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KHARIN STANISLAV NIKOLAYEVICH

(to the 85th birthday)

On December 4, 2023 Doctor of Physical and Mathe-
matical Sciences, Academician of the National Academy
of Sciences of the Republic of Kazakhstan, member of
the editorial board of the Eurasian Mathematical Jour-
nal Stanislav Nikolaevich Kharin turned 85 years old.

Stanislav Nikolayevich Kharin was born in the vil-
lage of Kaskelen, Alma-Ata region. In 1956 he graduated
from high school in Voronezh with a gold medal. In the
same year he entered the Faculty of Physics and Mathe-
matics of the Kazakh State University and graduated in
1961, receiving a diploma with honors. After postgradu-
ate studies he entered the Sector (since 1965 Institute) of
Mathematics and Mechanics of the National Kazakhstan
Academy of Sciences, where he worked until 1998 and

progressed from a junior researcher to a deputy director of the Institute (1980). In 1968 he has de-
fended the candidate thesis “Heat phenomena in electrical contacts and associated singular integral
equations”, and in 1990 his doctoral thesis “Mathematical models of thermo-physical processes in
electrical contacts” in Novosibirsk. In 1994 S.N. Kharin was elected a corresponding member of the
National Kazakhstan Academy of Sciences, the Head of the Department of Physics and Mathematics,
and a member of the Presidium of the Kazakhstan Academy of Sciences.

In 1996 the Government of Kazakhstan appointed S.N. Kharin to be a co-chairman of the Com-
mittee for scientific and technological cooperation between the Republic of Kazakhstan and the
Islamic Republic of Pakistan. He was invited as a visiting professor in Ghulam Ishaq Khan Institute
of Engineering Sciences and Technology, where he worked until 2001. For the results obtained in
the field of mathematical modeling of thermal and electrical phenomena, he was elected a foreign
member of the National Academy of Sciences of Pakistan. In 2001 S.N. Kharin was invited to the
position of a professor at the University of the West of England (Bristol, England), where he worked
until 2003. In 2005, he returned to Kazakhstan, to the Kazakh-British Technical University, as a
professor of mathematics, where he is currently working.

Stanislav Nikolayevich paid much attention to the training of young researchers. Under his
scientific supervision 10 candidate theses and 4 PhD theses were successfully defended.

Professor S.N. Kharin has over 300 publications including 4 monographs and 10 patents. He
is recognized and appreciated by researchers as a prominent specialist in the field of mathemati-
cal modeling of phenomena in electrical contacts. For these outstanding achievements he got the
International Holm Award, which was presented to him in 2015 in San Diego (USA).

Now he very successfully continues his research as evidenced by his scientific publications in
high-ranking journals with his students in recent years.

The Editorial Board of the Eurasian Mathematical Journal, his friends and colleagues cordially
congratulate Stanislav Nikolayevich on the occasion of his 85th birthday and wish him good health,
happiness and new achievements in mathematics and mathematical education.
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1 Introduction

Let M be the set of all Lebesgue measurable functions on R2
+ := (0,∞)2, and let M+ ⊂ M be the

subset of all non-negative functions.
For fixed parameters 1 < p1, p2, q < ∞ and weight functions u, v1, v2 ∈ M+, we consider the

problem of characterizing of the bilinear Hardy inequality( ∞∫
0

∞∫
0

(I2f)q (I2g)q u

) 1
q

≤ C

( ∞∫
0

∞∫
0

fp1v1

) 1
p1

( ∞∫
0

∞∫
0

gp2v2

) 1
p2

(1.1)

for all f, g ∈M+, where

I2f(x1, x2) :=

x1∫
0

x2∫
0

f(t1, t2) dt1 dt2

is the two–dimensional Hardy operator. Here, C > 0 is supposed to be the best (least possible)
constant that does not depend on f and g.

Integral transforms, which map a product of function spaces into another function space (multi–
linear integral operators), have applications, in particular, to smoothness properties and approx-
imation of function classes (see e.g. [13] and references therein). In the one–dimensional case a
multi–linear analogue of (1.1) was considered in [3, 4] as an illustration of results about multi–linear
inequalities. Other types of one–dimensional linear and bilinear integral operators in Lebesgue spaces
and subclasses were studied in [1, 2, 5, 6, 7, 8, 9, 10, 11, 14, 15, 17, 21]. For product type weight
functions (or factorizable weights) inequality (1.1) was completely studied in [16].

The goal of our work is to solve the same problem without such restrictions on weight functions.
The paper is organized as follows. In Section 2, we review auxiliary results which pertain to

estimates of the best constant C in weighted two-dimensional linear Hardy inequality (2.1). In
Section 3, the results are given on characterization of the best constant C in bilinear Hardy inequality
(1.1). We consider thirteen cases depending on relations between the norm parameters p1, p2 and q.
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The subsections correspond those relations between the numerical parameters for which the proofs
of estimates are similar.

The dual operator to I2 is defined as

I∗2f(x1, x2) :=

∞∫
x1

∞∫
x2

f(t1, t2)dt1dt2.

The results of this paper for the operator I2 can be proved in a similar way for the operator I∗2 .
Throughout the paper, products of the form 0 ·∞ are taken to be equal to 0. By A . B we mean

that there exists k > 0, which depends only on some insignificant numerical parameters, such that
A ≤ kB. If A . B and B . A then we write A ≈ B. If p > 1 then p′ = p/(p− 1).

2 Auxiliary results

Let us first recall Sawyer’s Theorem (see [12, Theorem A] or [18, Theorem 1]).

Theorem 2.1. Let 1 < p ≤ q <∞ and w, v ∈M+ be weights. Then the inequality( ∞∫
0

∞∫
0

(I2f)q w

) 1
q

≤ C

( ∞∫
0

∞∫
0

fpv

) 1
p

(2.1)

holds for some C > 0 and for all f ∈M+ if and only if

D1 := sup
(t1,t2)∈R2

+

(
I∗2w(t1, t2)

) 1
q
(
I2σ(t1, t2)

) 1
p′ <∞,

D2 := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(I2σ)qw

) 1
q (
I2σ(t1, t2)

)− 1
p <∞,

D3 := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

(I∗2w)p
′
σ

) 1
p′ (
I∗2w(t1, t2)

)− 1
q′ <∞,

where σ := v1−p′ . Moreover, if C is the best constant in (2.1), then

C ≈ D1 +D2 +D3. (2.2)

Now, if p < q there is an alternative estimate ([18], Theorem 2).

Theorem 2.2. Let 1 < p < q <∞ and w, v ∈M+ be weights. Then inequality (2.1) holds for some
C > 0 and for all f ∈M+ if and only if D1 <∞. Moreover, if C is the best constant in (2.1), then

C ≈ D1. (2.3)

For the case q < p the following results are known ([20], Theorem 3).

Theorem 2.3. Let 1 < q < p <∞, 1/r := 1/q− 1/p and let w, v ∈M+ be weights. Then inequality
(2.1) holds for some C > 0 and for all f ∈M+ if

Bv :=

( ∞∫
0

∞∫
0

σ(u, z)

( ∞∫
u

∞∫
z

(I2σ)q−1w

) r
q

du dz

) 1
r

<∞.
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Reversely, if inequality (2.1) true then B <∞, where

B :=

( ∞∫
0

∞∫
0

dy
(
I2σ(x, y)

) r
p′ dx

(
−
(
I∗2w(x, y)

) r
q

)) 1
r

=

( ∞∫
0

∞∫
0

(
I2σ(x, y)

) r
p′ dx dy

(
I∗2w(x, y)

) r
q

) 1
r

=

( ∞∫
0

∞∫
0

(
I∗2w(x, y)

) r
q dx dy

(
I2σ(x, y)

) r
p′

) 1
r

.

Moreover, if C is the best constant in (2.1), then

B . C . Bv.

Theorem 2.4. Let 1 < q < p <∞ and w, v ∈M+ be weights. Assume that the following is satisfied:

(1) there exists γ ∈ [ q
p
, 1) such that

∂2
([
I2σ(x, y)

]γ)
∂x∂y

≥ 0 for almost all (x, y) ∈ R2
+;

(2) there exists γ∗ ∈ [p
′

q′
, 1) such that

∂2
([
I2w(x, y)

]γ∗)
∂x∂y

≥ 0 for almost all (x, y) ∈ R2
+.

Then inequality (2.1) holds for some C > 0 and for all f ∈M+ if and only if B <∞. Moreover, if
C is the best constant in (2.1), then

C ≈ B. (2.4)

3 Main results

We denote σi := v
1−p′i
i and Vi := I2σi, where i = 1, 2.

There are thirteen ways to arrange three numbers p1, p2, q considering that some of them may be
equal. We will break the thirteen cases into subcases based upon similarity of the proof.

3.1 Case max(p1, p2) ≤ q

The following cases arise when max(p1, p2) ≤ q:

1) p1 < p2 = q,

2) p2 < p1 = q,

3) max{p1, p2} < q,

4) p1 = p2 = q.

Theorem 3.1. Let p1 6= p2 and max(p1, p2) = q or max{p1, p2} < q. Assume w, v ∈M+ are weights.
Then the best constant C in inequality (1.1) can be estimated as:

1) C ≈ A1, if p1 < p2 = q, where

A1 := sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1

(
D̃1(x, y) + D̃2(x, y) + D̃3(x, y)

)
and D̃i(x, y), i = 1, 2, 3 are defined by equations (3.3), (3.4), (3.5), respectively;
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2) C ≈ A2, if p2 < p1 = q, where

A2 := sup
(x,y)∈R2

+

(
V2(x, y)

) 1
p′2

(
D̂1(x, y) + D̂2(x, y) + D̂3(x, y)

)
and D̂i(x, y), i = 1, 2, 3 are defined by equations (3.6), (3.7), (3.8), respectively;

3) C ≈ min
{
B1,B2

}
, if p1 < p2 < q or p2 < p1 < q or p1 = p2 < q, where

B1 := sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1

(
D̃1(x, y)

)
,

B2 := sup
(x,y)∈R2

+

(
V2(x, y)

) 1
p′2

(
D̂1(x, y)

)
.

Proof. For a given weight v ∈M+ and a fixed parameter p > 1 denote by

‖h‖p,v :=

( ∞∫
0

∞∫
0

|h|pv

) 1
p

the weighted Lebesgue norm of h. Then we have the following equality for the best constant C in
(1.1):

C = sup
g 6=0

sup
f 6=0

( ∞∫
0

∞∫
0

(I2f)q (I2g)q u

) 1
q

‖f‖p1,v1‖g‖p2,v2
. (3.1)

1) Consider the case p1 < p2 = q. By virtue of (2.3) and (2.2),

C
(2.3)
≈ sup

g 6=0
‖g‖−1

p2,v2
sup

(x,y)∈R2
+

( ∞∫
0

∞∫
0

(I2g)qχ(x,∞)×(y,∞)u

) 1
q (
I2v

1−p′1
1 (x, y)

) 1
p′1 (3.2)

= sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1 sup

g 6=0

 ∞∫
0

∞∫
0

(I2g)qχ(x,∞)×(y,∞)u

 1
q

‖g‖−1
p2,v2

(2.2)
≈ sup

(x,y)∈R2
+

(
V1(x, y)

) 1
p′1

(
D̃1(x, y) + D̃2(x, y) + D̃3(x, y)

)
,

where

D̃1(x, y) := sup
(t1,t2)∈R2

+

(
I∗2
(
χ(x,∞)×(y,∞)u

)
(t1, t2)

) 1
q (
V2(t1, t2)

) 1
p′2 , (3.3)

D̃2(x, y) := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(V2)qχ(x,∞)×(y,∞)u

) 1
q (
V2(t1, t2)

)− 1
p2 , (3.4)

D̃3(x, y) := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

(
I∗2
(
χ(x,∞)×(y,∞)u

))p′2
σ2

) 1
p′2

(
I∗2
(
χ(x,∞)×(y,∞)u

)
(t1, t2)

) 1
q′

. (3.5)



Two–dimensional bilinear Hardy inequality 51

2) The proof for the case p2 < p1 = q is analogous to case 1). In this case

C ≈ sup
(x,y)∈R2

+

(
V2(x, y)

) 1
p′2

(
D̂1(x, y) + D̂2(x, y) + D̂3(x, y)

)
,

where

D̂1(x, y) := sup
(t1,t2)∈R2

+

(
I∗2
(
χ(x,∞)×(y,∞)u

)
(t1, t2)

) 1
q (
V1(t1, t2)

) 1
p′1 , (3.6)

D̂2(x, y) := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(V1)qχ(x,∞)×(y,∞)u

) 1
q (
V1(t1, t2)

)− 1
p1 , (3.7)

D̂3(x, y) := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

(
I∗2
(
χ(x,∞)×(y,∞)u

))p′1
σ1

) 1
p′1

(
I∗2
(
χ(x,∞)×(y,∞)u

)
(t1, t2)

) 1
q′

. (3.8)

3) Let p1 < p2 < q or p2 < p1 < q or p1 = p2 < q. Analogously to (3.2),

C
(2.3)
≈ sup

(x,y)∈R2
+

(
V1(x, y)

) 1
p′1 sup

g 6=0

( ∞∫
0

∞∫
0

(I2g)q χ(x,∞)×(y,∞)u

) 1
q

‖g‖−1
p2,v2

(2.3)
≈ sup

(x,y)∈R2
+

(
V1(x, y)

) 1
p′1

(
D̃1(x, y)

)
:= B1.

Similarly, we can obtain an alternative estimate:

C ≈ sup
(x,y)∈R2

+

(
V2(x, y)

) 1
p′2

(
D̂1(x, y)

)
:= B2.

Therefore, C ≈ min
{
B1,B2

}
.

It remains to consider the case 4) p1 = p2 = q. By (2.2), we have

C ≈ C1 + C2 + C3,

where

C1 := sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1 sup

g 6=0

( ∞∫
0

∞∫
0

(I2g)q χ(x,∞)×(y,∞)u

) 1
q

‖g‖−1
p2,v2

,

C2 := sup
(x,y)∈R2

+

(
V1(x, y)

)− 1
p1 sup

g 6=0

( ∞∫
0

∞∫
0

(V1)q (I2g)q χ(0,x)×(0,y)u

) 1
q

‖g‖−1
p2,v2

,

C3 := sup
g 6=0
‖g‖−1

p2,v2
sup

(x,y)∈R2
+

( ∞∫
x

∞∫
y

( ∞∫
0

∞∫
0

(I2g)q χ(ρ,∞)×(τ,∞)u

)p′1

σ1(ρ, τ) dρ dτ

) 1
p′1

( ∞∫
0

∞∫
0

(I2g)q χ(x,∞)×(y,∞)u

) 1
q′

. (3.9)
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From (2.2) it follows that

C1 ≈ sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1

(
S1(x, y) + S2(x, y) + S3(x, y)

)
=: Q1,

where

S1(x, y) := sup
(t1,t2)∈R2

+

( ∞∫
0

∞∫
0

uχ(max(t1,x),∞)×(max(t2,y),∞)

) 1
q (
V2(t1, t2)

) 1
p′2 ,

S2(x, y) := sup
(t1,t2)∈R2

+

( t1∫
x

t2∫
y

(V2)qu

) 1
q (
V2(t1, t2)

)− 1
p2 ,

S3(x, y) := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

( ∞∫
0

∞∫
0

uχ(max(x,ρ),∞)×(max(y,τ),∞)

)p′2

σ2(ρ, τ) dρ dτ

) 1
p′2

( ∞∫
0

∞∫
0

uχ(max(t1,x),∞)×(max(t2,y),∞)

) 1
q′

,

and

C2 ≈ sup
(x,y)∈R2

+

(
V1(x, y)

)− 1
p1

(
T1(x, y) + T2(x, y) + T3(x, y)

)
=: Q2,

where

T1(x, y) := sup
(t1,t2)∈R2

+

( x∫
t1

y∫
t2

(V1)q u

) 1
q (
V2(t1, t2)

) 1
p′2 ,

T2(x, y) := sup
(t1,t2)∈R2

+

( ∞∫
0

∞∫
0

(V1V2)quχ(0,min(t1,x)×(0,min(t2,y))

) 1
q (
V2(t1, t2)

)− 1
p2 ,

T3(x, y) := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

( x∫
ρ

y∫
τ

(V1)qu

)p′2

σ2(ρ, τ) dρ dτ

) 1
p′2
( x∫
t1

y∫
t2

(V1)qu

)− 1
q′

.

Since χ(ρ,∞)×(τ,∞) ≤ χ(x,∞)×(y,∞) in (3.9) and p′ = q′ then

C3 . sup
g 6=0

sup
(x,y)∈R2

+

( ∞∫
x

∞∫
y

( ∞∫
0

∞∫
0

(I2g)q χ(ρ,∞)×(τ,∞)u

)p′1−1

σ1(ρ, τ) dρ dτ

) 1
p′1

‖g‖p2,v2
(3.10)

= sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

( ∞∫
0

∞∫
0

(I2g)q χ(ρ,∞)×(τ,∞)u

)p′1−1

σ1(ρ, τ) dρ dτ

) 1
p′1−1


1
p1

.
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Let p′1 − 1 ≥ 1. Applying Minkowskii’s integral inequality with p′1 − 1, we obtain

C3 . sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(
I2g(t, z)

)q
u(t, z)

( t∫
0

z∫
0

σ1(ρ, τ) dρ dτ

) 1
p′1−1

dt dz

) 1
p1

= sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(I2g)qu(V1)p1−1

) 1
p1 (2.2)
. R1 +R2 +R3.

Here,

R1 := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

u(V1)p1−1

) 1
q (
V2(t1, t2)

) 1
p′1 ,

R2 := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(V2)qu(V1)p1−1

) 1
q (
V2(t1, t2)

)− 1
p1 ,

R3 := sup
(t1,t2)∈R2

+

 ∞∫
t1

∞∫
t2

( ∞∫
t

∞∫
z

u(V1)p1−1

)p′1

σ2(t, z) dt dz

 1
p′( ∞∫

t1

∞∫
t2

u(V1)p1−1

)− 1
q′

.

If p′1 − 1 < 1 then from (3.10) it follows that

C3 . sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

( ∞∫
0

∞∫
0

(I2g)q χ(ρ,∞)×(τ,∞)u

)p′1−1

σ1(ρ, τ) dρ dτ

) 1
p′1

≤

 ∞∫
0

∞∫
0

(
sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(I2g)q χ(ρ,∞)×(τ,∞)u

) 1
p1

)p′1

σ1(ρ, τ) dρ dτ


1
p′1

(2.2)
.

( ∞∫
0

∞∫
0

(
J1(ρ, τ) + J2(ρ, τ) + J3(ρ, τ)

)p′1
σ1(ρ, τ) dρ dτ

) 1
p′1

=: Q3, (3.11)

where

J1(ρ, τ) := sup
(t1,t2)∈R2

+

( ∞∫
0

∞∫
0

uχ(max(t1,ρ),∞)×(max(t2,τ),∞)

) 1
q (
V2(t1, t2)

) 1
p′2 ,

J2(ρ, τ) := sup
(t1,t2)∈R2

+

( t1∫
ρ

t2∫
τ

(V2)qu

) 1
q (
V2(t1, t2)

)− 1
p2 , (3.12)

J3(ρ, τ) := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

( ∞∫
0

∞∫
0

uχ(max(ρ,z1),∞)×(max(τ,z2),∞)

)p′2

σ2(z1, z2) dz1 dz2

) 1
p′2

( ∞∫
0

∞∫
0

uχ(max(t1,ρ),∞)×(max(t2,τ),∞)

) 1
q′

.
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Note that estimates (3.11)–(3.12) hold for the case p′ − 1 ≥ 1 as well.
For a lower bound for C3 we obtain from (3.9) by setting g = σ2χ(0,t1)×(0,t2):

C3 ≥ sup
(x,y)∈R2

+

(t1,t2)∈R2
+

( ∞∫
x

∞∫
y

( ∞∫
ρ

∞∫
τ

(
V2(min(t1, t),min(t2, z)

)q
u(t, z) dt dz

)p′1

σ1(ρ, τ) dρ dτ

) 1
p′1

( ∞∫
x

∞∫
y

(
V2(min(t1, t),min(t2, z)

)q
u(t, z) dt dz

) 1
q′ (
V2(t1, t2)

) 1
p2

.

Summarizing the above, we can state the following theorem.

Theorem 3.2. Let p1 = p2 = q and w, v ∈ M+ be weights. Then the best constant C in inequality
(1.1) can be estimated from above as follows.

1. If p′1 − 1 < 1 then
C . Q1 +Q2 +Q3.

2. If p′1 − 1 ≥ 1 then
C . Q1 +Q2 + min

{
R1 +R2 +R3, Q3

}
.

A lower bound for C, independently of relations between p′1 − 1 and 1, is

C & Q1 +Q2+

+ sup
(x,y)∈R2

+

(t1,t2)∈R2
+

( ∞∫
x

∞∫
y

( ∞∫
ρ

∞∫
τ

(
V2(min(t1, t),min(t2, z)

)q
u(t, z) dt dz

)p′1

σ1(ρ, τ) dρ dτ

) 1
p′1

( ∞∫
x

∞∫
y

(
V2(min(t1, t),min(t2, z)

)q
u(t, z) dt dz

) 1
q′ (
V2(t1, t2)

) 1
p2

.

3.2 Case q < max{p1, p2}
There following cases arise when q < max{p1, p2}:

1) p1 < q < p2 or p1 < q < p2,

2) q < min{p1, p2},

3) q = p1 < p2 or q = p2 < p1.

Theorem 3.3. Let min{p1, p2} < q < max{p1, p2} and w, v ∈M+ be weights. Then the best constant
C in inequality (1.1) can be estimated as

sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1 B̃v(x, y) . C . sup

(x,y)∈R2
+

(
V1(x, y)

) 1
p′1 B̃(x, y)

in the case p1 < q < p2 with B̃v(x, y) and B̃(x, y) given by equalities (3.14) and (3.15). If p2 < q < p1

then we have (3.16).
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Proof. Let p1 < q < p2. Then

C
(2.3)
≈ sup

g 6=0
‖g‖−1

p2,v2
sup

(x,y)∈R2
+

( ∞∫
0

∞∫
0

(I2g)q χ(x,∞)×(y,∞)u

) 1
q (
I2v

1−p′1
1 (x, y)

) 1
p′1

= sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1 sup

g 6=0

( ∞∫
0

∞∫
0

(I2g)q χ(x,∞)×(y,∞)u

) 1
q

‖g‖−1
p2,v2

. (3.13)

Therefore, from Theorem 2.3 it follows that

sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1 B̃(x, y) . C . sup

(x,y)∈R2
+

(
V1(x, y)

) 1
p′1 B̃v(x, y),

where with 1/r2 := 1/q − 1/p2

B̃v(x, y) :=

( ∞∫
0

∞∫
0

σ2(t, z)

( ∞∫
t

∞∫
z

(V2)q−1χ(x,∞)×(y,∞)u

) r2
q

dt dz

) 1
r2

, (3.14)

B̃(x, y) :=

( ∞∫
0

∞∫
0

dz
(
V2(t, z)

) r2
p′2 dt

(
−
(
I∗2 (χ(x,∞)×(y,∞)u)(t, z)

) r2
q

)) 1
r2

. (3.15)

The proof of the case p2 < q < p1 is analogous. Here,

sup
(x,y)∈R2

+

(
V2(x, y)

) 1
p′2 B̂(x, y) . C . sup

(x,y)∈R2
+

(
V2(x, y)

) 1
p′2 B̂v(x, y) (3.16)

and with 1/r1 := 1/q − 1/p1

B̂v(x, y) :=

( ∞∫
0

∞∫
0

σ1(t, z)

( ∞∫
t

∞∫
z

(V1)q−1χ(x,∞)×(y,∞)u

) r1
q

dt dz

) 1
r1

,

B̂(x, y) :=

( ∞∫
0

∞∫
0

dz
(
V1(t, z)

) r1
p′1 dt

(
−
(
I∗2 (χ(x,∞)×(y,∞)u)(t, z)

) r1
q

)) 1
r1

.

Remark 1. If the weights u and σ2 in (3.13) satisfy properties (1) and (2), respectively, from Theorem
2.4, then by virtue of (2.4) we obtain

C ≈ sup
(x,y)∈R2

+

(
V1(x, y)

) 1
p′1

( ∞∫
0

∞∫
0

(
I∗2 [uχ(x,∞)×(y,∞)](ρ, τ)

) r2
q dρ dτ

(
V2(ρ, τ)

) r2
p′2

) 1
r2

.

Analogically, in the case p2 < q < p1, if the weights u and σ1 satisfy properties (1) and (2) from
Theorem 2.4, then we obtain

C ≈ sup
(x,y)∈R2

+

(
V2(x, y)

) 1
p′2

( ∞∫
0

∞∫
0

(
I∗2 (uχ(x,∞)×(y,∞))(ρ, τ)

) r1
q dρ dτ

(
V1(ρ, τ)

) r1
p′1

) 1
r1

.
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Theorem 3.4. Let q < p1 = p2 or q < p1 < p2 or q < p2 < p1 and w, v ∈M+ be weights. Then the
best constant C in inequality (1.1) can be estimated from above as

C . min


( ∞∫

0

∞∫
0

σ1(t, z)
(
E(t, z)

)r1dt dz) 1
r1

, F

 ,

where E is defined by equation (3.17) and F is defined by equation (3.19).
If, in addition, the weights w1 := u(V1)q−1 and w2 := u(V1)

q

p′1 satisfy condition (1) of Theorem
2.4 and the weight σ2 is of type (2), then

C . min
{
J̃ , Ĵ

}
,

where J̃ and Ĵ are defined by equations (3.18) and (3.20), respectively.
A lower bound for the best constant C in (1.1) is given in (3.22).

Proof. From (3.1) and Theorem 2.3 we have

C . sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

σ1(t, z)

( ∞∫
t

∞∫
z

(I2g)q (V1)q−1u

) r1
q

dt dz

) 1
r1

= sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

σ1(t, z)

( ∞∫
t

∞∫
z

(I2g)q w1

) r1
q

dt dz

) 1
r1

.

( ∞∫
0

∞∫
0

σ1(t, z)

sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(I2g)q w1χ(t,∞)×(z,∞)

) 1
q

r1

dt dz

) 1
r1

.

( ∞∫
0

∞∫
0

σ1(t, z)
(
E(t, z)

)r1dt dz) 1
r1

.

Here,

E(t, z) =

( ∞∫
0

∞∫
0

σ2(ρ, τ)

( ∞∫
0

∞∫
0

(V1V2)q−1uχ(max(t,ρ),∞)×(max(z,τ),∞)

) r2
q

dρ dτ

) 1
r2

. (3.17)

If the weights w1 and σ2 satisfy properties (1), (2) of Theorem 2.4, then

C .

( ∞∫
0

∞∫
0

σ1(t, z)

sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(I2g)q w1χ(t,∞)×(z,∞)

) 1
q

r1

dt dz

) 1
r1

.

( ∞∫
0

∞∫
0

σ1(t, z)
(
J(t, z)

)r1dt dz) 1
r1

=: J̃ , (3.18)

where

J(t, z) =

( ∞∫
0

∞∫
0

((
I∗2w1χ(t,∞)×(z,∞)

)
(x, y)

) r2
q
dx dy

(
V2(x, y)

) r2
p′2

) 1
r2

.
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Alternatively, we can write

C . sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

σ1(t, z)

( ∞∫
t

∞∫
z

(I2g)q (V1)q−1u

) r1
q

dt dz

) 1
r1

= sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

σ1(t, z)

( ∞∫
t

∞∫
z

(I2g)q (V1)q−1u

) r1
q

dt dz

) q
r1

 1
q

.

Application of Minkowski’s integral inequality with the exponent r1/q yields

C . sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(
(I2g)(x, y)

)q(
V1(x, y)

) q

p′1 u(x, y) dx dy

) 1
q

.

( ∞∫
0

∞∫
0

σ2(t̃, z̃)

( ∞∫
t̃

∞∫
z̃

(V1)
q

p′1 (V2)q−1u

) r2
q

dt̃ dz̃

) 1
r2

:= F. (3.19)

Therefore,

C . min


( ∞∫

0

∞∫
0

σ1(t, z)
(
E(t, z)

)r1dt dz) 1
r1

, F

 .

If the weights w2 and σ2 are of types (1) and (2) from Theorem 2.4, then

C . sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(I2g)q (x, y)w2(x, y) dx dy

) 1
q

.

( ∞∫
0

∞∫
0

((
I∗2w2

)
(x, y)

) r2
q
dx dy

(
V2(x, y)

) r2
p′2

) 1
r2

=: Ĵ . (3.20)

For the lower bound for C we use Theorem 2.3, first, to obtain

C & sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(
I∗2
(
(I2g)qw

)
(x, y)

) r1
q
dx dy

(
I2σ1(x, y)

) r1
p′1

) 1
r1

= sup
g 6=0

 ∞∫
0

∞∫
0

(
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

χ(x,∞)×(y,∞)(I2g)qw

) 1
q
)r1

dx dy
(
V1(x, y)

) r1
p′1


1
r1

. (3.21)

After this, substituting the test function

g0(s, τ, x, y) := σ2(s, τ)

( ∞∫
s

(
V2(ρ, τ)

) r1
q′
((
I∗2w0(x, y)

)
(ρ, τ)

) r1
p1

( ∞∫
τ

w0(ρ, z) dz

)
dρ

) 1
p1

with w0 := χ(x,∞)×(y,∞)u into (3.21) (see [18, pages 627–631] for details) implies

C &

( ∞∫
0

∞∫
0

( ∞∫
0

∞∫
0

((
I∗2w0(x, y)

)
(s, t)

) r2
q
ds dt

(
V2(s, t)

) r1
p′1

) r1
r2

dx dy
(
V1(x, y)

) r1
p′1

) 1
r1

. (3.22)
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Theorem 3.5. Let w, v ∈M+ be weights.

1. If q = p2 < p1 <∞ then the best constant C in inequality (1.1) can be estimated as

C . min
{
G,K

}
.

where functionals G, K are defined in (3.23) and (3.24) respectively. A lower bound for C is
as given in (3.27).

2. If q = p1 < p2 <∞ then the best constant C in inequality (1.1) can be estimated as

C . min
{
G̃, K̃

}
,

where functionals G̃ and K̃ are defined in (3.25) and (3.26) respectively. A lower estimate for
C is as given in (3.28).

Proof. 1. Let q = p2 < p1 <∞. By Theorem 2.3 and (2.2), we have

C .

( ∞∫
0

∞∫
0

σ1(t, z)

(
sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(I2g)q (V1)q−1uχ(t,∞)×(z,∞)

) 1
q
)r1

dt dz

) 1
r1

≈

( ∞∫
0

∞∫
0

σ1(t, z)
(
G1(t, z) +G2(t, z) +G3(t, z)

)r1
dt dz

) 1
r1

:= G, (3.23)

where

G1(t, z) := sup
(t1,t2)∈R2

+

(
I∗2
(
χ(t,∞)×(z,∞)(V1)q−1u

)
(t1, t2)

) 1
q (
V2(t1, t2)

) 1
p′2 ,

G2(t, z) := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(V2)q(V1)q−1χ(t,∞)×(z,∞)u

) 1
q (
V2(t1, t2)

)− 1
p2 ,

G3(t, z) := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

(
I∗2
(
χ(t,∞)×(z,∞)(V1)q−1u

))p′2
σ2

) 1
p′2

(
I∗2
(
χ(t,∞)×(z,∞)(V1)q−1u

)
(t1, t2)

) 1
q′

.

Alternatively, analogously to the proof of Theorem 3.5 we obtain

C . sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

σ1(t, z)

( ∞∫
t

∞∫
z

(I2g)q(V1)q−1u

) r1
q

dt dz

) q
r1

 1
q

[
by Minkowski’s integral inequality with the exponent r1/q

]
. sup

g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

(
(I2g)(x, y)

)q
(V1)

q

p′1 (x, y)u(x, y) dx dy

) 1
q

. K1 +K2 +K3 := K. (3.24)
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Here,

K1 := sup
(t1,t2)∈R2

+

(
I∗2
(
(V1)

q

p′1 u
)
(t1, t2)

) 1
q (
V2(t1, t2)

) 1
p′2 ,

K2 := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(V2)q(V1)
q

p′1 u

) 1
q (
V2(t1, t2)

)− 1
p2 ,

K3 := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

(
I∗2
(
(V1)

q

p′1 u
))p′2

σ2

) 1
p′2 (

I∗2
(
(V1)

q

p′1 u
)
(t1, t2)

)− 1
q′
.

Therefore,

C . min
{
G,K

}
.

2. If q = p1 < p2 <∞ then, analogously to Case 1,

C .

( ∞∫
0

∞∫
0

σ2(t, z)
(
G̃1(t, z) + G̃2(t, z) + G̃3(t, z)

)r1
dt dz

) 1
r1

:= G̃, (3.25)

where

G̃1(t, z) := sup
(t1,t2)∈R2

+

(
I∗2
(
χ(t,∞)×(z,∞)(V2)q−1u

)
(t1, t2)

) 1
q (
V1(t1, t2)

) 1
p′1 ,

G̃2(t, z) := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(V1)q(V2)q−1χ(t,∞)×(z,∞)u

) 1
q (
V1(t1, t2)

)− 1
p1 ,

G̃3(t, z) := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

(
I∗2
(
χ(t,∞)×(z,∞)(V2)q−1u

)p′1σ1

) 1
p′1

(
I∗2
(
χ(t,∞)×(z,∞)(V2)q−1u

)
(t1, t2)

) 1
q′

.

Alternatively,

C . K̃1 + K̃2 + K̃3 := K̃. (3.26)

Here,

K̃1 := sup
(t1,t2)∈R2

+

(
I∗2
(
(V2)

q

p′2 u
)
(t1, t2)

) 1
q (
V1(t1, t2)

) 1
p′1 ,

K̃2 := sup
(t1,t2)∈R2

+

( t1∫
0

t2∫
0

(V1)q(V2)
q

p′2 u

) 1
q (
V1(t1, t2)

)− 1
p1 ,

K̃3 := sup
(t1,t2)∈R2

+

( ∞∫
t1

∞∫
t2

(
I∗2
(
(V2)

q

p′2 u
))p′1

σ1

) 1
p′1 (

I∗2
(
(V2)

q

p′2 u
)
(t1, t2)

)− 1
q′
.
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Therefore,

C . min
{
G̃, K̃

}
.

To derive the lower estimate for C in Case 1, we start from (3.21)

C & sup
g 6=0
‖g‖−1

p2,v2

( ∞∫
0

∞∫
0

( ∞∫
0

∞∫
0

χ(x,∞)×(y,∞)(I2g)qw

) r1
q

dx dy
(
V1(x, y)

) r1
p′1

) 1
r1

and obtain, by setting g = σ2χ(0,s)×(0,t), that

C & sup
(s,t)∈R2

+

( ∞∫
0

∞∫
0

( ∞∫
x

∞∫
y

(I2σ2χ(0,s)×(0,t))
qw

) r1
q

dx dy
(
V1(x, y)

) r1
p′1

) 1
r1

(
V2(s, t)

) 1
p2

. (3.27)

Analogously, in Case 2:

C & sup
(s,t)∈R2

+

( ∞∫
0

∞∫
0

( ∞∫
x

∞∫
y

(I2σ1χ(0,s)×(0,t))
qw

) r2
q

dx dy
(
V2(x, y)

) r2
p′2

) 1
r2

(
V1(s, t)

) 1
p1

. (3.28)

Acknowledgments

The authors are grateful to Professor V.D. Stepanov for formulating the problem, constant feedback
and support. The authors also thank the reviewer for valuable recommendations and the editor for
proofreading of the text.

The research work of the first author presented in Section 3.1 was supported by the Russian
Science Foundation (project no. 22-21-00579, https://rscf.ru/project/22-21-00579/). The work of
both authors presented in rest part of the paper was carried out within the framework of the state
task of the Ministry of Science and Higher Education of the Russian Federation to the Computing
Center of the Far Eastern Branch of the Russian Academy of Sciences and V.A. Trapeznikov Institute
of Control Sciences of the Russian Academy of Sciences.



Two–dimensional bilinear Hardy inequality 61

References
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