp. 213–216).

In the case τ = p, the Lorentz space Lp,τ (Tm) coincides with the Lebesgue space Lp(Tm) with
the norm (see for example, [26, Chapter 1, Section 1.1, p. 11])

‖f‖p =

[∫ 2π

0

...

∫ 2π

0

|f(x1, ..., xm)|pdx1...dxm

] 1
p

, 1 ≤ p <∞.

We will introduce the notation an(f)-Fourier coefficients of the function f ∈ L1 (Tm) by system

{ei〈n,x〉}n∈Zm and 〈y, x〉 =
m∑
j=1

yjxj;

δs(f, x) =
∑
n∈ρ(s)

an (f) ei〈n,x〉,
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where
ρ(s) =

{
k = (k1, ..., km) ∈ Zm : [2sj−1] ≤ |kj| < 2sj , j = 1, ...,m

}
,

[a] is the integer part of a real number a, s = (s1, ..., sm), sj ∈ Z+.
For a given p ∈ [1,∞), a numerical sequence {an}n∈Zm belongs to the space lp if

∥∥{an}n∈Zm∥∥lp =

[∑
n̄∈Zm

|an|p
] 1
p

<∞.

Further, for a vector r = (r1, ..., rm) and the zero vector 0 = (0, ..., 0), the inequality r > 0
means that rj > 0 for all j = 1, 2, ...,m. Let 1 6 θ 6 ∞. We will consider an analogue of the
Nikol’skii-Besov class

Srp,τ,θB =

{
f ∈ L̊p,τ (Tm) :

∥∥∥∥{2〈s,r〉 ‖δs(f)‖p,τ
}
s̄∈Zm+

∥∥∥∥
lθ

6 1

}
.

In the case τ = p, the class Srp,τ,θB coincides with the well-known Nikol’skii-Besov class Srp,θB in
the space Lp(Tm) (see for example [8], [23]). Currently, there are various generalizations of the
Nikol’skii–Besov spaces and their further applications in the theory of approximation of functions,
harmonic analysis and in other branches of mathematics (see, for example, [9], [15], [16], [18], [36],
[40]).

For a given vector r = (r1, ..., rm) > 0 = (0, . . . , 0) put γ = r
r1

and

Q(γ)
n = ∪〈s,γ〉<nρ(s),

S
(γ)
Qn,γ̄

(f, x) =
∑

k∈Q(γ)
n
ak(f)ei〈k,x〉 will denote a partial sum of the Fourier series of a function f .

Let k̄(j) ∈ Zm. The quantity

eM(f)p,τ = inf
k

(j)
,bj

∥∥∥f − M∑
j=1

bje
〈ik(j)

,x〉
∥∥∥
p,τ

is called the bestM–term trigonometric approximation of a function f ∈ Lp,τ (Tm),M ∈ N, k(j) ∈ Zm.
If F ⊂ Lp,τ (Tm) is some functional class, then we put

eM(F )p,τ = sup
f∈F

eM(f)p,τ .

In the case τ = p instead of eM(F )p,τ we will write eM(F )p.
The best M–term approximation of a function f ∈ L2[0, 1] by polynomials via an orthonormal

system was first defined by S.B. Stechkin [33] who established a criterion for the absolute convergence
of the Fourier series via this system. Further, important results on estimatingM -term approximations
of functions for various classes of Sobolev, Nikol’skii–Besov, Lizorkin–Triebel were obtained by R.S.
Ismagilov [21], Yu. Makovoz [25], V.E. Mayorov [24], E.S. Belinsky [12] – [14], B.S. Kashin [22], R.
DeVore [16], V. N. Temlyakov [35] – [39], A.S. Romanyuk [27], [28], Dinh Dung [17], Wang Heping
and Sun Yongsheng [41], M. Hansen and W.Sickel [19], [20] , S.A. Stasyuk [30] – [32], A.L. Shidlich
[29].

To estimate M–term approximations of functions of the Nikol’skii–Besov class Srp,θB in the space
Lq(Tm) two methods were used: non-constructive and constructive. The first method is based on
Lemma 2.3 [14] (also see [25], [24]) which is proved by probabilistic reasoning. The second method was
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developed by V.N. Temlyakov [37], [38] and is based on greedy algorithms (see [36], [39]). Further, a
constructive method of n–term approximations for the trigonometric system was developed by D.B.
Bazarkhanov and V.N. Temlyakov in [10] and in [11]. A survey of the results on this theory can be
found in [18]. Estimates for n–term approximations of functions of the Nikol’skii–Besov class in the
Lorentz space are investigated in [1] – [3].

For a constructive method for estimating n - term approximations of functions of the Nikol’skii–
Besov class Srp,θB V.N. Temlyakov [37], [38] introduced the class W a,b,r

q . In this article, we will
consider an analogue of this class in the Lorentz space.

For a function f ∈ L1(Tm) put

fl,r(x) =
∑

l6〈s,γ〉<l+1

δs(f, x), l ∈ Z+,

where γ = (γ1, . . . , γm), γ1 = . . . = γν < γν+1 ≤ . . . ≤ γm, γj =
rj
r1
, rj > 0, j = 1, . . . ,m.

We will consider the following class defined in [37], [38]

W a,b,r
A = {f ∈ L1(Tm) : ‖fl,r‖A 6 2−lal

(ν−1)b
0 },

where l0 = max{1, l}, l ∈ Z+ and

‖fl,r‖A =
∑

l6〈s,γ〉<l+1

∑
n∈ρ(s)

|an(f)|.

We also define the class

W a,b,r
q,τ = {f ∈ L1(Tm) : ‖fl,r‖q,τ 6 2−lal

(ν−1)b
0 },

where a > 0, b ∈ R, l0 = max{1, l}.
We will introduce the following notation

‖f‖Wa,b,r
q,τ

= sup
l∈Z+

‖fl,r‖q,τ2lal−(ν−1)b
0 , 1 < q, τ <∞.

In the case τ = q, the class W a,b,r
q,τ is defined by V.N. Temlyakov [37], [38] and in this case, instead of

W a,b,r
q,q we will write W a,b,r

q .
For the class W a,b,r

q,τ1
we put

en(W a,b,r
q,τ1

)p,τ2 = sup
f∈Wa,b,r

q,τ1

en(f)p,τ2 , 1 < q, p, τ1, τ2 <∞.

In the case τ = q, the order-sharp estimates for the best n-th trigonometric approximations of
functions belonging to the class W a,b,r

q in the space Lp(Tm), 1 < q 6 p <∞ were established by V.N.
Temlyakov [37], [38]. In particular, he proved
Theorem 1.1 ([38, Theorem 3.2]). Let 1 < q ≤ 2 < p <∞ and (1

q
− 1

p
)p
′
< a < 1

q
, p′ = p

p−1
, then

en(W a,b,r
q )p � n−

p
2

(a+ 1
p
− 1
q

)(log2 n)(ν−1)(b+a(p−1)−( 1
q
− 1
p

)p).

Here and in what follows, the notation An � Bn means that there exist positive numbers C1, C2

independent of n ∈ N such that C1An 6 Bn 6 C2An for n ∈ N.
In [38], the problem of finding order-sharp estimates for en(W a,b,r

q )p by the constructive method,
in the case of 1

q
− 1

p
< a < (1

q
− 1

p
)p
′ , 1 < q 6 2 < p <∞ remains open.

We will consider the problem of estimating the best M–term trigonometric approximations for
the Lorentz space. The main results of the article are formulated and proved in the third section
(see Theorem 3.1 and Theorem 3.2). In the second section, we formulate some auxiliary assertions
required for proving the main results. In the fourth section, as an application of Theorem 3.1, we
establish an upper bound for the best M - term approximations of functions of the Nikol’skii-Besov
class in the Lorentz space (see Theorem 4.1).
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2 Auxiliary statements

Theorem 2.1. (see [5]). Let 1 < q < λ <∞, 1 < τ, θ <∞. If a function f ∈ Lq,τ (Tm), then

‖f‖q,τ > C
(∑
s∈Zm+

m∏
l=1

2sl(1/λ−1/q)τ‖δs(f)‖τλ,θ
)1/τ

,

where C > 0 is independent of f .

Theorem 2.2. (see [5]). Let 1 < p < q <∞, 1 < τ1, τ2 <∞. If the function f ∈ Lp,τ1(Tm) satisfies
the condition ∑

s∈Zm+

m∏
j=1

2sjτ2(1/p−1/q)‖δs(f)‖τ2p,τ1 <∞,

then f ∈ Lq,τ2(Tm) and the following inequality holds

‖f‖q,τ2 6 C

(∑
s∈Zm+

m∏
j=1

2sjτ2(1/p−1/q)‖δs(f)‖τ2p,τ1

)1/τ2

,

where C > 0 is independent of f .

Let A(Tm) be the space f ∈ L(Tm) with absolutely converging Fourier series with the norm (see
[11], [37], [38])

‖f‖A =
∑
k∈Zm

|ak(f)|.

As a corollary of Theorem 1.1 [38], the following statement is true, which we will often use in the
proofs of theorems.

Lemma 2.1. Let 2 6 p < ∞ and 1 < τ < ∞. There exist constructive approximation methods
GM(f) based on greedy-type algorithms that lead to M–term polynomials with respect the system
{ei〈k,x〉}k∈Zm with the following property:

‖f −GM(f)‖p,τ ≤ CM− 1
2p

1
2‖f‖A,

for all f ∈ A(Tm), where C > 0 is independent of M ∈ N and of f .

Proof. . We will choose a number p0 ∈ (p,∞). It is known that Lp0(Tm) ⊂ Lp,τ (Tm) and ‖g‖p,τ 6
C‖g‖p0 for a function g ∈ Lp0(Tm) (see [34, Theorem 3.11]). Now, according to Theorem 1.1 [38] or
Theorem 2.6 [37], it is easy to verify that the assertion of Lemma 2.1 is true.

3 Main results

Theorem 3.1. Let 0 < r1 = . . . = rν < rν+1 ≤ . . . rm, 1 < q < 2 < p < ∞, 1 < τ1, τ2 < ∞,
1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, τ

′
2 = τ2

τ2−1
and b ∈ R.

If 1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, τ

′
2 = τ2

τ2−1
, then

eM(W a,b,r
q,τ1

)p,τ2 �M− p
2

(a+ 1
p
− 1
q

)(log2M)(ν−1)b, M > 1.
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If a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then

eM(W a,b,r
q,τ1

)p,τ2 6 C

 M
− τ
′
2
2

( 1
τ1
− 1
τ2

)
(log2M)(ν−1)b(log2 log2M)1/τ2 , if (ν − 1)bτ2 + 1 6= 0,

M
− τ
′
2
2

( 1
τ1
− 1
τ2

)
, if (ν − 1)bτ2 + 1 = 0

for M > 4, where C > 0 is independent of M and f .

Proof. For a natural number M , there is a number n ∈ N such that M � 2nnν−1.
Let ν > 2 be a natural number. We put

n1 =
p

2
n− p

(1

2
− 1

τ2

)
(ν − 1) log n,

n2 =
p

2
n+

p

2
(ν − 1) log n.

We will introduce the notation

Sl =
(

2laτ1 l̄−(ν−1)bτ1
∑

l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1

and

ml =
[
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

]
+ 1, l ∈ Z+,

where 〈s̄, 1̄〉 =
m∑
j=1

sj, p
′
= p

p−1
and [y] is an integer part of the number y.

By G(l) we denote the set of indices s, l ≤ 〈s̄, γ̄〉 < l+1, with the largest ‖δs(f)‖2 and ml = |G(l)|
is the number of elements in the set G(l).

Let us consider the functions
F1(x) =

∑
n6l<n1

fl(x),

F2(x) =
∑

n16l<n2

∑
s̄ /∈G(l)

δs(f, x),

F3(x) =
∑

n16l<n2

∑
s̄∈G(l)

δs(f, x).

We will estimate ‖F1‖A. Applying Hölder’s inequality for the sum and Parseval’s equality, we have

‖F1‖A =

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

∑
k∈ρ(s)

|ak(f)| 6

2−
m
2

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2

= 2−
m
2

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖22〈s̄,1̄〉
1
q . (3.1)
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Now, to the inner sum on the right side of inequality (3.1), applying Hölder’s inequality to the inner
sum for 1

τ1
+ 1

τ
′
1

= 1 and 1 < τ1 <∞, we get

‖F1‖A 6 2−
m
2

n1−1∑
l=n

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
q

)1/τ
′
1

. (3.2)

We will choose numbers δj such that δj = γj for j = 1, . . . , ν and 1 < δj < γj for j = ν + 1, . . . ,m.
Then, by Lemma G [35], we have

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
q

)1/τ
′
1

6 C2
l
q l

ν−1

τ
′
1 , (3.3)

where C > 0 is independent of l. According to Theorem 2.1, for 1 < q < 2 and λ = θ = 2, we have

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1
6 C

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1
, (3.4)

where here and in the rest of the proof C denotes a positive number which depends only on numerical
parameters, and may be different on different occurrences.

Now, taking into account that the function f ∈ W a,b,r
q,τ1

, 1
q
− a > 0, from inequalities (3.2), (3.3)

and (3.4), we obtain

‖F1‖A 6 C

n1−1∑
l=n

2
l
q l(ν−1)/τ

′
1

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

) 1
τ1

6 C

n1−1∑
l=n

2
l
q l(ν−1)/τ

′
1

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

6 C

n1−1∑
l=n

2l(
1
q
−a)l

(ν−1)(b+ 1

τ
′
1 6 C2n1( 1

q
−a)n

(ν−1)(b+ 1

τ
′
1

)

1 .

Thus,

‖F1‖A 6 C2n1( 1
q
−a)n

(ν−1)(b+ 1

τ
′
1

)

1 (3.5)

for a function f ∈ W a,b,r
q,τ1

and 1
q
− a > 0, 1 < q < 2 and 1 < τ1 <∞. By Lemma 2.1 for the function

F1, using a constructive method, one can find an M–term trigonometric polynomial GM(F1, x) such
that

‖F1 −GM(F1)‖p,τ2 6 CM−1/2‖F1‖A, 2 < p <∞. (3.6)

Now, taking into account the definition of the number n1 and the condition a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2
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from estimates (3.5) and (3.6) we obtain

‖F1 −GM(F1)‖p,τ2 6 CM−1/22n1( 1
q
−a)n

(ν−1)(b+ 1

τ
′
1

)

1

= CM−1/22n
p
2

( 1
q
−a)n

−(ν−1)p( 1
2
−1)( 1

τ1
−a)
n

(ν−1)(b+ 1

τ
′
1

)

1

6 CM−1/2(2nnν−1)
p
2

( 1
q
−a)n

(ν−1)p(1− 1
τ2

)(a− 1
q

)
n

(ν−1)(b+ 1

τ
′
1

)

= CM−1/2(2nnν−1)
p
2

( 1
q
−a)n

(ν−1)( p
τ
′
2

(a− 1
q

)+ 1

τ
′
1

)
n(ν−1)b

= CM−1/2(2nnν−1)
p
2

( 1
q
−a)n

(ν−1)( p
τ
′
2

(a−τ ′2( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

))
n(ν−1)b

6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b, (3.7)

in the case a 6 (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, 1 < q < 2 < p <∞, 1 < τ1, τ2 <∞.

Let us estimate ‖F2‖p,τ2 . By Theorem 2.2, for p = τ1 = 2 and replacing q by p, taking into
account that

‖δs(f)‖2 6 m
− 1
τ1

l 2−lal(ν−1)b2−l(
1
2
− 1
q

)Sl,

for s /∈ G(l), for τ2 − τ1 > 0 we have

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ22

)1/τ2

= C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ2−τ12 ‖δs(f)‖τ12

)1/τ2

6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

(
m
− 1
τ1

l 2−lal(ν−1)b2−l(
1
2
− 1
q

)Sl

)τ2−τ1)1/τ2

= C
(n2−1∑
l=n1

(
2−lal(ν−1)b2−l(

1
2
− 1
q

)
)τ2−τ1

m
− τ2−τ1

τ1
l Sτ2−τ1l

×
∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

)1/τ2
. (3.8)

Since 1 < q < 2 < p, then (1
2
− 1

p
)τ2− (1

2
− 1

q
)τ1 > 0. Therefore, taking into account that 1 6 γj, j =

1, ...,m, it is easy to verify that∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12 6 2(l+1)( 1
2
− 1
p

)τ2−( 1
2
− 1
q

)τ1

×
∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12 6 2(l+1)( 1
2
− 1
p

)τ2−( 1
2
− 1
q

)τ1
(

2−lal(ν−1)b
)τ1

Sτ1l .

Therefore,

Sτ2−τ1l

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12 6 2(l+1)( 1
2
− 1
p

)τ2−( 1
2
− 1
q

)τ1
(

2−lal(ν−1)b
)τ1

Sτ2l .
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Hence, from inequality (3.8) we obtain

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

(
2−lal(ν−1)b2−l(

1
2
− 1
q

)
)τ2−τ1

m
− τ2−τ1

τ1
l 2(l+1)(( 1

2
− 1
p

)τ2−( 1
2
− 1
q

)τ1)

×
(

2−lal(ν−1)b
)τ1

Sτ2l

)1/τ2
= C

(n2−1∑
l=n1

(
2−lal(ν−1)b

)τ2
m
− τ2−τ1

τ1
l 2

l( 1
τ1
− 1
τ2

)τ2Sτ2l

)1/τ2
.

Now, substituting the values of the numbers ml, from here we get

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

2−l(a+ 1
p
− 1
q

)τ2l(ν−1)bτ2
(

2−l
τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1 Sτ2l

)1/τ2

= C
(

2n
τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1τ2

(n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2Sτ1l

)1/τ2
. (3.9)

Further, using inequality (3.4) and taking into account that the function f ∈ W a,b,r
q,τ1

and a < (1
q
−

1
p

+ 1
pτ1
− 1

qτ2
)τ
′
2 we have

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2Sτ1l

6 C

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2

(
2lal−(ν−1)b

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

)τ1
6 C

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2 6 C2

−n2(a−( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2n

(ν−1)bτ2
2 . (3.10)

It is easy to verify that if a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ26 C

{
n(ν−1)bτ2 log n, if (ν − 1)bτ2 + 1 6= 0,

1, if (ν − 1)bτ2 + 1 = 0.
(3.11)

If a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then from (3.9) and (3.10) we obtain

‖F2‖p,τ2 6 C
(

2n
τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1τ2 2

−n2(a−( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)
n

(ν−1)b
2 .

Now, by the definition of the number n2 and taking into account that M � 2nnν−1, from this
formula, we obtain that

‖F2‖p,τ2 6 C
(

2n
τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1τ2 (2nn(ν−1))

− p
2

(a−( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2))
n(ν−1)b

= C(2nn(ν−1))−
p
2

(a+ 1
p
− 1
q

)n(ν−1)b 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b (3.12)

for the function f ∈ W a,b,r
q,τ1

in the case of a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, 1 < q < 2 < p < ∞,

1 < τ1 6 τ2 <∞.
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If a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then from (3.9) and (3.11) we obtain that

‖F2‖p,τ2 6 C
(

2nn(ν−1)
)− τ ′2

2
τ2−τ1
τ1τ2

{
n(ν−1)b(log n)

1
τ2 , if (ν − 1)bτ2 + 1 6= 0,
1, if (ν − 1)bτ2 + 1 = 0.

(3.13)

Next, we estimate ‖F3‖A. By applying Hölder’s inequality for the sum and Parseval’s equality,
we have

‖F3‖A =

n2−1∑
l=n1

∑
l6〈s,γ〉<l+1,s∈G(l)

∑
k∈ρ(s)

|ak(f)|

6 2−
m
2

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 2−
m
2

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2. (3.14)

Now, to the inner sum on the right side of inequality (3.14) applying Hölder’s inequality for 1
τ1

+ 1

τ
′
1

= 1

and 1 < τ1 <∞, we get

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6
n2−1∑
l=n1

2
l+1
q

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2
〈s̄,1̄〉( 1

2
− 1
τ1

)τ1‖δs(f)‖τ12

)1/τ1( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

1
)1/τ

′
1

6
n2−1∑
l=n1

2
l+1
q

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1
m

1/τ
′
1

l .

Further, substituting the values of the numbers ml, from this formula, we obtain that

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6
n2−1∑
l=n1

2
l+1
q

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1(
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2 + 1

)1/τ
′
1

= C

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

(
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2 + 1

)1/τ
′
1

6 C
{n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

(
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

)1/τ
′
1

+

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

}

= C
{

2
n
τ
′
2

2τ
′
1 n

(ν−1)
τ
′
2

2τ
′
1

n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l +

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

}
. (3.15)

Since
τ
′
2

pτ
′
1

− 1

q
= τ

′

2(
1

pτ
′
1

− 1

qτ
′
2

), SlS

τ1

τ
′
1
l = Sτ1l ,
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then
n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l =

n2−1∑
l=n1

2
−l(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
l(ν−1)bSτ1l . (3.16)

Now, by using inequality (3.4) and taking into account that the function f ∈ W a,b,r
q in the case

a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

) < 0 from equality (3.16), we obtain

n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l

6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
l(ν−1)b

(
2lal−(ν−1)b

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

)τ1
6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
l(ν−1)b 6 C2

−n2(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
n

(ν−1)b
2 . (3.17)

and if a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

) = 0, then according to (3.11)

n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l 6 C

{
n(ν−1)b log n, if (ν − 1)b+ 1 6= 0,

1, if (ν − 1)b+ 1 = 0.
(3.18)

Since a − 1
q
< 0, then again using Theorem 2. 1 for λ = θ = 2 and taking into account that the

function f ∈ W a,b,r
q,τ1

, we get

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl 6 C

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)b
(

2lal−(ν−1)b
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

)

6 C

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)b 6 C2−n2(a− 1
q

)n
(ν−1)b
2 . (3.19)

Now from inequalities (3.15), (3.17) and (3.19), it follows that

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6 C
{

2
n
τ
′
2

2τ
′
1 n

(ν−1)
τ
′
2

2τ
′
1 2
−n2(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
n

(ν−1)b
2 + 2−n2(a− 1

q
)n

(ν−1)b
2

}
, (3.20)

in the case a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

) < 0. By the definition of the number n2, we have

2−n2(a− 1
q

)n
(ν−1)b
2 = (2n

p
2n(ν−1) p

2 )−(a− 1
q

)n
(ν−1)b
2 6 C(2nnν−1)−

p
2

(a− 1
q

)n(ν−1)b

and

(2nnν−1)
τ
′
2

2τ
′
1 2
−n2(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
= (2nnν−1)

τ
′
2

2τ
′
1 (2nn(ν−1))

− p
2

(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))

= (2nnν−1)−
p
2

(a− 1
q

)(2nnν−1)
−( p

2
( 1
q
−p′ ( 1

q
− 1
p

))− p
′

2q
′ ).
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Now, taking into account that p
2
(a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))− τ
′
2

2τ
′
1

= p
2
(a− 1

q
) according to these relations from

formula (3.20), we obtain

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6 C(2nnν−1)−
p
2

(a− 1
q

)n(ν−1)b,

for a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 = τ

′
2( 1

qτ
′
2

− 1

pτ
′
1

), b ∈ R. Therefore, inequality (3.14) implies that

‖F3‖A 6 C(2nnν−1)−
p
2

(a− 1
q

)n(ν−1)b (3.21)

for a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, b ∈ R.

Since a− 1
q
< 0, then from inequalities (3.13), (3.18) and (3.19) it follows that inequality (3.21)

is also true in the case a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2.

By Lemma 2.1 for the function F3 there exists an M -term polynomial GM(F3, x) such that

‖F3 −GM(F3)‖p,τ2 6 CM−1/2‖F3‖A.

Therefore, according to inequality (3.21) from this formula, we obtain that

‖F3 −GM(F3)‖p,τ2 6 CM−1/2(2nnν−1)−
p
2

(a− 1
q

)n(ν−1)b 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b (3.22)

in the case a 6 (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2.

We represent the function f ∈ W a,b,r
q,τ1

as a sum

f(x) = SQn,γ̄ (f, x) + F1(x) + F2(x) + F3(x) +
∑
〈s̄,γ̄〉>n2

δs̄(f, x̄).

Therefore, from estimates (3.7), (3.12), (3.22), it follows that

‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2
6 ‖F1 −GM(F1)‖p,τ2 + ‖F3 −GM(F3)‖p,τ2 + ‖F2‖p,τ2

+
∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f)
∥∥∥
p,τ2

6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b +
∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f)
∥∥∥
p,τ2
, (3.23)

in the case a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, b ∈ R. Since 1 < q < p <∞, then by Theorem 2.2, inequality

(3.4) and the definition of the class W a,b,r
q,τ1

and taking into account such that a + 1
p
− 1

q
> 0 and

1 < τ1 6 τ2 <∞, we have

∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f)
∥∥∥
p,τ2

=
∥∥∥ ∞∑
l=n2

∑
l6〈s̄,γ̄〉<l+1

δs̄(f)
∥∥∥
p,τ2

6 C
( ∞∑
l=n2

2l(
1
q
− 1
p

)τ2
∥∥∥ ∑
l6〈s̄,γ̄〉<l+1

δs̄(f)
∥∥∥τ2
q,τ1

) 1
τ2 6 C

( ∞∑
l=n2

2−l(a+ 1
p
− 1
q

)pl(ν−1)bp
) 1
p

6 C2−n2(a+ 1
p
− 1
q

)n
(ν−1)b
2 6 CM− p

2
(a+ 1

p
− 1
q

)(logM)(ν−1)b. (3.24)
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Now from inequalities (3.23) and (3.24), it follows that

eM(f)p,τ2 6 ‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b

for a function f ∈ W a,b,r
q,τ1

for 1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, b ∈ R and 1 < q < 2 < p < ∞ and

ν > 2.
If a = (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then

p

2

(
a+

1

p
− 1

q

)
=
τ
′
2

2

( 1

τ1

− 1

τ2

)
.

Therefore, in the case a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 and (ν− 1)bτ2 + 1 6= 0 from inequalities (3.13), (3.22)

and (3.7), we obtain

‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2 6 CM
− τ
′
2
2

( 1
τ1
− 1
τ2

)
(logM)(ν−1)b(log logM)1/τ2 .

Hence

eM(f)p,τ2 6 CM
− τ
′
2
2

( 1
τ1
− 1
τ2

)
(logM)(ν−1)b(log logM)1/τ2

for the function f ∈ W a,b,r
q,τ1

, 1 < q < 2 < p < ∞, a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 and (ν − 1)bτ2 + 1 6= 0,

ν > 2.
If a = (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 and (ν − 1)bτ2 + 1 = 0, then from inequalities (3.7), (3.13) and (3.21),

it follows that

eM(f)p,τ2 6 CM
− τ
′
2
2

( 1
τ1
− 1
τ2

)

for a function f ∈ W a,b,r
q,τ1

, 1 < q < 2 < p <∞.
Let ν = 1 i.e. r1 < rν+1 6 ... 6 rm. For M � 2n, there is a natural number n such that M � 2n.

In this case, put n1 = np
2
and consider the function

F1(x) =

n1−1∑
l=n

fl(x).

Now, repeating the arguments in the proof of inequality (3.5) for the function f ∈ W a,b,r
q,τ1

, we obtain

‖F1‖A 6 C2n1( 1
q
−a), (3.25)

in the case 1
q
− a > 0, for a function f ∈ W a,b,r

q,τ1
. Hence, from inequalities (3.25) and (3.6), we obtain

‖F1 −GM(F1)‖p,τ2 6 CM−1/2‖F1‖A 6 CM−1/22n1( 1
q
−a) 6 CM− p

2
(a+ 1

p
− 1
q

) (3.26)

for a function f ∈ W a,b,r
q,τ1

, in the case of 1
q
− a > 0. By the property of the norm and according to

(3.26), we have

‖f − (SQn,γ̄ (f) +GM(F1))‖p,τ2 6 ‖F1 −GM(F1)‖p,τ2 +
∥∥∥ ∑
〈s̄,γ̄〉>n1

δs̄(f)
∥∥∥
p,τ2

6 CM− p
2

(a+ 1
p
− 1
q

) +
∥∥∥ ∑
〈s̄,γ̄〉>n1

δs̄(f)
∥∥∥
p,τ2
, (3.27)
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for a function f ∈ W a,b,r
q,τ1

, in the case of a < 1
q
. Further, repeating the proof of inequality (3.24) with

n2 replaced by n1, we have∥∥∥ ∑
〈s̄,γ̄〉>n1

δs̄(f)
∥∥∥
p,τ2

6 C2−n1(a+ 1
p
− 1
q

) 6 CM− p
2

(a+ 1
p
− 1
q

), (3.28)

for a function f ∈ W a,b,r
q,τ1

, in the case of 1
p
− 1

q
< a, 1 < q < p <∞, 1 < τ1 6 τ2 <∞.

Now from inequalities (3.27) and (3.28), it follows that

‖f − (SQn,γ̄ (f) +GM(F1))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

),

for a function f ∈ W a,b,r
q,τ1

, in the case 1
p
− 1

q
< a < 1

q
, 1 < q < 2 < p <∞, 1 < τ1 6 τ2 <∞. Hence

eM(W a,b,r
q,τ1

)p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

),

in the case ν = 1 and 1
p
− 1

q
< a < 1

q
, 1 < q < 2 < p <∞, 1 < τ1 6 τ2 <∞.

Lower bound for eM(W a,b,r
q,τ1

)p,τ2 . Let M ∈ N and N = [p
2

log2M ] is an integer part of the number
p
2

log2M .
Let s = (s1, . . . , sm) ∈ Zm+ such that

∏m
j=1 2sj = 2N . Consider the function

f0(x) = 2−N(1− 1
q

)2−NaN (ν−1)b
∑
k∈ρ(s)

e〈k,x〉.

Then
‖f0,l‖q,τ1 =

∥∥∥ ∑
l6〈s̄,γ̄〉<l+1

δs̄(f0)
∥∥∥
q,τ1

= 0

for l 6= N . If l = N , then by virtue of the estimate for the norm of the Dirichlet kernel in the Lorentz
space (see [5, p. 13]), we have

‖f0,l‖q,τ1 = ‖f0‖q,τ1 6 C2−NaN (ν−1)b.

Thus, the function f0 ∈ W a,b,r
q,τ1

, 1 < q <∞, 1 < τ1, τ2 <∞, a > 0, b ∈ R.
Let KM be an arbitrary set of M harmonics k = (k1, . . . , km) ∈ Zm+ and T(KM) is the set of

trigonometric polynomials with harmonics from KM . Consider an additional function

h(x) =
∑

k∈ρ(s)\KM

e〈k,x〉.

Then, by the property of the norm, the estimate for the norm of the Dirichlet kernel, and Parseval’s
equality, we have

‖h‖p′ ,τ ′2 6 ‖g0‖p′ ,τ ′2 + ‖g0 − h‖p′ ,τ ′2 6 ‖g0‖p′ ,τ ′2 + C‖g0 − h‖2 6 C{2
N
p +
√
M} 6 C0

√
M,

where g0(x) =
∑

k∈ρ(s)

e〈k,x〉, 2 < p < ∞, 1 < τ2 < ∞, β ′ = β
β−1

. Therefore, for any polynomial

T ∈ T(KM), due to Hölder’s inequality in the Lorentz space, we have∫
Tm

(f0(x)− T (x))h(x)dx 6 ‖f0 − T‖p,τ2‖h‖p′ ,τ ′2 6 C
√
M‖f0 − T‖p,τ2 , (3.29)
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for 2 < p <∞, 1 < τ2 <∞.
On the other hand, taking into account the orthogonality of the trigonometric system, we have∫

Tm

(f0(x)− T (x))h(x)dx =

∫
Tm

f0(x)h(x)dx = 2−N(1− 1
q

)2−NaN (ν−1)b
∑
k∈ρ(s)

1

= 2−N(1− 1
q

)2−NaN (ν−1)b(|ρ(s) \KM | −M) > 2−N(a+1− 1
q

)N (ν−1)b(2M −M)

= 2−N(a+1− 1
q

)N (ν−1)b2N .

Therefore, from inequality (3.29), we obtain

‖f0 − T‖p,τ2 > C2−N(a− 1
q

)N (ν−1)b2NM− 1
2 > CM− p

2
(a+ 1

p
− 1
q

)(logM)(ν−1)b,

for any polynomial T ∈ T(KM), 2 < p <∞, 1 < τ2 <∞. Hence

eM(W a,b,r
q,τ1

)p,τ2 > CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b,

in the case 1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, 1 < q < 2 < p <∞, 1 < τ2 <∞.

Theorem 3.2. Let 0 < r1 = . . . = rν < rν+1 ≤ . . . rm, 2 < p < ∞, 1 < max{τ1, 2} 6 τ2 < ∞,
1
2
− 1

p
< a < (1

2
− 1

p
+ 1

pτ1
− 1

2τ2
)τ
′
2, τ

′
2 = τ2

τ2−1
and b ∈ R, then

eM(W a,b,r
2,τ1

)p,τ2 6 CM− p
2

(a+ 1
p
− 1

2
)(log2M)

(ν−1)b+ 1
2
− 1
τ1 ,

where C > 0 is independent of M > 1.

Proof. As in the proof of Theorem 3.1, consider the functions Fj, j = 1, 2, 3. By formula(3.1), we
have

‖F1‖A =

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

∑
k∈ρ(s)

|ak(f)| 6 2−
m
2

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2. (3.30)

If 2 < τ1 <∞, then according to the inequality of different metrics for trigonometric polynomials in
the Lorentz space [4] we have

‖δs(f)‖2 6 C
( m∑
j=1

(sj + 1)
) 1

2
− 1
τ1 ‖δs(f)‖2,τ1 ,

where here and in the rest of the proof C denotes a positive number which depends only on numerical
parameters, and may be different on different occurrences.
Therefore, from Lemma 1.6 [5] for p = 2 and 2 < τ1 <∞ we obtain(∑

s∈Z+

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

) 1
τ1

6 C

(∑
s∈Z+

‖δs(f)‖τ12,τ1

) 1
τ1

6 C‖f‖2,τ1 . (3.31)

According to inequality (3.31) and Hölder’s inequality, we obtain

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2 6

 ∑
l≤〈s̄,γ̄〉<l+1

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

 1
τ1
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×

 ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
2

( m∑
j=1

(sj + 1)
)( 1

2
− 1
τ1

)τ
′
1

 1

τ
′
1

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

 ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
2

( m∑
j=1

(sj + 1)
)( 1

2
− 1
τ1

)τ
′
1

 1

τ
′
1

, (3.32)

where τ ′1 = τ1
τ1−1

, 1 < τ1 < ∞. We will choose numbers δj such that δj = γj for j = 1, . . . , ν and
1 < δj < γj for j = ν + 1, . . . ,m. Then, by Lemma G [35], from inequality (3.32) we have∑

l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

 ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,δ̄〉
τ
′
1
2

( m∑
j=1

(sj + 1)
)( 1

2
− 1
τ1

)τ
′
1

 1

τ
′
1

,

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1
2
l
2 l

(ν−1) 1

τ
′
1 l

1
2
− 1
τ1 , (3.33)

in the case 2 < τ1 <∞. Therefore, taking into account that the function f ∈ W a,b,r
2,τ1

and a < 1
2
from

(3.30) and (3.33) we get

‖F1‖A 6 C

n1−1∑
l=n

2
l
2 l

(ν−1) 1

τ
′
1 l

1
2
− 1
τ1 2−lal(ν−1)b 6 C2−n1(a− l

2
)n

(ν−1)(b+ 1

τ
′
1

)

1 n
1
2
− 1
τ1

1 , (3.34)

in the case q = 2 < p < ∞, 2 < τ1 < ∞, a < 1
2
. Since 2 < p < ∞, then by Lemma 2.1 for the

function F1 there exists a M -term polynomial GM(F1, x) such that

‖F1 −GM(F1)‖p,τ2 6 CM− 1
2‖F1‖A.

Therefore, according to inequality (3.34) and taking into account the definition of the number n1

and the relation M � 2nnν−1 from this formula, we obtain that

‖F1 −GM(F1)‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b(logM)
l
2
− 1
τ1 , (3.35)

in the case q = 2 < p <∞, 2 < τ1 <∞, 1 < τ2 <∞, a < 1
2
.

For the estimate ‖F3‖A by applying Hölder’s inequality for the sum and Parseval’s equality, we
obtain

‖F3‖A =

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

∑
k∈ρ(s)

|ak(f)| 6 2−
m
2

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 C

n2−1∑
l=n1

2
l
2 (l + 1)

1
2
− 1
τ1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)

‖δs(f)‖2. (3.36)

Now, to the inner sum on the right side of inequality (3.36), by applying Hölder’s inequality for
1
τ1

+ 1

τ
′
1

= 1 and 1 < τ1 <∞ we will have

‖F3‖A 6 C

n2−1∑
l=n1

2
l
2 (l + 1)

1
2
− 1
τ1

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

) 1
τ1 |G(l)|

1

τ
′
1 . (3.37)
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We will put

S̃l =
(

2laτ1l−(ν−1)bτ1
∑

l≤〈s̄,γ̄〉<l+1

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

)1/τ1

and

ml := |G(l)| :=
[
2−l

τ
′
2
p S̃τ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

]
+ 1.

Then from (3.37), it follows that

‖F3‖A 6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃lm

1

τ
′
1
l

6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃l

{
2−l

τ
′
2
p S̃τ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2 + 1

} 1

τ
′
1

6 C
{(

2nnν−1
) τ
′
2

2τ
′
1

n2−1∑
l=n1

2
−l(a− 1

2
+
τ
′
2

pτ
′
1

)
l
(ν−1)b+ 1

2
− 1
τ1 S̃

1+
τ1

τ
′
1

l +

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃l

}
. (3.38)

Since S̃
1+

τ1

τ
′
1

l = S̃τ1l and −1
2

+
τ
′
2

pτ
′
1

= τ
′
2(−1

2
+ 1

p
− 1

pτ1
+ 1

2τ2
), then according to (3.31), we have

n2−1∑
l=n1

2
−l(a− 1

2
+
τ
′
2

pτ
′
1

)
l
(ν−1)b+ 1

2
− 1
τ1 S̃

1+
τ1

τ
′
1

l =

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
l
(ν−1)b+ 1

2
− 1
τ1 S̃τ1l

6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
l
(ν−1)b+ 1

2
− 1
τ1

(
2laτ1l−(ν−1)bτ1

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

)τ1
6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
l
(ν−1)b+ 1

2
− 1
τ1 .

for a function f ∈ W a,b,r
2,τ1

. Since a− τ ′2(1
2
− 1

p
+ 1

pτ1
− 1

2τ2
) < 0, then taking into account the definition

of the number n2 from this formula, we obtain that
n2−1∑
l=n1

2
−l(a− 1

2
+
τ
′
2

pτ
′
1

)
l
(ν−1)b+ 1

2
− 1
τ1 S̃

1+
τ1

τ
′
1

l 6 C2
−n2(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1

2

6 C2
−n p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n
−(ν−1) p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1 , (3.39)

for a function f ∈ W a,b,r
2,τ1

, 2 < τ1 <∞.
Further, according to inequality (3.31), taking into account the function f ∈ W a,b,r

2,τ1
and a− 1

2
< 0

we have
n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃l 6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1

×
(

2laτ1l−(ν−1)bτ1
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

)

6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 6 C2−n2(a− 1

2
)n

(ν−1)b+ 1
2
− 1
τ1

2

6 C2−n
p
2

(a− 1
2

)n−(ν−1) p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1 . (3.40)
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Now from inequalities (3.38), (3.39) and (3.40), it follows that

‖F3‖A 6 C
{(

2nnν−1
) τ
′
2

2τ
′
1 2
−n p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n
−(ν−1) p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1

+ (2nnν−1)−
p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1

}
for a function f ∈ W a,b,r

q,τ1
, 2 < τ1 <∞, 1 < τ2 <∞, a− τ ′2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
) < 0.

Since p
2
(a− τ ′2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
))− τ

′
2

2τ
′
1

= p
2
(a− 1

2
), then it follows that

‖F3‖A 6 C(2nnν−1)−
p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1 . (3.41)

Since 2 < p <∞, then by Lemma 2.1 for the function F3 by a constructive method there is aM–term
polynomial GM(F3, x) such that

‖F3 −GM(F3)‖p,τ2 6 CM− l
2‖F3‖A.

Therefore, according to (3.41), we have

‖F3 −GM(F3)‖p,τ2 6 CM− l
2 (2nnν−1)−

p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1

6 CM− p
2

(a+ 1
p
− 1

2
)(logM)

(ν−1)b+ 1
2
− 1
τ1 , (3.42)

for a function f ∈ W a,b,r
2,τ1

, 2 < p <∞, 2 < τ1 <∞, 1 < τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
) .

Let us estimate ‖F2‖p,τ2 . In formula (3.8), the inequality is proved

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ2−τ12 ‖δs(f)‖τ12

)1/τ2
.

Now, taking into account that

‖δs(f)‖2 6 m
− 1
τ1

l 2−lal(ν−1)bl
1
2
− 1
τ1 S̃l

for s /∈ G(l) and substituting the values of the numbers ml, for τ2 − τ1 > 0, hence we have

‖F2‖p,τ2

6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

(
m
− 1
τ1

l 2−lal(ν−1)bl
1
2
− 1
τ1 S̃l

)τ2−τ1)1/τ2

= C
(n2−1∑
l=n1

((
2−l

τ
′
2
p S̃τ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

)− 1
τ1 2−lal(ν−1)bS̃ll

1
2
− 1
τ1

)τ2−τ1
×

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

)1/τ2

= C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2

(n2−1∑
l=n1

2
−l(a− τ

′
2

pτ1
)(τ2−τ1)

l(ν−1)b(τ2−τ1)l
( 1

2
− 1
τ1

)(τ2−τ1)

×
∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

)1/τ2
. (3.43)
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Further, taking into account that 1 6 γj, j = 1, ...,m and using inequality (3.31), it is easy to verify
that ∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

6 2(l+1)( 1
2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
∑

l≤〈s̄,γ̄〉<l+1

(
m∑
j=1

(sj + 1))
( 1

2
− 1
τ1

)τ1‖δs(f)‖τ12

6 C2(l+1)( 1
2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥τ1

2,τ1

6 C2(l+1)( 1
2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
(

2−lal(ν−1)b
)τ1

(3.44)

for a function f ∈ W a,b,r
2,τ1

, 2 < τ1 6 τ2 <∞.
Now from inequalities (3.43) and (3.44), it follows that

‖F2‖p,τ2 6 C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2

×
(n2−1∑
l=n1

2
−l(a− τ

′
2

pτ1
)(τ2−τ1)

l(ν−1)b(τ2−τ1)l
( 1

2
− 1
τ1

)(τ2−τ1)
2(l+1)( 1

2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
(

2−lal(ν−1)b
)τ1)1/τ2

= C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2

(n2−1∑
l=n1

2
−lτ2(a− τ

′
2

pτ1τ2
(τ2−τ1)−( 1

2
− 1
p

))
l(ν−1)bτ2l

( 1
2
− 1
τ1

)τ2
)1/τ2

.

Since

a− τ
′
2

pτ1τ2

(τ2 − τ1)− (
1

2
− 1

p
) = a− τ ′2(

1

2
− 1

p
+

1

pτ1

− 1

2τ2

),

then taking into account the definition of the number n2, from this formula, we get

‖F2‖p,τ2 6 C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2 2

−n2(a−τ ′2( 1
2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1

2

6 C2−n
p
2

(a− 1
p
− 1

2
)n

(ν−1)b+ 1
2
− 1
τ1 , (3.45)

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 2 < τ1 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
).

Now from inequalities (3.35), (3.42) and (3.45), it follows that

‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2
6 ‖F1 −GM(F1)‖p,τ2 + ‖F3 −GM(F3)‖p,τ2 + ‖F2‖p,τ2

+
∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f, x̄)
∥∥∥
p,τ2

6 CM− p
2

(a+ 1
p
− 1

2
)(logM)

(ν−1)b+ 1
2
− 1
τ1 +

∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f, x̄)
∥∥∥
p,τ2

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 2 < τ1 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
).

Further, using inequality (3.24) for q = 2 and taking into account that 1
2
− 1

τ1
> 0 from this

formula, we obtain

eM(f)p,τ2 6 ‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1

2
)(logM)

(ν−1)b+ 1
2
− 1
τ1 ,

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 2 < τ1 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
), b ∈ R .
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Let 1 < τ1 6 2. Then, by Lemma 1.5 [5], the following inequality holds( ∑
l≤〈s̄,γ̄〉<l+1

‖δs(f)‖2
2,τ1

)1/2

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1
. (3.46)

Since 1 < τ1 6 2, then (see [34, p. 217, Theorem 3.11])

‖δs(f)‖2 6 C‖δs(f)‖2,τ1 . (3.47)

From inequalities (3.30), (3.47) and (3.46), it follows that

‖F1‖A 6 C

n1−1∑
l=n

2l/2
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1
.

Now taking into account that the function f ∈ W a,b,r
2,τ1

and the choice of the number n1 from this
formula, we get that

‖F1‖A 6 CM− p
2

(a− 1
2

)(logM)
(ν−1)(b+ p

τ
′
2

(a− 1
2

)
, (3.48)

for a < 1/2. Further, arguing as in the proof of inequality (3.35), we obtain

‖F1 −GM(F1)‖p,τ2 �M− p
2

(a+ 1
p
− 1

2
)(logM)(ν−1)b(logM)

l
2
− 1
τ1 �M− p

2
(a+ 1

p
− 1

2
)(logM)(ν−1)b, (3.49)

in the case q = 2 < p <∞, 1 < τ1 6 2, 1 < τ2 <∞, a < 1
2
.

In order to estimate ‖F3‖A, we put

S̃l =
(

2laτ1l−(ν−1)bτ1
∑

l≤〈s̄,γ̄〉<l+1

‖δs(f)‖2
2

)1/2

and

m̃l := |G(l)| :=
[
2−l

τ
′
2
p S̃2

l 2
n
τ
′
2
2 n(ν−1)

τ
′
2
2

]
+ 1.

In inequality (3.36), it was proved that

‖F3‖A 6 2−
m
2

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 2−
m
2

n2−1∑
l=n1

2(l+1)/2
∑

l≤〈s̄,γ̄〉<l+1,s∈G(l)

‖δs(f)‖2. (3.50)

By to the inner sum on the right side of inequality (3.50) applying Hölder’s inequality and substituting
the value of the number m̃l := |G(l)| from (3.50), we obtain

‖F3‖A 6 2−
m
2

n2−1∑
l=n1

2(l+1)/2
( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

‖δs(f)‖2
2

)1/2

|G(l)|1/2

� 2−
m−1

2

{n2−1∑
l=n1

2l(
1
2
−a)l(ν−1)b2−l

τ
′
2

2p S̃2
l (2

nn(ν−1))
τ
′
2
4 +

n2−1∑
l=n1

2l(
1
2
−a)l(ν−1)bS̃l

}
. (3.51)
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Now, using inequalities (3.46) and (3.47) and taking into account the value of the numbers S̃l, we
obtain

n2−1∑
l=n1

2−l(a−
1
2

+
τ
′
2

2p
)l(ν−1)bS̃2

l 6
n2−1∑
l=n1

2−l(a−
1
2

+
τ
′
2

2p
)l(ν−1)b

(
2lal−(ν−1)b

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

)
. (3.52)

Since the function f ∈ W a,b,r
2,τ1

and

a− 1

2
+
τ
′
2

2p
= a− τ ′2(

1

2
− 1

p
+

1

2p
− 1

2τ2

) 6 a− τ ′2(
1

2
− 1

p
+

1

pτ1

− 1

2τ2

) < 0,

then from inequality (3.52) we have

n2−1∑
l=n1

2−l(a−
1
2

+
τ
′
2

2p
)l(ν−1)bS̃2

l 6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
2p
− 1

2τ2
))
l(ν−1)b

6 C2
−n2(a−τ ′2( 1

2
− 1
p

+ 1
2p
− 1

2τ2
))
n

(ν−1)b
2 . (3.53)

Since the function f ∈ W a,b,r
2,τ1

and a− 1
2
< 0, then arguing similarly we can prove that

n2−1∑
l=n1

2l(
1
2
−a)l(ν−1)bS̃l 6 C2n2( 1

2
−a)n

(ν−1)b
2 . (3.54)

Now from inequalities (3.51), (3.53) and (3.54), it follows that

‖F3‖A 6 C
{

(2nn(ν−1))
τ
′
2
4 2
−n2(a−τ ′2( 1

2
− 1
p

+ 1
2p
− 1

2τ2
))
n

(ν−1)b
2 + 2n2( 1

2
−a)n

(ν−1)b
2

}
6 C(2nn(ν−1))−

p
2

(a− 1
2

)n(ν−1)b, (3.55)

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 1 < τ1 6 2 and 1 < τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

2p
− 1

2τ2
), b ∈ R.

Therefore, according to Lemma 2.1 for the function F3, by a constructive method there is a
M–term polynomial GM(F3, x) such that

‖F3 −GM(F3)‖p,τ2 6 CM− l
2‖F3‖A. 6 CM− p

2
(a+ 1

p
− 1

2
)(logM)(ν−1)b, (3.56)

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 1 < τ1 6 2, 1 < τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
), b ∈ R .

Let us estimate ‖F2‖p,τ2 . To do this, note that if s /∈ G(l), then

‖δs(f)‖2 6 m̃
− 1

2
l 2−lal(ν−1)bS̃l (3.57)

and (see formula (3.8))

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ22

)1/τ2

= C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ2−2
2 ‖δs(f)‖2

2

)1/τ2
. (3.58)
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Further, if τ2 − 2 > 0, then using inequality (3.57) and repeating the reasoning in the proof (3.45),
we obtain

‖F2‖p,τ2 6 C(2nnν−1)−
p
2

(a+ 1
p
− 1

2
)n(ν−1)b 6 CM− p

2
(a+ 1

p
− 1

2
)(logM)(ν−1)b, (3.59)

for a function f ∈ W a,b,r
2,τ1

for q = 2 < p <∞, 1 < τ1 6 2 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

2p
− 1

2τ2
), b ∈ R.

Now from inequalities (3.49), (3.56), (3.59), it follows that

eM(f)p,τ2 6 ‖f − (SQn,γ̄ (f) +Gp
M(F1) +Gp

M(F3))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)
(ν−1)b+ 1

2
− 1
τ1 ,

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 1 < τ1 6 2 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

2p
− 1

2τ2
), b ∈ R.

Remark 1. In the case τ1 = q and τ2 = p Theorem 3.1 and Theorem 3.2 complement Theorem 3.2
[38].

Remark 2. Estimates for the quantity eM(W a,b,r
q,τ1

)p,τ2 for other values of the parameters q, p, τ1, τ2,
a are announced in [6].

4 Conclusion

Now, using Theorem 3.1, we can obtain estimates for M–term approximations of a function in the
Nikol’skii–Besov class.

Theorem 4.1. Let 1 < q < 2 < p <∞, 1 < τ1 6 2 6 τ2 <∞ and 1
q
− 1

p
< r1 = ... = rν−1 < rν+1 6

rm.
1. If 1 6 θ 6 τ1 and 1

q
− 1

p
< r1 < τ

′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
), then

eM(Srq,τ1,θB)p,τ2 6 CM− p
2

(r1+ 1
p
− 1
q

),

where C > 0 is independent of M .

Proof. Let f ∈ Srq,τ1,θB. Since 1 < τ1 ≤ 2 and 1 < q <∞, then

‖fl
∥∥∥
q,τ1

=
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

6 C

( ∑
l≤〈s̄,γ̄〉<l+1

‖δs(f)‖τ1q,τ1

)1/τ1

,

where C > 0 is independent of l and f . If 1 6 θ 6 τ1, then according to Jensen’s inequality [26,
Lemma 3.3.3] from this formula, we obtain

‖fl
∥∥∥
q,τ1

6 C

( ∑
l≤〈s̄,γ̄〉<l+1

‖δs(f)‖θq,τ1

)1/θ

6 C2−lr1

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s,r〉θ‖δs(f)‖θq,τ1

)1/θ

6 C2−lr1

(∑
s̄∈Z+

2〈s,r〉θ‖δs(f)‖θq,τ1

)1/θ

.

Hence Srq,τ1,θB ⊂ W r1,0,r
q,τ1

in the case 1 6 θ 6 τ1 6 2 and 1 < q < ∞. Therefore, according to
Theorem 3.1, for a = r1 and b = 0, we have the estimate

eM(Srq,τ1,θB)p,τ2 6 CM− p
2

(r1+ 1
p
− 1
q

),

in the case 1
q
− 1

p
< r1 < τ

′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
), where C > 0 is independent of M .

Note that if 1 6 θ 6 τ1, then τ
′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
) 6 1

q
− τ

′
2

pθ′
.

Remark 3. If 1 < τ1 < θ 6 τ2 <∞, then 1
q
− τ

′
2

pθ′
< τ

′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
). In this case, estimates of

the quantity eM(Srq,τ1,θB)p,τ2 are given in [7].
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