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1 Introduction

The control problem for evolution equations is a classical problem. The controllability in finite-
dimensional linear systems can be described in terms of the rank of a matrix generated by the
coefficient matrix and the matrix of the control action.

Controlled systems described by PDEs are typically infinite-dimensional. There are many works
on controllability/observability of systems governed by PDEs. The works of Russell [16] and Lions
[15] are classical in this area. However, compared with Kalman’s classical theory, the theories on
controllability of systems governed by PDEs are not very mature. Important researches in this area
can be found in the works [6, 3, 20, 19]. For other related works in this direction, we refer to
[7, 9, 18, 17, 2, 1].

The time-optimal control problem for PDFs of parabolic type was first concerned in [10]. More
detailed information on the optimal control problems for the systems governed by PDEs is given in
the monograph [11].

The decomposition method is widely used in studying control and differential game problems for
the systems in distributed parameters. This method leads us to a control problem described by an
infinite system of ordinary differential equations (see, for example, [12, 6, 8, 9, 18, 5]). The paper [4]
is devoted to the control problem for an infinite system of differential equations.

In the present paper, we study a mathematical model of thermocontrol processes. Several con-
vectors are installed on the disjoint subsets Γk of the wall ∂Ω of a volume Ω and each convector
produces a hot or cold flow with magnitude equal to µk(t), which are the control functions, and on
the surface ∂Ω \ Γ, Γ = ∪Γk, a heat exchange occurs by the Newton law. The control functions
µk(t) are subjected to an integral constraint. The problem is to find control functions to transfer the
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state of the process to a given state. We obtain a necessary and sufficient condition of solvability of
the problem. We find an equation for the optimal transfer time, and construct an optimal control
function explicitly.

2 Statement of problem

We study the following heat equation [2]

∂u(x, t)

∂t
= ∆u(x, t)− p(x)u(x, t), p(x) ≥ 0, t > 0, (2.1)

with the boundary conditions

∂u(x, t)

∂n
= µk(t)ak(x), x ∈ Γk, t > 0, (2.2)

and
∂u(x, t)

∂n
+ h(x)u(x, t) = 0, x ∈ ∂Ω \ Γk, t > 0, (2.3)

and the initial condition
u(x, 0) = 0, (2.4)

where Ω is a subset of Rn whose boundary ∂Ω is piecewise smooth, Γk are disjoint subsets of ∂Ω
which are convectors (heaters or coolers). It is assumed that the boundaries ∂Γk of Γk are piecewise

smooth, Γ =
m⋃
k=1

Γk. The functions h(x) (the thermal conductivity of the walls), ak(x) (the power

density of the k-th convector) and p(x) are given, h(x) and ak(x) are assumed to be given piecewise
smooth non-negative non-trivial functions, p(x) is a sufficiently smooth function in Ω̄ = Ω ∪ ∂Ω.

The meaning of boundary conditions (2.2) and (2.3) is that each convector produces a hot or cold
flow with magnitude of output given by a measurable real-valued function µk(t), and on the surface
∂Ω \ Γ a heat exchange occurs by the Newton law.

Let

µ(t) = (µ1(t), µ2(t), ..., µm(t)), µ : [0,∞)→ Rm, µ(·) ∈ L2[0,∞). (2.5)

Definition 1. We call a function µ : [0,∞) → Rm with measurable coordinates µi(t), t ≥ 0,
i = 1, ...,m, an admissible control if it satisfies the following integral constraint

∞∫
0

|µ(t)|2dt ≤ ρ2, (2.6)

where ρ is a given positive number.

We extend the functions h(x) and a(x) to the whole boundary ∂Ω by setting h(x) = 0 for x ∈ Γ
and ak(x) = 0 for x ∈ ∂Ω \ Γk [2].

Next, consider the following vector-functions

a(x) = (a1(x), a2(x), ..., am(x)), a : ∂Ω→ Rm, (2.7)

Using (2.5) and (2.7) we can combine conditions (2.2) and (2.3) as follows

∂u(x, t)

∂n
+ h(x)u(x, t) = µ(t) · a(x), x ∈ ∂Ω, t > 0, (2.8)
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We define a generalized solution of the initial-boundary value problem (2.1), (2.4), (2.8) as a
function u(x, t) that satisfies the equation

t∫
0

ds

∫
Ω

[∇u(x, s)∇η(x, s) + p(x)u(x, s)η(x, s)]dx

−
t∫

0

ds

∫
Ω

[u(x, s)
∂η(x, s)

∂s
dx+

∫
Ω

u(x, s)η(x, s)]dx

=

t∫
0

ds

∫
∂Ω

[µ(s) · a(x)]η(x, s)dσ(x)−
t∫

0

ds

∫
∂Ω

h(x)u(x, s)η(x, s)dσ(x) (2.9)

for 0 < t ≤ T , for any number T > 0 and any function η(x, t) ∈ W 1,1
2 (Ω× [0, T ]) (see formula (5.5)

and Theorem 5.1 in [14], III.5).

Next, we define generalized solution of the eigenvalue problem for the Laplace operator [2]

−∆v(x) + p(x)v(x) = λv(x), x ∈ Ω, (2.10)

with the boundary condition
∂v(x)

∂n
+ h(x)v(x) = 0, x ∈ ∂Ω, (2.11)

as a function v(x) in the Sobolev space W 1
2 (Ω) which satisfies the equation∫

Ω

[∇v(x)∇η(x) + p(x)v(x)η(x)]dx+

∫
∂Ω

h(x)v(x)η(x)dσ(x) = λ

∫
Ω

v(x)η(x)dx (2.12)

for any function η ∈ W 1
2 (Ω) (see [13], Sec. III.6, formula (6.3)).

We consider this problem in the Hilbert space L2(Ω) with the inner product (u, v) =
∫
Ω

u(x)v(x)dx

and norm ||u|| =
√

(u, u). It is well known that under the above assumptions there exists a sequence
of positive eigenvalues {λi}∞i=1 such that

0 < λ1 ≤ λ2 ≤ ... ≤ λi ≤ ..., λi →∞, i→∞,

and the corresponding eigenfunctions vi(x) form an orthonormal basis {vi}∞i=1 in L2(Ω) (see, for
example, [13], Sec. III.6).

We will investigate the following problem: Let u0(x) ∈ L2(Ω). Find a time θ and an admissible
control µ(t), t ≥ 0, such that the solution u(x, t) of the initial-boundary value problem (2.1), (2.4),
(2.6), (2.8) exists, is unique and satisfies the following condition

(u(x, θ), vi(x)) = (u0(x), vi(x)), i = 1, 2, ...,m. (2.13)

3 Main result

3.1 Integral equation for µ(t)

We use some properties of the Green function G [2] defined by the following equation:

G(x, y, t) =
∞∑
i=1

e−λitvi(x)vi(y), x, y ∈ Ω ∪ ∂Ω, t > 0. (3.1)
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Since h(x) ≥ 0, x ∈ ∂Ω, and h(x) is not identically 0. Then

G(x, y, t) ≥ 0, (x, y) ∈ Ω̄× Ω̄, t > 0,

and the solution of boundary-value problem (2.1), (2.4), (2.8) can be represented by the Green
function as follows

u(x, t) =

t∫
0

ds

∫
∂Ω

G(x, y, t− s)µ(s) · a(y)dσ(y), (3.2)

where a(y), y ∈ ∂Ω, and µ(s), s ≥ 0, are defined by (2.5) and (2.7). Since µ(t) · a(x) =∑m
j=1 µj(t)aj(x), we obtain

u(x, t) =
m∑
j=1

t∫
0

µj(s)ds

∫
∂Ω

G(x, y, t− s)aj(y)dσ(y). (3.3)

By the condition (2.13) we have∫
Ω

u(x, θ)vi(x)dx =

∫
Ω

u0(x)vi(x)dx
.
= ci, ci ∈ R, i = 1, 2, ...,m. (3.4)

To evaluate the integral in the left-hand side of (3.4), we substitute (3.3) into (3.4) to obtain

∫
Ω

u(x, θ)vi(x)dx =

∫
Ω

vi(x)dx
m∑
j=1

θ∫
0

µj(s)ds

∫
∂Ω

G(x, y, θ − s)aj(y)dσ(y) (3.5)

By (3.1) ∫
Ω

G(x, y, t)vi(x)dx = e−λitvi(y), y ∈ Ω ∪ ∂Ω. (3.6)

Then equation (3.4) takes the form

m∑
j=1

θ∫
0

e−λi(θ−s)µj(s)ds

∫
∂Ω

vi(y)aj(y)dσ(y) = ci, t > 0. (3.7)

Denote ∫
∂Ω

vi(y)aj(y)dσ(y) = aij, i, j = 1, 2, ...,m. (3.8)

We obtain then the following equations

m∑
j=1

θ∫
0

e−λi(θ−s)aijµj(s)ds = ci, i, j = 1, 2, ...,m, (3.9)

which can be written as

θ∫
0

A(θ − s)µ(s)ds = c, cT = (c1, c2, ..., cm), µT (s) = (µ1(s), ..., µm(s)), (3.10)
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(see (2.5)) where

A(θ − s) =


a11e

−λ1(θ−s) a12e
−λ1(θ−s) ... a1me

−λ1(θ−s)

a21e
−λ2(θ−s) a22e

−λ2(θ−s) ... a2me
−λ2(θ−s)

...
... ...

...
am1e

−λm(θ−s) am2e
−λm(θ−s) ... amme

−λm(θ−s)

 =


e−λ1(θ−s)aT1
e−λ2(θ−s)aT2

...
e−λm(θ−s)aTm

 (3.11)

is a m×m matrix, where aTi = (ai1, ai2, ..., aim), i = 1, 2, ...,m, are row vectors of the matrix

A0 = A(0) =


a11 a12 ... a1m

a21 a22 ... a2m

. . . . . . ... . . .
am1 am2 ... amm

 =


aT1
aT2
...
aTm

 .

3.2 Important subspaces

Next, we study the problem of finding an admissible control µ(t) that satisfies equation (3.9) for some
time θ. To this end we consider the following operator L : L2[0,∞)→ Rm defined by the equation

Lµ = L(θ)µ =

θ∫
0

A(θ − s)µ(s)ds, µ(·) ∈ L2[0,∞), (3.12)

where µ(t) does not need to satisfy (2.6), and the Gram matrix

W = W (θ) =

θ∫
0

A(θ − s)AT (θ − s)ds (3.13)

where AT is the transpose of A. Clearly, by (3.11)

AT (θ − s) =
[
e−λ1(θ−s)a1, e

−λ2(θ−s)a2, . . . , e
−λm(θ−s)am

]
.

We have

A(θ − s)AT (θ − s) =


e−λ1(θ−s)aT1
e−λ2(θ−s)aT2

...
e−λm(θ−s)aTm

 [ e−λ1(θ−s)a1, e−λ2(θ−s)a2, . . . , e−λm(θ−s)am
]

=


e−2λ1(θ−s)aT1 a1 e−(λ1+λ2)(θ−s)aT1 a2 . . . e−(λ1+λm)(θ−s)aT1 am
e−(λ2+λ1)(θ−s)aT2 a1 e−2λ2(θ−s)aT2 a2 . . . e−(λ2+λm)(θ−s)aT2 am

. . . . . . . . . . . .
e−(λm+λ1)(θ−s)aTma1 e−(λm+λ2)(θ−s)aTma2 . . . e−2λm(θ−s)aTmam

 , (3.14)
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W = W (θ) =

θ∫
0

A(θ − s)AT (θ − s)ds

=



aT1 a1

θ∫
0

e−2λ1(θ−s)ds aT1 a2

θ∫
0

e−(λ1+λ2)(θ−s)ds . . . aT1 am
θ∫
0

e−(λ1+λm)(θ−s)ds

aT2 a1

θ∫
0

e−(λ2+λ1)(θ−s)ds aT2 a2

θ∫
0

e−2λ2(θ−s)ds . . . aT2 am
θ∫
0

e−(λ2+λm)(θ−s)ds

. . . . . . . . . . . .

aTma1

θ∫
0

e−(λm+λ1)(θ−s)ds aTma2

θ∫
0

e−(λm+λ2)(θ−s)ds . . . aTmam
θ∫
0

e−2λm(θ−s)ds


.(3.15)

Thus, W (θ) is an m×m symmetric matrix.
Denote by

R(L) =

x | x =

θ∫
0

A(θ − s)µ(s)ds, µ(·) ∈ L2[0,∞)

 (3.16)

the range of the operator L, and by

R(W (θ)) = {x | x = W (θ)η, ηT = (η1, η2, ..., ηm) ∈ Rm} (3.17)

the range of the Gram matrix W (θ). Since the matrix W (θ) is symmetric, therefore R(W (θ)) is a
row space as well as a column space of the matrixW (θ). Note that R(L) and R(W (θ)) are subspaces
of Rm. We prove the following statement.

Lemma 3.1. R(L) = R(W (θ)) for any θ > 0.

Proof. 1) First, show that R(W (θ)) ⊂ R(L) where θ > 0 is any fixed number. Let x ∈ R(W ). Then
x = Wη for some η ∈ Rm. Choose the control

µ(t) = AT (θ − t)η, 0 ≤ t ≤ θ. (3.18)

For this control,

L(θ)µ =

θ∫
0

A(θ − s)µ(s)ds =

θ∫
0

A(θ − s)AT (θ − s)ηds = W (θ)η = x. (3.19)

Thus, x ∈ R(L).

2) We show now that R(L) ⊂ R(W ). Let x ∈ R(L). Then there exists µ(·) ∈ L2[0,∞) such that

x =

θ∫
0

A(θ − s)µ(s)ds. (3.20)

Assume the contrary, x /∈ R(W ). Then by the fact that the subspace ker(W ) = {x ∈ Rm | Wx = 0}
is orthogonal to the row space of W and, hence, to R(W ), the vector x can be represented as follows

x = x1 + x2, x1 ∈ R(W ), x2 ∈ ker(W ), x2 6= 0. (3.21)
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Note that x2 6= 0 since otherwise x = x1 ∈ R(W ) which contradicts our assumption.
Since Wx2 = 0, we have xT2Wx2 = 0, hence,

xT2Wx2 =

θ∫
0

|xT2A(θ − s)|2ds = 0, (3.22)

and so
xT2A(θ − s) = 0, 0 ≤ s ≤ θ.

Consequently,

xT2 · x = xT2

θ∫
0

A(θ − s)µ(s)ds =

θ∫
0

xT2A(θ − s)µ(s)ds = 0.

However,
xT2 · x = xT2 · x1 + xT2 · x2 = |x2|2 6= 0.

Contradiction. The proof of the lemma is complete.

Corollary 3.1. Equation (3.10) is satisfied for some θ and µ(t), 0 ≤ t ≤ θ, if and only if c ∈ R(W ).

Next, we denote B = [A0,ΛA0,Λ
2A0, ...,Λ

m−1A0] which is an m×m2 matrix, where

Λk =


λk1 0 . . . 0
0 λk2 . . . 0
. . . . . . . . . . . .
0 0 0 λkm

 , k = 1, 2, ...,m− 1. (3.23)

The following lemma shows that the subspace R(W (θ)) does not depend on θ.

Lemma 3.2. R(B) = R(W (θ)) for any θ > 0.

Proof. 1) Show that R(W (θ)) ⊂ R(B). Indeed, let x ∈ R(W (θ)) for some θ. By (3.11) we have

A(θ − s) =


aT1

(
1− λ1(θ−s)

1!
+

λ21(θ−s)2
2!

− λ31(θ−s)3
3!

+ ...
)

aT2

(
1− λ2(θ−s)

1!
+

λ22(θ−s)2
2!

− λ32(θ−s)3
3!

+ ...
)

...
aTm

(
1− λm(θ−s)

1!
+ λ2m(θ−s)2

2!
− λ3m(θ−s)3

3!
+ ...

)



=


aT1
aT2
...
aTm

− (θ − s)
1!


λ1a

T
1

λ2a
T
2

...
λma

T
m

+
(θ − s)2

2!


λ2

1a
T
1

λ2
2a
T
2

...
λ2
ma

T
m

− (θ − s)3

3!


λ3

1a
T
1

λ3
2a
T
2

...
λ3
ma

T
m

+ ...

= A0 −
(θ − s)

1!
Λ1A0 +

(θ − s)2

2!
Λ2A0 −

(θ − s)3

3!
Λ3A0 + ... (3.24)

By the Cayley-Hamilton theorem every square matrix satisfies its characteristic equation, therefore
Λk for k ≥ m, can be represented as a linear combination of the matrices I, Λ, Λ2,..., Λm−1. Using
this fact and (3.24) we obtain

A(θ − s) =
m−1∑
k=0

βk(θ − s)ΛkA0
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for some scalar functions βk(θ−s). By Lemma 3.1 R(W (θ)) = R(L), therefore x ∈ R(L), and, hence,
there exists µ(t), 0 ≤ t ≤ θ, such that

x =

θ∫
0

A(θ − s)µ(s)ds =
m−1∑
k=0

ΛkA0

θ∫
0

βk(θ − s)µ(s)ds

=
m−1∑
k=0

ΛkA0ηk = Bη ∈ R(B),

where ηT = [ηT0 , η
T
1 , ..., η

T
m−1] ∈ Rm2 ,

ηk =

θ∫
0

βk(θ − s)µ(s)ds ∈ Rm, k = 0, 1, 2, ...,m− 1.

Thus, x ∈ R(B).

2) Show that R(B) ⊂ R(W (θ)). Let x ∈ R(B). Then x = Bη for some η ∈ Rm2 . We show
that x ∈ R(W (θ)). Assume the contrary, x /∈ R(W (θ)) for some θ > 0. Then x = x1 + x2 with
x1 ∈ R(W (θ)), x2 ∈ ker(W (θ)), where x2 6= 0 since otherwise x = x1 ∈ R(W (θ)). Note that

xT · x2 = xT1 x2 + xT2 · x2 = |x2|2 6= 0.

From the inclusion x2 ∈ ker(R(W (θ))) we obtain W (θ)x2 = 0 and so

xT2W (θ)x2 =

θ∫
0

|xT2A(θ − s)|2ds = 0.

This implies that xT2A(θ−s) = 0, 0 ≤ s ≤ θ. Differentiating this equation k times for k = 0, 1, ...,m−1
and letting t = θ we obtain

xT2A0 = 0, xT2 ΛA0 = 0, ..., xT2 Λm−1A0 = 0.

Thus, xT2B = 0. Then, xT2 x = xT2Bη = 0. This contradicts the condition xT2 x 6= 0. Therefore,
x ∈ R(W (θ)).

It should be noted that Lemma 3.2 shows that R(W (θ)), the subspace of Rm, does not depend
on θ. Also, this lemma implies that rank(W (θ)) = rank(B).

Lemma 3.3. If rank(B) = m, then for any θ > 0, the matrix W (θ) is positive definite.

Proof. For any x ∈ Rm, x 6= 0, we have

xTW (θ)x =

θ∫
0

xTA(θ − s)AT (θ − s)xds =

θ∫
0

|AT (θ − s)x|2ds ≥ 0,

and if we assume that xTW (θ)x = 0 for some x 6= 0, then

θ∫
0

|xTA(θ − s)|2ds = 0,
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and so xTA(θ − s)x = 0 for all 0 ≤ s ≤ θ. Taking derivatives of this equation with respect to s and
evaluating at s = θ we have

xTΛkA0 = 0, k = 0, 1, 2, ...

This implies that xTB = 0, and so rank(B) < m. Contradiction, since rank(B) = rank(W (θ)) = m.
Thus, xTW (θ)x cannot equal to 0 for any x 6= 0. Hence, W (θ) is positive definite.

Further, we assume that rank(B) = m. Then det(W (t)) 6= 0 for any t > 0 and the equation
W (θ)x = c has the unique solution x = W−1(θ)c.

Lemma 3.4. For any c ∈ Rm, c 6= 0, the function g(t) = cTW−1(t)c, t > 0, is non-increasing and
lim
t→+0

g(t) = +∞.

Proof. We show first that g(t), t > 0, is non-increasing. Since det(W (t)) 6= 0, differentiating the
equation W−1(t)W (t) = I, where I is the m×m identity matrix, we obtain

d

dt

(
W−1(t)

)
W (t) +W−1(t)

d

dt
(W (t)) = 0.

Hence, the derivative of the inverse matrix is

d

dt

(
W−1(t)

)
= −W−1(t)

d

dt
(W (t))W−1(t).

Then,
d

dt
g(t) = cT

d

dt

(
W−1(t)

)
c = −cTW−1(t)

d

dt
(W (t))W−1(t)c.

It is not difficult to verify that

d

dt
(W (t)) =


aT1 a1e

−2λ1t aT1 a2e
−(λ1+λ2)t . . . aT1 ame

−(λ1+λm)t

aT2 a1e
−(λ2+λ1)t aT2 a2e

−2λ2t . . . aT2 ame
−(λ2+λm)t

...
...

...
...

aTma1e
−(λm+λ1)t aTma2e

−(λm+λ2)t . . . aTmame
−(λm+λm)t


= A(t)AT (t), AT (t) =

[
e−λ1ta1, e

−λ2ta2, . . . , e
−λmtam

]
, (3.25)

and so
d

dt
g(t) = −cTW−1(t)A(t)AT (t)W−1(t)c = −|AT (t)W−1(t)c|2 ≤ 0.

Thus, g(t) is non-increasing.

Next, we show that lim
t→+0

g(t) = +∞. Since W (t) is symmetric, there exists an orthogonal matrix

Q(t) (by definition Q−1(t) = QT (t)) such that

W (t) = Q(t)D(t)QT (t), D(t) =


ν1(t) 0 0 . . . 0

0 ν2(t) 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . νm(t)

 ,
where ν1(t), ..., νm(t) are eigenvalues of the matrix W (t). Since by Lemma 3.3 the matrix W (t) is
positive definite, therefore the eigenvalues of W (t) are positive, that is, νi(t) > 0 for all i = 1, ...,m.
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Recall, Q(t) as an orthogonal matrix has the following properties Q(t)QT (t) = QT (t)Q(t) = I, and
for any x ∈ Rm, |Q(t)x| = |QT (t)x| = |x|. Then,

W−1(t) = Q(t)D−1(t)QT (t), D−1(t) =


1

ν1(t)
0 0 . . . 0

0 1
ν2(t)

0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1

νm(t)

 ,
Letting ξ(t) = QT (t)c we have |ξ(t)| = |QT (t)c| = |c| and

cTW (t)c = cTQ(t)D(t)QT (t)c = ξT (t)D(t)ξ(t)

= ν1(t)ξ2
1(t) + ...+ νm(t)ξ2

m(t), (3.26)

where ξ(t) = (ξ1(t), ..., ξm(t)), |ξ(t)|2 = ξ2
1(t) + ...+ ξ2

m(t) = |c|2.

g(t) = cTW−1(t)c = cTQ(t)D−1(t)QT (t)c

= ξT (t)D−1(t)ξ(t) =
ξ2

1(t)

ν1(t)
+ ...+

ξ2
m(t)

νm(t)
. (3.27)

For the entries wij(t), i, j ∈ I, of the matrix W (t) we have

wij(t) = aTi aj

t∫
0

e−(λi+λj)(t−s)ds→ 0 as t→ +0. (3.28)

Therefore, cTW (t)c→ 0 as t→ +0, and hence by (3.26)

ν1(t)ξ2
1(t) + ...+ νm(t)ξ2

m(t)→ 0

as t→ +0. Consequently, νi(t)ξ2
i (t)→ 0 for all i = 1, 2, ...,m as t→ +0.

Since the sphere ξ2
1(t) + ... + ξ2

m(t) = |c|2 6= 0 is a compact set, the sequence ξ(tn), n = 1, 2, ...,
where tn → 0 as n → ∞, contains a convergent subsequence. Without restriction of generality, we
assume that the sequence ξ(tn), n = 1, 2, ..., is convergent and

ξ(tn)→ ξ0 = (ξ10, ..., ξm0), |ξ0| = |c| as n→∞.

Let ξs0 6= 0 for some 1 ≤ s ≤ m. We obtain then from νs(tn)ξ2
s (tn) → 0 and ξs(tn) → ξs0 6= 0 that

νs(tn)→ 0 as n→∞. Next, letting t = tn in (3.27) and passing to the limit as n→∞ we obtain

g(tn) =
ξ2

1(tn)

ν1(tn)
+ ...+

ξ2
s (tn)

νs(tn)
+ ...+

ξ2
m(tn)

νm(tn)
→ +∞

since ξs(tn)→ ξs0 6= 0 and 0 < νs(tn)→ 0. Hence, g(t)→ +∞ as t→ +0.

Lemma 3.4 implies that inf
t>0

g(t) = lim
t→∞

g(t). Let

ρ0
.
=
(

lim
t→∞

g(t)
)1/2

=
(

lim
t→∞

cTW−1(t)c
)1/2

.
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3.3 Necessary and sufficient condition for solvability of Problem 1

Now, we turn to Problem 1, or equivalently, to the problem of finding a control µ(t) and time θ such
that

θ∫
0

A(θ − s)µ(s)ds = c,

θ∫
0

|µ(s)|2ds ≤ ρ2. (3.29)

Theorem 3.1. Let rank(B) = m. (i) If ρ > ρ0, then Problem 1 is solvable; (ii) if Problem 1 is
solvable, then ρ ≥ ρ0.

Proof. (i) Let ρ > ρ0. Since the function g(t) = cTW−1(t)c is continuous and decreases on t ∈ (0,∞)
from +∞ to ρ2

0, therefore, there exists a time θ > 0 such that cTW−1(θ)c = ρ2. Assume that θ is the
first time that satisfies this equation. Set

µ(t) = AT (θ − t)η, 0 ≤ t ≤ θ, η = W−1(θ)c.

Then µ(t) is admissible since W−1(θ) is symmetric and

θ∫
0

|µ(t)|2dt =

θ∫
0

|AT (θ − s)η|2ds = ηTW (θ)η = cTW−1(θ)c = ρ2. (3.30)

Also, we have

θ∫
0

A(θ − s)µ(s)ds =

θ∫
0

A(θ − s)AT (θ − s)ηds = W (θ)η = c. (3.31)

Hence, Problem 1 is solvable.

We turn to the part (ii) of the theorem. Let Problem 1 be solvable. Then there exists a time τ
and a control µ(t), 0 ≤ t ≤ τ , such that

τ∫
0

A(τ − s)µ(s)ds = c,

τ∫
0

|µ(s)|2ds ≤ ρ2. (3.32)

We show that ρ ≥ ρ0. Clearly, for the control

µ0(t) = AT (τ − t)η0, 0 ≤ t ≤ τ, η0 = W−1(τ)c,

we have
τ∫

0

A(τ − s)µ0(s)ds = c,

τ∫
0

|µ0(s)|2ds = ηT0 W (τ)η0. (3.33)

If we show the inequality
τ∫

0

|µ(s)|2ds ≥ ηT0 W (τ)η0, (3.34)

then in view of (3.32) and (3.33) we obtain the inequality
τ∫
0

|µ0(s)|2ds ≤ ρ2.
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To show (3.34), we multiply by η0 the both sides of equation in (3.32) to obtain

τ∫
0

ηT0 A(τ − s)µ(s)ds = ηT0 c = ηT0 W (τ)η0.

Using the Cauchy-Schwartz inequality in the left-hand side yields

ηT0 W (τ)η0 =

τ∫
0

ηT0 A(τ − s)µ(s)ds

≤

 τ∫
0

|ηT0 A(τ − s)|2ds

1/2 τ∫
0

|µ(s)|2ds

1/2

≤
(
ηT0 Wη0

)1/2

 τ∫
0

|µ(s)|2ds

1/2

. (3.35)

This implies (3.34). Hence,

ηT0 W (τ)η0 =

τ∫
0

|µ0(s)|2ds ≤
τ∫

0

|µ(s)|2ds ≤ ρ2.

Consequently, we have

ρ2
0 = inf

t>0
ηT0 W (t)η0 ≤ cTW−1(τ)c = ηT0 W (τ)η0 ≤ ρ2,

which is the desired result.

3.4 Optimal transfer time and optimal control

Let ρ > ρ0. As denoted above that t = θ is the minimum root of the equation

cTW−1(t)c = ρ2. (3.36)

Theorem 3.2. The number θ, the root of equation (3.36), is the optimal transfer time of the state
u(x, t) from the state u(x, 0) = 0 to the state for which (u(x, θ), vi(x)) = (u0(x), vi(x)), i = 1, ...,m.

Proof. We show that the control

µ(t) = AT (θ − t)η, 0 ≤ t ≤ θ, η = W−1(θ)c,

which satisfies equation (3.10), is optimal. Assume the contrary, let for some control µ̄(t), 0 ≤ t ≤ θ0,
θ0 < θ,

θ0∫
0

A(t− s)µ̄(s)ds = c,

θ0∫
0

|µ̄(s)|2ds ≤ ρ2. (3.37)

Then, it is not difficult to verify that the control

µ0(t) = AT (θ0 − t)η0, 0 ≤ t ≤ θ0, η0 = W−1(θ0)c,
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satisfies the relations
θ0∫

0

A(t− s)µ0(s)ds = c,

θ0∫
0

|µ0(s)|2ds ≤ ρ2. (3.38)

Thus,

ρ2 ≥
θ0∫

0

|µ0(s)|2ds = ηT0 W (θ0)η0 = cTW−1(θ0)c ≥ cTW−1(θ)c = ρ2.

Hence,
cTW−1(θ0)c = ρ2,

which contradicts the fact that θ is the smallest root of equation (3.36). Thus, θ is the optimal
transfer time.

4 Conclusions

In the present paper, we have studied a mathematical model of thermocontrol processes. The control
functions µk(t) are subjected to an integral constraint. The problem is to find control functions to
transfer the state of the process to a given state. We have found a necessary and sufficient condition
for existence of a control function which transfers the state of the system to a given state. Also, we
have found an equation for the optimal transfer time, and constructed an optimal control function
that transfers the state of the system to a given state.
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