
ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2023, Volume 14, Number 4

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University

the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University

and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice–Editors–in–Chief
K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (Kazakhstan), O.V. Besov (Russia),
N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud
(France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov
(Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan),
B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin
(Great Britain), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan),
P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), F. Lanzara (Italy), V.G. Maz’ya (Sweden),
K.T. Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Para-
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KHARIN STANISLAV NIKOLAYEVICH

(to the 85th birthday)

On December 4, 2023 Doctor of Physical and Mathe-
matical Sciences, Academician of the National Academy
of Sciences of the Republic of Kazakhstan, member of
the editorial board of the Eurasian Mathematical Jour-
nal Stanislav Nikolaevich Kharin turned 85 years old.

Stanislav Nikolayevich Kharin was born in the vil-
lage of Kaskelen, Alma-Ata region. In 1956 he graduated
from high school in Voronezh with a gold medal. In the
same year he entered the Faculty of Physics and Mathe-
matics of the Kazakh State University and graduated in
1961, receiving a diploma with honors. After postgradu-
ate studies he entered the Sector (since 1965 Institute) of
Mathematics and Mechanics of the National Kazakhstan
Academy of Sciences, where he worked until 1998 and

progressed from a junior researcher to a deputy director of the Institute (1980). In 1968 he has de-
fended the candidate thesis “Heat phenomena in electrical contacts and associated singular integral
equations”, and in 1990 his doctoral thesis “Mathematical models of thermo-physical processes in
electrical contacts” in Novosibirsk. In 1994 S.N. Kharin was elected a corresponding member of the
National Kazakhstan Academy of Sciences, the Head of the Department of Physics and Mathematics,
and a member of the Presidium of the Kazakhstan Academy of Sciences.

In 1996 the Government of Kazakhstan appointed S.N. Kharin to be a co-chairman of the Com-
mittee for scientific and technological cooperation between the Republic of Kazakhstan and the
Islamic Republic of Pakistan. He was invited as a visiting professor in Ghulam Ishaq Khan Institute
of Engineering Sciences and Technology, where he worked until 2001. For the results obtained in
the field of mathematical modeling of thermal and electrical phenomena, he was elected a foreign
member of the National Academy of Sciences of Pakistan. In 2001 S.N. Kharin was invited to the
position of a professor at the University of the West of England (Bristol, England), where he worked
until 2003. In 2005, he returned to Kazakhstan, to the Kazakh-British Technical University, as a
professor of mathematics, where he is currently working.

Stanislav Nikolayevich paid much attention to the training of young researchers. Under his
scientific supervision 10 candidate theses and 4 PhD theses were successfully defended.

Professor S.N. Kharin has over 300 publications including 4 monographs and 10 patents. He
is recognized and appreciated by researchers as a prominent specialist in the field of mathemati-
cal modeling of phenomena in electrical contacts. For these outstanding achievements he got the
International Holm Award, which was presented to him in 2015 in San Diego (USA).

Now he very successfully continues his research as evidenced by his scientific publications in
high-ranking journals with his students in recent years.

The Editorial Board of the Eurasian Mathematical Journal, his friends and colleagues cordially
congratulate Stanislav Nikolayevich on the occasion of his 85th birthday and wish him good health,
happiness and new achievements in mathematics and mathematical education.
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Abstract. Necessary and sufficient conditions are obtained for a polynomial P to be more pow-
erful then a polynomial Q. These conditions are formulated in terms of the orders of generalized-
homogeneous sub-polynomials, corresponding to these polynomials, and the multiplicity of their
zeros. Applying these results, conditions are obtained, under which a monomial ξν for a certain set
of multi-indices ν ∈ <∗ can be estimated via terms of a given degenerate polynomial P.
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1 Introduction

Let En and Rn be n-dimensional Euclidean spaces of points (vectors) x = (x1, · · · , xn) and ξ =
(ξ1, · · · , ξn) respectively, Rn,+ := {ξ ∈ Rn, ξj ≥ 0, j = 1, · · · , n}, Rn, 0 := {ξ ∈ Rn, ξ1 · · · ξn 6= 0}.
Let N be the set of all natural numbers, N0 := N ∪ {0}, Nn

0 = N0 × · · · × N0 be the set of all
n−dimensional multi-indices, i.e. the set of all points with non-negative integer coordinates {α =
(α1, ..., αn) : αi ∈ N0 (i = 1, ..., n)}.

For ξ ∈ Rn, λ ∈ Rn : λj > 0 (j = 1, ..., n) and ν ∈ Rn,+ we denote |ξ| :=
√
ξ2

1 + · · ·+ ξ2
n,

|ξ, λ| :=
√
|ξ1|2/λ1 + · · ·+ |ξn|2/λn , |ν | := ν1 + ...+ νn, ξ

ν := ξν11 · · · ξνnn , |ξν | := |ξ1|ν1 · · · |ξn|νn .
For α ∈ Nn

0 , we denote Dα = Dα1
1 · · ·Dαn

n , where Dj = 1
i
∂/∂xj or Dj = ∂/∂ξj (j = 1, ..., n).

Let A = {νj = (νj1, · · · , νjn)}Mj=1 be a finite set of points νj ∈ Rn,+. By the Newton polyhedron
(further, when it does not cause misunderstanding, we will briefly write N.P.) of the set A we mean
the least convex hull (which is a polyhedron) < = <(A) in R n, containing all points of A (see [23]
or [33]).

A polyhedron < with vertices in Rn,+ is said to be complete if < has a vertex at the origin of
coordinates and further vertices on each coordinate axis of Rn,+.

The k−dimensional faces of a polyhedron < are denoted by <ki (i = 1, ...,M
′

k, k = 0, 1, ..., n−1).
The faces of the N.P. (by definition) are closed sets.

The unit outward normal to a supporting hyper-plane of a polyhedron < , containing some face
<ki and not containing any other face of dimension greater than k, will be simply called the outward
normal (or <−normal) of the face <ki . Thus, a given unit vector λ can serve as an outward normal
to one (and only one) face of <. We denote by Λk

i the set of all outward normals of the face <ki
(i = 1, ...,M

′

k, k = 0, 1, ..., n−1). Note that either the set Λk
i consists of one vector (when k = n−1),

or it is an open set (when 0 ≤ k < n− 1).
For any λ ∈ Λk

i (1 ≤ i ≤ M
′

k, k = 0 ≤ k ≤ n− 1) there exists a number d = di,k = di,k(λ) ≥ 0
such that (λ, α) = d for all α ∈ <ki , and (λ, α) < d for any α ∈ < \ <ki . Moreover, the <−normal
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of the (n − 1)−dimensional (and only (n − 1)−dimensional ) face <n−1
i of the polyhedron < and

the number di,n−1(λ) (1 ≤ i ≤Mn−1) are determined uniquely.
Definition 1. A face <ki of a polyhedron < is said to be principal, if one of the following (obviously
equivalent) conditions is satisfied: 1) <ki does not go through the origin, 2) among the <−normals
of this face there is one with at least one positive component. We say that a point α ∈ < is principal
if α lies on some (recall, closed) principal face.

Obviously, all sub-faces of a principal face are principal. The number of k−dimensional principal
faces of the polyhedron < is denoted by Mk, obviously Mk ≤M ′

k.
Let P (D) = P (D1, ..., Dn) =

∑
β γβD

β be a linear differential operator with constant coefficients
and P (ξ) =

∑
β γβ ξ

β be its complete symbol (the characteristic polynomial). Here the sum goes
over a finite set of multi-indices (P ) := {β ∈ Nn

0 ; γβ 6= 0}.
The Newton polyhedron of the set (P ) ∪ {0} is called the Newton polyhedron of the operator

P (D) (polynomial P (ξ)) and is denoted by <(P ). Thus, the Newton polyhedron of any operator
P (D) (polynomial P (ξ)) is actually constructed as the Newton polyhedron of the operator I+P (D)
(polynomial 1 + P (ξ)), where I is the identity operator. Note that a polyhedron <(P ) may have
dimensionality less than n. However, in our considerations, we will assume that for both general and
generalized-homogeneous polynomials P the polyhedrons <(P ) are n−dimensional (for complete
polyhedrons this is obvious).

Let <(P ) be the N.P. of a polynomial P (ξ) and <ki (i = 1, ...,M
′

k; k = 0, 1, ..., n−1) be its faces.
The polynomial P i,k(ξ) :=

∑
α∈<ki

γα ξ
α (1 ≤ i ≤Mk; 0 ≤ k ≤ n)) will be called the sub-polynomial

of polynomial P (ξ), corresponding to the face <ki .
Definition 2. Let µ ∈ Rn be a vector with rational components. A polynomial R(ξ) = R(ξ1, ..., ξn)
is called µ−homogeneous (generalized-homogeneous) of µ−order d = d(µ) (which is also a rational
number), if R(tµ ξ) := R(tµ1 ξ1, ..., t

µn ξn) = tdR(ξ) for all t > 0, ξ ∈ Rn. When λ1 = λ2 = ... =
λn(= 1), it is an ordinary homogeneous polynomial, wherein |ξ, λ| = |ξ|.

We will often use the following proposition, proved by V.P. Mikhailov
Lemma 1.1. ([33]) Let < = <(P ) be the N.P. of a polynomial P (ξ) and λ be any <−normal to the
face <ki (λ ∈ Λk

i , 1 ≤ i ≤M
′

k; 0 ≤ k ≤ n− 1) of the polyhedron <. Then the sub-polynomial P i,k is
λ−homogeneous.

Remark 1. It is obvious that if λ is a unit vector and P (ξ) =
∑

α∈(P ) γαξ
α is a polynomial,

then there exist (uniquely defined) numbers dj(λ) and λ−homogeneous polynomials Pj := Pdj(λ)

(j = 0, 1, ...,M(λ)) : d0(λ) > d1(λ) > ... > dM(λ)(λ), such that the polynomial P (ξ) can be
represented in the form

P (ξ) =

M(λ)∑
j=0

Pj(ξ) =

M(λ)∑
j=0

Pdj(λ)(ξ) =

M(λ)∑
j=0

∑
(λ,α)=dj(λ)

γα ξ
α, (1.1)

where the set of numbers {dj = dj(λ)} coincides with the finite set of values {(λ, α)} for all α ∈
<(P ).

Note that
1) if <ki (i = 1, ...,Mk; k = 0, 1, ..., n − 1) is some principal face of <(P ) and λ ∈ Λ(<ki ), then

(λ, α) = d0(λ) is the equation of the (n− 1)−dimensional supporting hyperplane to <(P ) with the
outward (with respect to <(P )) normal λ, containing the face <ki , where Pd0(λ)(ξ) ≡ P i,k(ξ).

2) it follows from Lemma 1.1 that a sub-polynomial P i,k (1 ≤M
′

k, 0 ≤ k ≤ n−1) of the polynomial
P is λ−homogeneous for any λ ∈ Λk

i (<(P )), i.e. there exists a number di,k = di,k(λ) ≥ 0 such that
P i,k can be represented in the form P i,k(ξ) =

∑
(λ,β)=di,k

γβ ξ
α.

A face <ki (1 ≤ i ≤ M
′

k, 0 ≤ k ≤ n − 1) of the polyhedron <(R) of a polynomial R(ξ) is said
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to be non-degenerate ([33]) if Ri,k(ξ) 6= 0 for ξ ∈ Rn, 0. If there exists a point η ∈ Rn, 0, such that
P i,k(η) = 0, then the face <ki is said to be degenerate. A polynomial P (ξ) with Р◦ N.P. <(P ) is
said to be non-degenerate, if all its principal faces are non-degenerate.
Definition 3. An operator P (D) (a polynomial P (ξ)) is called hypoelliptic ([12], Definition 11.1.2
and Theorem 11.1.1 ) if the following equivalent conditions are satisfied:

1) all the solutions u ∈ D′ = D′(En) of the equation P (D)u = f are continuously differentiable
(belong to C∞) for any f ∈ C∞,

2) P (α)(ξ)/P (ξ) := DαP (ξ)/P (ξ)→ 0 if | ξ| → ∞, and 0 6= α ∈ Nn
0 .

Definition 4. 1) ([36] or [16]) We say that a polynomial P is more powerful than a polynomial Q
(a polynomial Q is less powerful than a polynomial P ) and write P > Q ( Q < P ), if there exists a
constant c > 0 such that

|Q(ξ)| ≤ c[|P (ξ)|+ 1] ∀ξ ∈ Rn, (1.2)

2) ([12], Definition 10.3.4) We say that a polynomial P is stronger (by L.Hörmander) than a poly-
nomial Q (Q is weaker than P ) and write P � Q (Q ≺ P ), if there exists a constant c > 0 such
that

Q̃(ξ) ≤ c P̃ (ξ) ∀ξ ∈ Rn, (1.3)

where for a polynomial R the function R̃ is defined by the formula

R̃(ξ) = [
∑
|α|≥0

|DαR(ξ)|2]1/2, ξ ∈ Rn.

Denote by In the set of all polynomials in n variables, such that |P (ξ)| → ∞ for |ξ| → ∞.
Many properties of the solutions of a general linear differential equation P (D)u = 0 are de-

termined by the behavior at infinity of the symbol P (ξ) of corresponding operator P (D) as the
modulus of the argument tends to infinity. For example, the symbol of a hypoelliptic operator tends
to infinity (i.e. P ∈ In).

In this case, it is important (and sometimes determining) not only that the symbol of a given
operator tends to infinity, but also that this happens at a certain rate. For example, the symbol of
an elliptic (and only elliptic) operator tend to infinity at an "optimal" rate, i.e. if P (D) is an elliptic
operator of order m, then there exits a number c > 0 such that

c−1 [1 + |ξ|m] ≤ 1 + |P (ξ)| ≤ c [1 + |ξ|m] ∀ξ ∈ Rn.

In accordance with this, all continuous solutions of the elliptic equation R(D)u = 0 are real-analytic
functions.

Solutions to a hypoelliptic equation (the symbols P (ξ) of which belongs to In) are infinitely
differentiable functions. But they can also have better smoothness properties, for example, they can
belong to certain Gevrey classes ([9], [37] or [38]). As is known, the Gevrey class G(σ) (0 < σ < 1) is
intermediate between the class of all infinitely continuously differentiable functions and the class of
all real-analytic functions. Moreover, if for a differential operator P (D) there are positive constants
c and k such that

1 + |P (ξ)| ≥ c [1 + |ξ|k]∀ξ ∈ Rn,

then the value of σ directly depends on the value of k ([9], [37], [3], [29], [30]). Therefore, the need
naturally arises to describe the set of multi-indices B = B(P ) := {β} for which the estimate
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1 + |P (ξ)| ≥ c
∑
β∈B

|ξβ| ∀ξ ∈ Rn (1.4)

is valid with some constant c > 0.
V.P. Mikhailov in [33] described the class of all non-degenerate polynomials P with a complete

Newton polyhedron, for which the set B coincides with the set <(P ), which is (in a certain sense)
an "optimal" result. Similar result for an incomplete polyhedron was obtained by S. G. Gindikin in
[10]. The classes of polynomials considered by these authors are certainly different from the class
of elliptic ones, but they are close in character to an elliptic operator in the sense that they are
non-degenerate.

The case in which the polynomial P is degenerate was first considered in the work [17]. The
following proposition was proved there.
Theorem 1.1. ([17]) Let < = <(P ) be the complete N.P. of a polynomial P. Suppose that all
principal faces <ki (i = 1, 2, ...,Mk < M

′

k, k = 0, 1, ..., n − 1) of the polyhedron < except one (n −
1)−dimensional principal face Γ := <n−1

i0
are non-degenerate, and the face Γ with the outward normal

µ (which in this case is determined uniquely) is degenerate. Let the polynomial P be represented as
the sum of µ− homogeneous polynomials (see representation (1.1))

P (ξ) =
M∑
j=0

Pj(ξ) =
M∑
j=0

Pdj(µ)(ξ) =
M∑
j=0

∑
(µ,α)=dj(µ)

γα ξ
α, (1.5)

where P0(ξ) = P i0,n−1(ξ), M = M(P ) = M(P, µ).
Suppose that P1(η) 6= 0 for all η ∈ Σ(P0) := {η ∈ Rn,0, |η, λ| = 1, P0(η) = 0} and denote by <∗

the N.P. of the set {β ∈ <, (µ, β) ≤ d1}.
Then
1) in order to have the estimate

|ξν | ≤ c [|P (ξ)|+ 1] ∀ξ ∈ Rn (1.6)

for all points ν ∈ <∗ with some constant c = c(ν, P ) > 0, it is necessary and sufficient, that for each
point η ∈ Σ(P0) there exists a neighbourhood U(η) such that P1(η) 6= 0 and P0(ξ)P1(ξ) ≥ 0 for all
ξ ∈ U(η).

2) if ν /∈ <∗, then inequality (1.4) cannot hold for any constant c.
As for the fact that only one face is degenerate, moreover it is a (n − 1)−dimensional face, it is

obvious that in case of the presence of several (n− 1)−dimensional degenerate faces, the set ν ∈ <∗
narrows and is obtained as the intersection of the sets. In [19], the case, in which k−dimensional
faces for k < n − 1 were present was also studied. Namely, the following proposition was proved
in [19] (see also [17], Lemma 1.1), which in terms of the set In can be rephrased as follows (below
<∗ := {ν ∈ <, (λ, ν) ≤ d1(λ) ∀λ ∈ Λ(Γ)})
Theorem 1.2. Let < be the complete Newton polyhedron of a polynomial P ∈ In. Let all the
principal faces <ki (i = 1, ...,Mk, k = 0, 1, ..., n − 1) of the polyhedron <, except for (possibly) one
k0−dimensional face Γ := <k0i0 (1 ≤ i ≤ Mk : 1 ≤ k0 < n − 1) are non-degenerate, and the face
Γ is degenerate. Let the polynomial P be represented with respect to any vector λ ∈ Λ(Γ) in form
(1.1)(for the definition of the set Λ(Γ) see [17]).

Then inequality (2.1) holds for ν ∈ <∗ if and only if Pd1(λ)(η) 6= 0 for all η ∈ Σ(Γ) and for all
λ ∈ Λ(Γ).

The main limitation in these theorems is that at the points of the set Σ(P0), on which the
polynomial P0 vanishes, the next (or, which is the same, the first after P0) polynomial P1 must be
nonzero. The author (and not only him) has not yet been able to overcome this limitation.
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Our goal in this work is to overcome this limitation. Namely, we consider the casein which
P1(η) = P2(η) = ... = Pl−1(η) = 0, Pl(η) 6= 0, l ≥ 2 for some point η ∈ Σ(P0).

First, let us make the following remarks important for the sequel.
Remark 2. 1) When we compare a monomial ξν and Р◦ polynomial P, (or two polynomials
Q and P ), we can assume that the coefficients of these polynomials are real. Otherwise, we can
compare the polynomials |Q(ξ)|2 and |P (ξ)|2. This is possible thanks to a simple lemma proved in
[21], which says that if < = <(R) is the N.P. of a polynomial R and M = M(|R|2) is the N.P.
of the polynomial |R|2, then < is similar to M with a similarity coefficient is equal to 2 and the
similarity center at the origin. Moreover, if the similar faces are denoted by the same indices (i, k),
then [|P |2]i,k(ξ) = |P i,k(ξ)|2. In particular, this means that if the face <ki of the polyhedron <
is principal (degenerate, non-degenerate), then the face Mk

i of the polyhedron M is also principal
(degenerate, non - degenerate) and vice versa.

2) If a polynomial P satisfies the conditions of Theorem 1.1 and the polyhedron <∗ is complete,
then P ∈ In.

3) If P ∈ In, then outside of some ball the polynomial P does not change its sign. Therefore, if
necessary, multiplying by (−1) and adding a positive constant (which does not affect their power),
we can assume that the polynomials P ∈ In are everywhere positive. [21]

4) For polynomials P ∈ In, the following simple proposition holds.
Lemma 1.2. Let < = <(P ) be the N.P. of a polynomial P ∈ In and <ki (i = 1, 2, ...,Mk, k =
0, 1, ..., n− 1) be the principal faces of <. Then

a) the polyhedron < = <(P ) is complete,
b) P i,k(ξ) ≥ 0 for all ξ ∈ Rn (i = 1, 2, ...,Mk, k = 0, 1, ..., n− 1),
c) let a pair of indices (i, k) (1 ≤ i ≤ Mk, 0 ≤ k ≤ n − 1), a vector λ ∈ Λ(<ki ) and a point

η ∈ Σ(P i,k) be fixed; moreover (see representation (1.5)) Pj(η) = 0 (j = 0, 1, ..., l− 1), Pl(η) 6= 0
(1 ≤ l ≤M), then Pl(η) > 0.
Proof. Property a) is obvious. In both cases b) and c), assuming the converse, that P i,k(η) < 0
(respectively, Pl(η) < 0) for some point η ∈ Σ(P i,k), we get that on the sequence {ξs := sλ η}∞s=1

P (ξs)→ −∞ for s→∞, which contradicts our assumption P (ξ) ≥ 0 for all ξ ∈ Rn. �
With all this in mind, Theorem 1.1 can be rephrased as follows.

Theorem 1.1′ Let < = <(P ) be the Newton polyhedron of a polynomial P ∈ In. Let all the
principal faces <ki (i = 1, ...,Mk, k = 0, 1, ..., n − 1) of the polyhedron <, except (possibly) one
(n − 1)−dimensional face Γ := <n−1

i0
(1 ≤ i ≤ Mk : 1 ≤ k0 ≤ n − 1) (with the outward normal

µ), are non-degenerate. Then, if Γ is also non-degenerate, for any ν ∈ < estimate (1.6) holds.
If Γ is degenerate, then with respect to the vector µ, we represent the polynomial P by formula
(1.5). Suppose P1(η) 6= 0 for all η ∈ Σ(P0) and let <∗ denote the Newton polyhedron of the set
{β ∈ <, (µ, β) ≤ d1}.

Then estimate (1.6) holds if and only if ν ∈ <∗.
Corollary 1.1. Obviously, under the assumptions of Theorem 1.1′ P0 < P and P1 < P.

Remark 3. It goes without saying that in Theorems 1.1 and 1.2, in essence, only the cases in which
the polyhedron <∗ is complete are interesting. Moreover in this case, obviously, Theorems 1.1 and
1.1′ are equivalent (see also Lemma 1.2).

We are now in a position to move on to our main task. Namely, let a degenerate
polynomial P ∈ In be represented in form (1.5), with Pl(η) 6= 0 (1 < l ≤M) for all η ∈ Σ(P0), and
each of the polynomials Pj (1 ≤ j ≤ l− 1) vanishes at least at one point η ∈ Σ(P0). Let <∗∗ denote
the Newton polyhedron of the set {β ∈ <, (µ, β) ≤ dl}. Under what conditions on the polynomials
Pj (1 ≤ j ≤ l − 1) inequality (1.6) is valid for all ν ∈ <∗∗?

Let us paraphrase the problem in terms convenient for us. Let a polynomial P be represented
in form (1.5) and satisfy the above conditions. Denote P(ξ) := P0(ξ) +Pl(ξ) +Pl+1(ξ) + ...+PM(ξ),
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P1(ξ) := P1(ξ)+...+Pl−1(ξ). Then P (ξ) = P(ξ) +P1(ξ). If l = 1, then P(ξ) ≡ P (ξ), <∗∗ = <∗ and
from Theorem 1.1′ it follows that ξν < P for all ν ∈ <∗∗. Let l ≥ 2, what should be the polynomials
Pj (j = 1, ..., l− 1) in order for the polynomial P to satisfy the conditions ξν < P = P +P1 for all
ν ∈ <∗∗?

Since the polynomial P satisfies the assumptions of Theorem 1.1′ (with P1 replaced by Pl) then
ξν < P for all ν ∈ <∗∗, it is clear that the polynomials Pj (j = 1, ..., l − 1) must be such, that the
relation P < P = P + P1 holds.

The question posed is a special case of the following more general question (which, in addition to
having numerous applications in the general theory of linear differential equations, is of independent
interest): what polynomials { r(ξ) } can be added to a polynomial R(ξ), so that

a) <(R + r) = <(R),
b) r < R,
c) the polynomials R and R + r have the same power, i.e. R < R + r < R
We will call such polynomials r the lower-order terms of R.
Except that (as we will see below) the method of adding lower-order terms to a given differential

operator (polynomial) that preserve (do not change) the power of the original operator (polynomial)
will be directly applied to solving the problem posed by us, we present a number of other uses to
illustrate the importance of this capability.

1) ([12], Theorem 11.1.9) If the operators P (D) and Q(D) have the same strength (by L.
Hörmander) and P (D) is hypoelliptic, then Q(D) is also hypoelliptic.

2) ([31], Theorem 2) Let P and Q be polynomials with real coefficients with degrees mP and
mQ respectively (mP > mQ). If for any real number a the polynomial P + aQ is hypoelliptic,
then the polynomial Q is also hypoelliptic.

3) ([20],Theorem 1) Let a hypoelliptic polynomial P be represented by a vector λ ∈ En in form
(1.5), where M = 1. Let R be a λ−homogeneous polynomial of λ−degree d(R) : d1 < d(R) < d0 and
R < P0. Then P +R is also hypoelliptic

4) ([20], Theorem 2) If a polynomial P (with generally speaking complex coefficients) is hypoel-
liptic and Q < P, then there exists a number ε > 0, such that for any complex number a : |a| < ε
the polynomial P + aQ is hypoelliptic.

5) ([12, Section 12.4], [11], [3]) Let Pm be a homogeneous polynomial, hyperbolic with respect
to the vector N ∈ Rn and Q be a polynomial such that ordQ < m. Then the polynomial Pm +Q
is hyperbolic (with respect to the N) if and only if Q ≺ Pm (see Definition 4)

These and other examples show the importance of finding the widest possible classes of lower-order
terms for a given (in particular, generalized-homogeneous) polynomial.

Thus, our problem is reduced to finding conditions under which the polynomials P1, · · · , Pl−1

are the lower- order terms of the polynomial P , i.e. for which a) Pj < P (j = 1, 2, ..., l − 1), b)
P < P < P.

We will deal with this issue in the next section.

2 Comparison of powers of polynomials

Note that everywhere below, when comparing polynomials (or monomials and polynomials), we will
consider only the case of the presence of an (n − 1)−dimensional degenerate face. The case of the
presence of a degenerate face of dimension k < n− 1 is staded by comparing the method of proving
Theorem 2.2 of this paper and the method of proving Theorem 1.2 formulated in present paper and
proved in [19].

Let λ = (λ1, ..., λn) ∈ En be a vector with positive rational coordinates and R(ξ) =∑
(λ,α)=dR

γRα ξα be a λ−homogeneous polynomial. As usual, we denote by (R) the set of multi
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- indices {α} for which γRα 6= 0 and by <(R) we denote the Newton polyhedron of the set (R) ∪ 0.
Further, we will assume that the polyhedron <(R) has a dimension n. Also put Σ(R) := {ξ; ξ ∈
Rn,0, |ξ, λ| = 1, R(ξ) = 0} and for the points η ∈ Σ(R) denote

A(η,R) := {ν; ν ∈ Nn
0 , D

νR(η) 6= 0}, ∆(η,R) := min
ν∈A(η,R)

(λ, ν). (2.1)

It is natural to start the comparison with the simplest case, namely with the comparison of
generalized- homogeneous polynomials.

2.1 Comparison of powers of generalized-homogeneous polynomials

First, let us make the following remark
Remark 4. It is geometrically obvious that a sub - polynomial corresponding to the face <ki of the
polyhedron <(R) = <(R ∪ 0) has the form Ri,k(ξ) or Ri,k(ξ) + 1. Therefore, only the faces <ki that
are formed without taking into account the point zero (that is the faces <ki to which the polynomials
Ri,k(ξ) correspond without the participation of unity), can be degenerate, because the remaining
faces correspond polynomials of the form Ri,k(ξ) + 1, where Ri,k(ξ) ≥ 0 for all ξ ∈ Rn (see Remark
2).

The next proposition was proved in [16]
Theorem 2.1. Let R be a λ−homogeneous polynomial of λ−order dR. Let all the principal faces
<(R) of the polynomial R be non - degenerate, except possibly the (n − 1)−dimensional face Γ
containing the set (R). Then

I) If the face Γ is non - degenerate, then r < P for any λ−homogeneous polynomial r of λ−order
dr ≤ dR such that <(r) ⊂ <(R);

II) If the face Γ is degenerate, then r < R if and only if the following conditions are simultane-
ously satisfied

1) dr ≤ dR,
2) Σ(r) ⊃ Σ(R),
3) <(r) ⊂ <(R),
4)(see notation (2.1))

dr
dR
≤ ∆(η, r)

∆(η,R)
∀η ∈ Σ(R), (2.2)

5) for each point η ∈ Σ(R) there exists a neighborhood U(η) and a constant c = c(η) > 0 such
that

|r(ξ)|1/∆(η,r) ≤ c |R(ξ)|1/∆(η,R) ∀ξ ∈ U(η). (2.3)

In general, for generalized polynomials Q and P the relation Q < P does not guarantee, that
the polynomial Q is a lower-order term of the polynomial P, that is, P < P + Q < P However,
it turns out that for generalized - homogeneous polynomials r and R from r < R it follows that
R < R + r < R.

Let us prove the last statement. Firstly note, that since the numbers λ1, ..., λn are positive and
rational, and any λ−homogeneous polynomial R is also (k λ)−homogeneous, then choosing a natural
number k in an appropriate way (which does not affect the dQ/dP ratios), we can assume, that the
numbers dQ and dP are natural, hence the functions P dQ and QdP are also polynomials. Therefore,
we can compare their power. Moreover, the following proposition holds
Lemma 2.1. Let P and Q be λ−homogeneous polynomials of λ−orders dP and dQ respectively,
where dP ≥ dQ. Then
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a) Q < P if and only if QdP < P dQ , (what is the same Q < P dQ/dP ) i.e. there is a number
c > 0 such that

|Q(ξ)|dP ≤ c [1 + |P (ξ)| dQ ] ∀ξ ∈ Rn, (2.4)

b) if P > Q and dQ < dP , then
b.1) |Q(ξ)|/|P (ξ)| → 0 and |Q(ξ)|/|P (ξ) +Q(ξ)| → 0 for |Q(ξ)| → ∞ (hence |P (ξ)| → ∞),

b.2) P < P +Q < P.

Proof. Let us prove item a). Since dP ≥ dQ, it is obviously followed from QdP < P dQ that Q < P.
Consequently, the sufficiency of estimation (2.4) for the ratio Q < P is obvious. We need to prove
that estimation (2.4) follows from Q < P. On the other hand, to prove the estimate (2.4), it suffices
to prove it for sequences {ξs} such that |Q(ξs)| → ∞ for |ξs| → ∞.

So, let {ξs} be such a sequence. From the condition P > Q it also follows that |P (ξs)| → ∞ for
s→∞.

Denote ts := |P (ξs)| and τ si := t
−λi/dP
s ξsi (i = 1, ..., n) i.e. ξs = t

λ/dP
s τ s, P (τ s) = 1 (i =

1, 2, ..., n; s = 1, 2, ...·) Consider the individual parts of the inequality (2.4) on this sequence.
Due to the λ−homogeneity of the polynomials Q and P and bearing in mind that P (τ s) =

1 (s = 1, 2, ...), we will have

|Q(ξs)| = tdQ/dPs |Q(τ s)|, |P (ξs)|dQ/dP = tdQs |P (τ s)|dQ/dP = tdQs .

Since Q < P, from these representations and from P (τ s) = 1 (s = 1, 2, ...) we have

|Q(ξ)s|/[1 + |P (ξs)|dQ/dP ] = tdQ/dPs |Q(τ s)|/[1 + tdQs ]

≤ c tdQ/dPs [1 + P (τ s)]/[1 + tdQs ] = 2 c tdQ/dP−dQs = 2 c tdQ(1/dP−1)
s .

Since dP ≥ 1 and ts →∞ for |ξs| → ∞ we obtain item a) of the lemma.
Item b.1) directly follows from item a), if both sides of the (already proved) inequality (2.4) are

divided by |P (ξ)|dP and |P (ξ)| tends to infinity. Similarly, it turns out that b.1) implies b.2). �
Corollary 2.1. From part b.2) of Lemma 2.1 it follows that if P and Q are generalized - homoge-
neous polynomials satisfying the conditions P > Q and dQ < dP , then polynomial Q is the lower -
order term of the polynomial P, that is P < P + Q < P. As mentioned above, below we will make
sure that, generally speaking, this is not the case for general polynomials (see examples 2.3 and 3.1
below).

2.2 Comparison of powers of general polynomials

In this section, we set ourselves the task of comparing the powers of two general polynomials. Exactly:
let P be a given polynomial with the complete Newton polyhedron <(P ) and Q be some polynomial.
Find the conditions under which Q < P. If polynomial P is non - degenerate and <(Q) ⊂ <(P ),
then by Theorem 2.1 Q < P. Therefore, we only need to consider the case when polynomial P is
degenerate.

Before proceeding to the comparison of general polynomials, we prove one simple proposition,
which, comparing a general polynomial with a generalized homogeneous polynomial reduces to com-
paring two generalized homogeneous polynomials and which, in our opinion, is also independent
interest.
Lemma 2.2. Let R be a λ−homogeneous polynomial of λ−order dR and Q be a general polynomial
represented in form (1.1) of as the sum of λ−homogeneous polynomials, i.e.



Comparison of powers of differential polynomials 31

Q(ξ) =

N(Q)∑
j=1

Qj(ξ) =

N(Q)∑
j=1

∑
(λ,α)=δj

γQα ξ
α, δ1 > δ2 > ... > δN(Q) ≥ 0.

Then relation R > Q holds if and only if Qj < R (j = 1, ..., N = N(Q))
Proof. The proof of sufficiency is obvious. Let us prove the necessity. Let R > Q. We must proof,
that Qk < R (k = 1, .., N).

Since R > Q, for any t > 0 Q(tλ ξ) < R(tλ ξ) = tdR R(ξ). Consequently Q(tλ ξ) < R(ξ) for any
t > 0.

Choose (and fix) N positive numbers t1, ..., tN sРѕ that the matrix (tδkj ) is non - degenerate.
We obtain from representation of Q that Q(tλj ξ) =

∑N
k=1 t

δk
j Qk(ξ). Therefore each of polynomials

Qk(ξ) (k = 1, .., N) is a linear combination of polynomials Q(tλj ξ). This means that there exist
numbers {aji = aji (t1, ..., tN)}Ni,j=1 and {bji = bji (t1, ..., tN)}Ni,j=1 such that for all j = 1,...,N

Qj(ξ) = aj1Q(tλ1 ξ) + ...+ ajN Q(tλN ξ) ≤ bj1 [1 + |R(tλ1 ξ)| ]

+...+ bjN(t)[1 + |R(tλN ξ)| ] = bj1 [1 + tdR1 |R(ξ)| ] + ...+ bj1 [1 + tdRN |R(ξ)|.

Since the vector t = (t1, ..., tN) is fixed, denoting Bj := max {bji ; i = 1, ..., N} (j = 1, ..., N) and
T := max{tdRi , i = 1, ..., N}, we obtain for some constant cj = cj(Bj, T, R,Q) > 0

|Qj(ξ)| ≤ cj[1 + |R(ξ)|] ∀ξ ∈ Rn, j = 1, ..., N.

�
To describe the set of all polynomials which are estimated via a given non-homogeneous, degen-

erate polynomial P, as above, we first consider the simplest case in which P ∈ In, only one principal
(n−1)−dimensional face of the polyhedron <(P ) of the polynomial P is degenerate, and P1(η) 6= 0
for all η ∈ Σ(P0).

So, let us compare a degenerate polynomial P, represented as the sum of µ−homogeneous poly-
nomials in form (1.5) and a polynomial Q represented in the form (below δj = δj(µ) = δj(Q, µ) (j =
0, 1, ...,M(Q); δ0 > δ1 > ... > δM(Q))

Q(ξ) =

M(Q)∑
j=0

Qj(ξ) =

M(Q)∑
j=0

Qδj(µ)(ξ) =

M(Q)∑
j=0

∑
(µ,α)=δj

γQα ξ
α. (2.5)

We want to find under which conditions Q < P.
First, note the following
1)if <(Q) ⊂ <(P ), and δj0 ≤ d1, for some number j0 : 1 ≤ j0 ≤ M(Q), then by Theorem 1.1′

Qj < P for all j = j0, j0 + 1, ...,M(Q). Therefore, it remains to consider the polynomials Qj for
j = 0, 1, ..., j0 − 1.

2) If Qj < P0 for all j = 0, 1, ..., j0−1, then by Corollary 1.1 Qj < P0 < P for all j = 0, 1, ..., j0−1.
As a result, we get that Q < P.

So, it suffices to consider the case Qj1 6< P0 for some number j1 : 0 ≤ j1 ≤ j0 − 1, wherein
d1 < δj1 ≤ d0.

Let us prove two numerical inequalities which will be used in the proof of Theorem 2.2.
Lemma 2.3. In order the inequality

xa yb ≤ 1 + xc yd

hold for all x ≥ 1, y ∈ [0, 1], it is necessary and sufficient that the positive numbers a, b, c, d satisfy
the inequalities:

1) a ≤ c
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2) d/b ≤ c/a.
Proof. The necessity of condition 1) is obvious. Let us prove the necessity of condition 2).

Let condition 2) be violated, i.e. d/b > c/a. Let us prove that the required inequality cannot
hold. Put y = x−c/d. Then

xayb = xa−b (c/d) = xb[(a/b)−(c/d)]; xcyd = 1,

Since, according to our assumption (a/b)−(c/d) > 0, the obtained relations show that for sufficiently
large values of x the required inequality does not hold.
Sufficiency. If b ≥ d, then the required inequality is obvious. Let b < d. Denoting xa =: u, yb =: v,
we arrive at the equivalent inequality

u v ≤ 1 + u
c
a v

d
b ∀u ≥ 1, v ∈ [0, 1].

When u v ≤ 1 this inequality is obvious. If u v > 1, then by the conditions of the lemma and the
assumption b < d we have

u v ≤ (u v)
d
b = u

d
b v

d
b ≤ u

c
a v

d
b ,

which proves the required inequality. �
Lemma 2.4. In order the inequality

xa yb ≤ 1 + C[σ1x
c yd + σ2 x

c−d]

to hold for all x ≥ 1, y ∈ [0, 1] and a pair of positive numbers σ1, σ2, with some constant C =
C(σ1, σ2) > 0, it is necessary and sufficient that the positive numbers a, b, c, d satisfy the inequalities:

1) a ≤ c,
2) a− b ≤ c− d.

Proof. The necessity of condition 1) is obvious. We prove the necessity of condition 2). Let condition
2) be violated, i.e. a− b > c− d. and let y = x−1, then for x→∞ we have

xa yb/{1 + [σ1x
c yd + σ2 x

c−d]} = xa−b/[1 + C (σ1 + σ2)xc−d]→∞,

which proves the necessity of condition 2).
Sufficiency. If b ≥ d or d/b ≤ c/a, then the required inequality is a corollary of inequalities in
Lemma 2.3. If, however, d/b > c/a ≥ 1, then the substitution y = t/x yields the equivalent
inequality

xa−b tb ≤ C [1 + σ1x
c−d td + σ2x

c−d],

which can be easily proved (with any constant C ≥ max{1, |σ1|, |σ2| }) if we consider separately the
cases t ≥ 1 and t < 1. �

Now, let us turn to the comparison of generalized polynomials P and Q represented forms (1.5)
and (2.5), respectively. Moreover, it is obvious that to prove the relation Q < P, it is suffices to
prove the relations Qj < P for each j = 0, 1, ...,M(Q). It means, that it is suffices for us to compare
the generalized-homogeneous polynomial Q with the generalized polynomial P. In a certain sense
the following theorem allows to solve the problem in this case.
Theorem 2.2. I) Let P ∈ In be a degenerate polynomial with a complete Newton polyhedron <,
all principal faces of which are non - degenerate, except one (n − 1)−dimensional face Γ = <n−1

i0
,

(with the outward normal µ), which is degenerate. Assume that the polynomial P is represented by
formula (1.5) and that P1(η) 6= 0 for all η ∈ Σ(P0). Let Q be a µ− homogeneous polynomial of
µ−order δQ : d1 < δQ < d0 and <(Q) ⊂ <(P ). Then Q < P if and only if

1) Σ(P0) ⊂ Σ(Q),
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2) (d0 − d1)/(δQ − d1) ≥ ∆(η, P0)/∆(η,Q), ∀η ∈ Σ(P0),
3) if n > 2, then for every point η ∈ Σ(P0) there exists a constant c = c(η) > 0 and a neighborhood

U(η) such that
|Q(ξ)| ≤ c|P0(ξ)|(δQ−d1)/(d0−d1) ∀ξ ∈ U(η).

II) Moreover, if Q < P, the points of the set (Q) are interior points of the polyhedron <(P ) and
for each point η ∈ Σ(P0) there exists a neighborhood U(η) such that Q(ξ) ≥ 0 for all ξ ∈ U(η),
then P < P +Q < P.
Proof. The necessity of condition I.1) is obvious.

The necessity of condition I.2). Assume the converse, i.e. the condition Q < P is satisfied, but
there exists a point η ∈ Σ(P0) such that

(d0 − d1)/(δQ − d1) < (∆(η, P0)/(∆(η,Q)). (2.6)

For t > 0, θ = (θ1, ..., θn) ∈ Rn, κ > 0 set ξi = ξi(t) = ξi(t, θ, κ) = tµi(ηi + θi t
−κµi), i = 1, ..., n.

Since DαP (η) = 0 for all α ∈ Nn
0 and the condition (µ, α) < ∆(η, P0), is satisfied, then according

to Taylor’s formula, for sufficiently large values of t we have

Q(ξ(t)) = tδQ Q(η + θ t−κµ) = tδQ
∑
α

t−κ (µ,α) [DαQ(η)/(α!) ] θα

= tδQ−κ∆(η,Q)
∑

(µ,α)=∆(η,Q)

[DαQ(η)/(α!) ] θα + o(tδQ−κ∆(η,Q)).

Choose θ in such a way that

c = c(θ) :=
∑

(µ,α)=∆(η,Q)

[DαQ(η)/(α!)] θα 6= 0.

The existence of such a vector θ obviously follows from the definition of the number ∆(η,Q). In
fact, otherwise, it turns out that all the coefficients of the polynomial c(θ) are equal to zero, which
contradicts the definition of ∆(η,Q). Then (for a fixed such θ ), we have

|Q(ξ(t))| ≥ c tδQ−κ∆(η,Q). (2.7)

For the polynomials P0 and P1 we obviously have for a constant c1 > 0 such that for sufficiently
large t

|P0(ξ(t))| ≤ c1 t
d0−κ∆(η,P0), |P1(ξ(t))| = td1 P1(η) (1 + o(1)). (2.8)

Obvious geometric arguments show that as t→ +∞

r((ξ(t)) := P ((ξ(t))− [P0((ξ(t)) + P1((ξ(t))] = o(td1). (2.9)

We put κ = (d0 − d1)/∆(η, P0), then d0 − κ∆(η, P0) = d1, and from (2.8) - (2.9), for a constant
c2 > 0 we have

|P (ξ(t))| ≤ c2t
d1 . (2.10)

It is easy to calculate, that from assumption (2.6) it follows that d1 < δQ − κ∆(η,Q). From
estimates (2.7), (2.10) it follows, that |Q(ξ(t))|/[1 + P (ξ(t))] → ∞ for t → ∞, which contradicts
the condition Q < P and proves the necessity of condition I.2).
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The necessity of condition I.3). Assume that for some point η ∈ Σ(P0) there ib a sequence {ηs}
such that P0(ηs) 6= 0 (s = 1, 2, ...), ηs → η for s→∞ and

R(ηs) := |Q(ηs)|/[|P0(ηs)|(δQ−d1)/(d0−d1)]→∞. (2.11)

Set ts = |P0(ηs)|−1/(d0−d1), ξs = tµs η
s, s = 1, 2, ...· Since ηs → η ∈ Σ(P0) we have ts → ∞ as

s→∞. Then, as a corollary of the µ−homogeneity of P0(ξ), P1(ξ) and Q(ξ), for sufficiently large
s we have

|P1(ξs)| = td1s |P1(ηs)| = td1s |P1(η)| (1 + o(1)), (2.12)

|P0(ξs)| = td0s |P0(ηs)| = td1s , r(ξ) = o(td1s ) (2.13)

Representations (2.12), (2.13) show that a constant c3 > 0 exists such that for sufficiently large s

|P (ξs)|+ 1 ≤ c3t
d1
s . (2.14)

For Q(ξ) we obtain analogously (see also (2.11))

|Q(ξs)| = tδQs |Q(ηs)| = tδQs R(ηs) |P0(ηs)|(δQ−d1)/(d0−d1) = R(ηs) td1s . (2.15)

Estimates (2.14) and (2.15), together with assumption (2.11), show that as s → ∞ we have
|Q(ξs)|/[|P (ξs)|+ 1] ≥ [1/c3]R(ηs)→∞. This proves the necessity of condition I.3) for Q < P.
Sufficiency. When proving sufficiency, we will use the method, proposed by Mikhailov in the study
of non - degenerate polynomials (see [33]) and the method, modified by us, which was used in the
study of degenerate polynomials (see, for example, [16] or [19]).

Assume that Q 6< P under the hypotheses of Theorem 2.2, i.e. there exists a sequence {ξs} such
that ξs →∞ as s→∞ and

|Q(ξs)|/[|P (ξs)|+ 1]→∞. (2.16)

Without loss of generality, it can assumed, that all coordinates of the vectors ξs are positive. Let

ρs := exp

√√√√ n∑
k=1

(ln ξsk)
2, λsi :=

ln ξsi
ln ρs

(i = 1, ..., n, s = 1, 2, ...). (2.17)

Then λs = (λs1, ..., λ
s
n) is a unit vector and

ξs = ρλ
s

s (ξsi = ρ
λsi
s , i = 1, ..., n), (2.17′)

It is clear, that ρs →∞ if |ξsi | → ∞ or |ξsi | → +0 for some i = 1, 2, ..., n.
Since the vectors λs are placed on the unit sphere, the sequence {λs} has a limit point λ∞. It

can be assumed, that λs → λ∞, |λ∞| = 1. From the convexity of the polyhedron <(P ) it follows,
that λ∞ is an outward normal to one and only one face of <(P ).

Denote λ∞ by e1,1, and choose n− dimensional vectors (e1,1, e1,2, ..., e1,n) so that this system
forms an orthonormal basis in Rn. Then λs =

∑n
i=1 λ

s
1,i e

1,i (s = 1, 2, ...). Since λs → λ∞ = e1,1

for s→∞, then λs1,1 → 1, λs1,i = o(λs1,1) for i = 2, 3, ..., n.
If it is possible to choose a sub-sequence in a such way, that

∑n
j=2 λ

s
1,ie

1,j = 0 for all sufficiently
large s, , then the basis (e1,2, ..., e1,n) we shall denote by e1, ..., en. Otherwise, by appropriate choice
of a sub-sequence we may assume that

∑n
j=2 λ

s
1,ie

1,j 6= 0 for all s = 1, 2, ... and for s→∞

[
n∑
i=2

λs1,ie
1,i]/ |

n∑
i=2

λs1,ie
1,i| → e2,2.
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In the subspace spanned by (e1,2, e1,3, ..., e1,n) we pass to a new orthonormal basis (e2,2, e2,3, ..., e2,n)
with the vector e2,2 defined above. Then, if n ≥ 3

λs = λs1,1 e
1,1 + λs2,2 e

2,2 +
n∑
i=3

λs2,i e
2,i, (s = 1, 2, ...),

hence λs1,1 → 1, λs2,2 = o(λs1,1), λs2,i = o(λs2,2), i = 3, ..., n for s→∞.
Reasoning analogously, as in the subspace with the basis (e2,3, ..., e2,n) etc., we finally obtain

(after modifying the notation) that λs =
∑n

i=1 λ
s
i e

i, where (e1, ..., en) is an orthonormal basis, and
λs1 → 1, λsi+1 = o(λsi ), i = 1, ..., n− 1 for s→∞.

Moreover, there exist numbers s0 and m : 1 ≤ m ≤ n such that for all s ≥ s0 we have λsi > 0
for (i = 1, ...,m) and λsi = 0 (i = m+ 1, ..., n). By choosing a sub-sequence, we may assume, that
s0 = 1, λsi > 0 for all (i = 1, ...,m) and s ∈ N.

Now we associate the constructed basis with the polyhedron <. We select the faces
<k1i1 ,<

k2
i2
, ...,<kmim as follows: denote by <k1i1 the faces of <(P ) which lie in the supporting hy-

perplane of <(P ) with the outward normal e1, and each face <kjij (j = 2, ..., n) either coincides
with the previous one, or is its sub-face, which lies in the supporting hyperplane with the normal ej.
If there are several sub-faces <kjij with the normal ej+1, then as <kj+11

ij+1
we agree to take the one for

which points α the expression (ej+1, α) is maximal.
From the construction of the faces <k1i1 ,<

k2
i2
, ...,<kmim it is obvious, that their dimensions are

subject to the relation: k1 ≥ k2 ≥ ...,≥ km and (see (2.17) - (2.17′))

ξs = ρ

n∑
i=1

λsi e
i

s (s = 1, 2, ...),

wherein, it can be assumed that ρs →∞ for s→∞ and some r (1 ≤ r ≤ m)

ρ
λsj
s →∞ (j = 1, ..., r), ρ

λsr+1
s → b ≥ 1, (s = 1, 2, ..).

When r = m = n, then we shall assume, that λsn+1 = 0 (s = 1, 2, ..), and en+1 is an arbitrary unit
vector.

Let, as above, P ij ,kj(ξ) be the sub-polynomial of P (ξ) , corresponding to the face <kjij , i.e
P ij ,kj(ξ) :=

∑
β∈<ki

γβ ξ
β, and α be an arbitrary multi-index belonging to all <kjij (j = 1, ...,m),

i.e α ∈ <kmim . We will study the behaviour of polynomials P (ξ) and Q(ξ) for ρs → ∞ and ξs =

ρ
λs1e

1+λs2e
2+...+λsne

n

s .
Further, for brevity, when this does not cause misunderstanding, we omit the index s in the

notation.
Then, from ej−homogeneity of polynomials {P ij ,kj(ξ)} and convexity of <(P ) and its faces, for

certain positive numbers σ1, ..., σr and multi-index α ∈ <krir (P ) we get

P (ξ) = ρ(α,λ1 e1)[P i1,k1(ρ

n+1∑
j=2

λje
j

) + o(ρ−σ1 λ1)]

= ρ(α,λ1 e1+λ2 e2)[P i2,k2(ρ

n+1∑
j=3

λje
j

) + o(ρ−σ2 λ2)] = ...

= ρ
(α,

r∑
j=1

λj e
j)

[P ir,kr(ρ

n+1∑
j=r+1

λje
j

) + o(ρ−σr λr)]. (2.18)

Similarly, for the polynomial Q , for a number σ′r and a multi-index β ∈ <krir (Q) we have

Q(ξ) = ρ
(β,

r∑
j=1

λj e
j)

[Qir,kr(ρ

n+1∑
j=r+1

λje
j

) + o(ρ−σ
′
r λr)]. (2.18′)
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Since ρ
λsr+1
s → b ≥ 1, it follows, that ρ

(α,
∑n+1
r+1 λ

s
j e
j)

s → be
r+1

:= η for s → ∞. It is clear, that
0 < ηi <∞ for all i = 1, ..., n (in accordance with the definition of ηi).

Let us consider two cases: a) (e1, α) > 0 and b) (e1, α) = 0. The case (e1, α) < 0 is impossible
because of the fact, that equation for supporting hyperplane with the outward normal λ of < can be
written in the form (λ, α) = d, where d ≥ 0 is the distance from the origin to the given hyperplane
and α is a point of the hyperplane (see, for example, [1]).

Case a.1) Firstly suppose, that P ir,kr(η) 6= 0. Since (e1, α) > 0, λs1 → 1 and λi = o(λ1) for
i = 2, ..., n,, for sufficiently large s eventually we have, that (α,

∑r
1 λj e

j) > 0. Therefore, (2.18)
implies that

P (ξ) = ρ
(α,

r∑
j=1

λj e
j)

[P ir,kr(η) + o(1)]. (2.19)

Similarly, for the polynomial Q(ξ)

Q(ξ) = ρ
(β,

r∑
j=1

λj e
j)

[Qir,kr(η) + o(1)]. (2.20)

We show, that

(β,
r∑
j=1

λj e
j) ≤ (α,

r∑
j=1

λj e
j). (2.21)

Since β ∈ <krir (<(Q)), α ∈ <krir (<(P )), <(Q) ⊂ <(P ) and e1 is the normal of the face <k1i1 (<(P )),
hence (β, e1) ≤ (α, e1). If (β, e1) < (α, e1), then inequality (2.21) follows from the fact that λ1 → 1
and λj+1 = o(λj) for j = 1, 2, ..., r − 1. If (β, e1) = (α, e1), then this means that the points β and
α belong to the same face <k1i1 . Since β ∈ <krir (<(Q)) and <(Q) ⊂ <(P ), hence (β, e2) ≤ (α, e2).
If (β, e2) < (α, e2), then inequality (2.21) follows from the same fact, regarding the numbers λj. If
(β, e2) = (α, e2), this means that the points β and α belong to the same face <k2i2 , (β, e3) ≤ (α, e3)
and so on.

Continuing this process, after a finite number of steps, we either arrive at the equality (β, ej) =
(α, ej) j = 1, 2, ..., q− 1, (β, ej) < (α, ej) for some q < r, or for the relation (β, ej) = (α, ej) for all
j = 1, ..., r. In both cases, the inequality (2.21) is obvious. Thus, inequality (2.21) is proved.

So, relations (2.19) - (2.21) together contradict our assumption (2.16) and complete the consid-
eration of sub - case a.1) of case a).

Consider the case a.2): P ir,kr(η) = 0. In this case, the face <krir coincides with the (n − 1)−
dimensional degenerate face Γ := <n−1

i0
(with the outward normal µ) and r = m = 1, kr = k1 =

n− 1, e1 = µ, η ∈ Σ(Γ).
With respect to the vector e1 = µ, we represent the polynomial P (ξ) in form (1.5)

P (ξ) =
M∑
j=0

Pj(ξ) :=
M∑
j=0

∑
(e1,α)=dj

γα ξ
α (2.22)

and denote q(ξ) := P (ξ)− [P0(ξ) + P1(ξ)]. Then,

P (ξ) = P0(ξ) + P1(ξ) + q(ξ). (2.23).

Substituting

ξ(= ξs) = ρ

n+1∑
j=1

λje
j

= ρ

n+1∑
j=1

λsje
j

s

in (2.23) and using e1−homogeneity of the polynomials P0(ξ), P1(ξ) and Q(ξ) we get (below
hs :=

∑n+1
j=2 λ

s
je
j)
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P (ξs) = ρλ
s
1(µ,α)
s P0(ρh

s

s ) + ρλ
s
1(µ,β)
s P1(ρh

s

) + q(ξ), (2.24)

ord

Q(ξs) = ρλ
s
1(µ,γ)
s Q(ρh

s

) (2.25)

Let s → ∞, i.e. ρs → ∞, then ρh
s

s → η, λs1(µ, α) → d0, λ
s
1(µ, β) → d1, λ

s
1(µ, γ) → δQ and by

Lemma 1.2 P0(η) ≥ 0, P1(η) > 0.
On the other hand, since ord q ≤ d2 < d1, so with some constant c4 > 0 we have |q(ξs)| ≤ c4 ρ

d2
s ,

for all s = 1, 2, ..., i.e. |q(ξs)| = o(ρd1s ) for s→∞.
Thus, from (2.24) - (2.25) (for sufficiently large value of s) we have

P (ξs) = ρλ
s
1(µ,α)
s P0(ρh

s

s ) + ρλ
s
1(µ,β)
s P1(ρh

s

s ) + o(ρλ
s
1(µ,β)
s ), (2.24′)

and representation (2.25) for polynomial Q(ξ), where ρhss → η, λs1(µ, α) → d0, λ
s
1(µ, β) → d1,

λs1(µ, γ)→ δQ, as s→∞.
Since ρhss → η ∈ Σ(P0), then for sufficiently large s (i.e. for sufficiently large ρs ) condition I.3)

of our theorem is satisfied. Then, from (2.25) and condition I.3) for sufficiently large s and for a
constant c5 > 0 we obtain

|Q(ξs)| = ρλ
s
1(µ,γ)
s |Q(ρh

s

s )| ≤ c5 ρ
λs1(µ,γ)
s |P0(ρh

s

s )|(δQ−d1)/(d0−d1). (2.26)

According to the conditions of our theorem P ∈ In, therefore, for indicated s P0(ρh
s

s ) ≥ 0 and
P0(η) = 0, P1(η) > 0. So, we can assume, that 0 ≤ P0(ρh

s

s ) ≤ 1, P1(ρh
s

s ) ≥ 1
2
P1(η) > 0 for

sufficiently large s and |q(ξs)|/|P (ξs)| → 0 for s→∞. This and (2.24′) in turn show that

|P (ξs)| ≥ σ1ρ
d0
s P0(ρh

s

s ) + σ2ρ
d1
s . (2.27)

for sufficiently large s and for positive constants σ1 and σ2.
From estimates (2.26) - (2.27) it follows that, in order to obtain a contradiction with (2.16), it

suffices to prove the existence of a constant C = C(σ1, σ2) > 0 such that for sufficiently large s

ρδQs P0(ρh
s

s )(δQ−d1)/(d0−d1) ≤ C[1 + σ1 ρ
d0
s P0(ρh

s

s ) + σ2ρ
d1
s ]. (2.28)

To prove the estimates (2.28), let us apply Lemma 2.4 with the following notations

a := δQ, b := δQ − d1, c = d0, d := d0 − d1, x := ρs, y := [P0(ρh
s

s )][1/(d0−d1)].

After introducing these notations, the inequality (2.28) takes the following form

xa yb ≤ 1 + C |σ1 x
c yd + σ2 x

c−d|. (2.28′)

Since x ≥ 1, y ∈ [0, 1], a ≤ c, a − b = c − d = d1, then all conditions of Lemma 2.4 are satis-
fied. According to this lemma, inequality (2.28′) holds, therefore, inequality (2.28) holds. Resulting
inequality (2.28) contradicts our assumption (2.16) and completes the consideration of sub-case a.2)
and, therefore, completes the consideration of case a).

Let us move to case b) (e1, α) = 0.
Firstly, note, that if the Newton polyhedron < of the polynomial P (ξ) = P (ξ1, ..., ξn) is complete,

then the Newton polyhedron of polynomial P (ξ)|ξj=0 for j ∈ [1, n] is also complete in the appropriate
(n−1)−dimensional subspace. Secondly, in the case b) under consideration, the face, whose outward
normal is e1 , clearly passes through the origin and hence is not a principal face of <; consequently,
e1
i ≤ 0 (i = 1, ..., n). In this connection, if non principal face with outward normal e1 has dimension
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l ≤ n − 1, then l if the numbers e1
i (1 ≤ i ≤ n) are equal to zero with the remaining numbers

being negative. Without loss of generality it can clearly be assumed, that e1
1 = ... = e1

l = 0,
e1
l+1 < 0, ..., e1

n < 0.
Since

e1
j = lim

ξ→∞
[lnξj/(

n∑
k=1

(lnξk)
2)1/2] < 0 (j = l + 1, ..., n),

beginning with some number s0 (we assume that s0 = 1) we have, that ξsj < 1 (j = l+ 1, ..., n) (s =
1, 2, ...). On the other hand, since |ξs| → ∞ for s → ∞, we have ξsi → ∞ for certain i ∈ [1, l].
But since e1

i = 0 for such i, hence (at least for some subsequence of the sequence ξs ) ξsj → 0 for
s→∞ and at least one j ∈ (l, n].

Suppose, that (after a possible renumbering) ξsl → ∞, ..., ξsl0 → ∞ (l0 ≥ l) for s → ∞ and
ξsl0+1 → 0, ..., ξsl0+l1

→ 0 (l0 + l1 ≤ n).
Let ψ(ξ) := max1≤j≤l0ξj, then it is obvious, that as s→∞

lnψ(ξs)/[
n∑
k=1

(lnξsk)
2]1/2 → 0. (2.29)

On the other hand, there clearly exist positive constants c6, c7 such that

c6 ≤
l0∑
k=1

(lnξsk)
2 (lnψ(ξs))2 ≤ c7 (s = 1, 2, ...). (2.30)

From (2.29)-(2.30) it follows that

n∑
k=l0+1

(lnξsk)
2 (lnψ(ξs))2 →∞ as s→∞. (2.31)

From this result, going over a sub-sequence, if necessary, we can get, that for some j ∈ [l0 + 1, n]

|lnξsj |/lnψ(ξs)→∞ as s→∞, (2.32)

i.e. |lnξsj | → ∞ "faster" than lnψ(ξs)→∞. Hence ξsj = o([ψ(ξs)]−σ) for some σ > 0 or, equivalently,

(ξsj )
α1 .[ψ(ξs)]α2 → 0 as |ξ| → ∞ (2.33)

for α1 > 0 and α2 ≥ 0.
Let ξ̆ = (ξ̆1, ..., ξ̆n), where ξ̆j = 0 if j satisfies the condition (2.32) and ξ̆ = ξj otherwise.
In view of (2.33) from (2.16) it follows that

|Q(ξ̆s)|/[1 + |P (ξ̆s)|]→∞ as s→∞ (2.34)

(under our limit process, i.e. with the possibility of repeatedly going over the sub-sequences of the
sequence {ξs} of (2.16)).

As a result, the polynomial P (ξ) = P (ξ1, ..., ξn) can be transformed into the polynomial P̆ (ξ) :=
P (ξ̆) on less than n variables. Consequently, dimension of the polyhedron <̆(P ) := <(P̆ ) is less
than the dimension of the polyhedron <(P ), while the non - degenerate faces of < correspond to
the non - degenerate faces of <̆ and vice versa.

Thus, in the process of proving Theorem, relation (2.16) leads either to a contradiction or to
relation (2.34), which is analogous to (2.16) but corresponds to a space of dimension less than or
equal to n− 1.
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Repeating the arguments, presented above within the proof of this theorem, now with respect to
the polynomial P̆ , and so on, we clearly arrive after a finite number of steps at either a contradiction
or relation (2.34) for polynomials of one variable.

But for polynomials of one variable, the polyhedrons <(P ) and <(Q) have the shape of segment,
and a contradiction with (2.16) is due to the fact, that <(Q) ⊂ <(P ).

Thus, the first part of Theorem 2.2 is proved.
Let us prove the second part of Theorem. Repeating reasoning, carried out in the sufficiency

proof of the first part of Theorem, i.e. assuming the converse, that there exists a sequence {ξs} such
that ξs →∞ and

|P (ξs)|/[1 + |P (ξs) +Q(ξs)]→∞ as s→∞, (2.35)

In the case a.1) we obtain representation (2.19) for polynomial P and following representation for
polynomial P +Q

P (ξs) +Q(ξs) = ρ
(α,

r∑
j=1

λsj e
j)

P ir,kr(η) + ρ
(β,

r∑
j=1

λsj e
j)

Qir,kr(η) + o(1). (2.36)

Since, based on the condition II) of Theorem, the points of the set (Q) are interior points of the
set <(P ), that is (β, e1) < (α, e1) and λs1 → 1, λsj = o(λs1) for s → ∞ (j = 2, ..., r), then

(β,
r∑
j=1

λsj e
j) < (α,

r∑
j=1

λsj e
j) for sufficiently large s. Then

ρ
(β,

r∑
j=1

λsj e
j)

/ρ
(α,

r∑
j=1

λsj e
j)

→ 0 as s→∞
and representations (2.19), (2.36) together contradict (2.35).

In the case a.2): P ir,kr(η) = Qir,kr(η) = 0, the face <krir coincides with (n − 1)−dimensional
degenerate face Γ = <n−1

i0
(with the outward normal µ) and r = m = 1, kr = k1 = n − 1, e1 = µ,

η ∈ Σ(Γ).
In this case, we obtain the representations (2.24’) and (2.25) for the polynomials P and Q,

respectively, and following representation for the polynomial P +Q

P (ξs) +Q(ξs) = ρλ
s
1(µ,α) )P0(ρh

s

s ) + ρλ
s
1(µ,γ) )Q(ρh

s

s )

+ρλ
s
1(µ,α) )P1(ρh

s

s ) + o(1). (2.37)

Since, according to the conditions (first and second parts) of Theorem P0(ρh
s

s ) ≥ 0, Q(ρh
s

s ) ≥ 0,
P1(ρh

s

s ) > 0 for sufficiently large s, it follows from (2.24’), (2.37) that |P (ξs) +Q(ξs)| ≥ |P (ξs)| for
sufficiently large s. This contradicts our assumption (2.35). �

Let us give examples, illustrating this theorem.
Example 1. Let us compare the polynomial Q(ξ) = (ξ1 − ξ2)2(ξ6

1 + ξ6
2) with the following two

polynomials P 1(ξ) := P 1
0 (ξ) + P 1

1 (ξ) = (ξ1 − ξ2)4(ξ6
1 + ξ6

2) +(ξ6
1 + ξ6

2) and P 2(ξ) := P 2
0 (ξ) + P 1

2 (ξ)
= (ξ1 − ξ2)4(ξ6

1 + ξ6
2) +(ξ4

1 + ξ4
2).

Here d1
0 = d2

0 =: d0, d1
1 = 6, d2

1 = 4, ∆(η, P 1
0 ) = ∆(η, P 2

0 ) := 4, η = ±(1/
√

2, 1/
√

2), Simple
calculations show, that the pair (P 1, Q) satisfies all conditions of Theorem 2.2, while the pair
(P 2, Q) does not satisfy condition 2) of this theorem. Indeed, (d0 − d2

1)/(δQ − d2
1) = 3/2 < 2 =

∆(η, P 2
0 )/∆(η,Q). Therefore, Q < P 1, but Q 6< P 2.

Remark 5. Note, that conditions of Theorem 2.2 do not guarantee the Q < P0, which can be seen
from the following example.
Example 2. Let n = 2, P (ξ) := P0(ξ)+P1(ξ) = (ξ1− ξ2)8 +(ξ2

1 + ξ2
2)2, Q(ξ) = (ξ1− ξ2)4 (ξ2

1 + ξ2
2).

Here d0 = 8, d1 = 4, δQ = 6, η = ±(1/
√

2, 1/
√

2), ∆(η, P0) = 8, ∆(η,Q) = 4.
It is easy to verify, that all conditions of Theorem 2.2 are satisfied, hence Q < P. Moreover,

applying the arithmetic inequality a b ≤ (1/2)(a2 + b2)), we obtain, that P < P + Q. However, in
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this case the (necessary) condition II.4) of Theorem 2.1 is violated, and, therefore, Q 6< P0. This
can also be verified directly (without resorting to the help of Theorem 2.1) by taking, for example,
ξs1 = s+ 1, ξs2 = s s = 1, 2, ...·
Remark 6. Note, that as we saw above (see the Corollary 2.1), for a pair of generalized - homoge-
neous polynomials P and Q the relations Q < P and P < P +Q < P are equivalent, however, in
general, this does not apply to generalized polynomials. Here are some examples conforming this.
Example 3. Let n = 2. Compare the polynomials P (ξ) = (ξ1 − ξ2)8 + (ξ2

1 + ξ2
2)2, and

Q(ξ) = (−2, 5)(ξ1 − ξ2)6(ξ1 + ξ2). Here P0(ξ) = (ξ1 − ξ2)8, P1(ξ) = (ξ2
1 + ξ2

2)2, Σ(P0) = {±η =
±(1/

√
2, 1/
√

2)}, d0 = 8, d1 = 4, ∆(η, P0) = 8, δQ = 7, ∆(η,Q) = 6, (δQ − d1)/(d0 − d1) =
∆(η,Q)/∆(η, P0) = 3/4, η = ±(1/

√
2, 1/
√

2).

Conditions 1) - 2) of Theorem 2.2 are obvious, because Σ(P0) ⊂ Σ(Q) and (d0−d1)/(δQ−d1) =
∆(η, P0)/∆(η,Q), ∀η ∈ Σ(P0).

To prove condition 3) of Theorem 2.2 for the couple (P,Q) , as a neighborhood of U(η) for
both η and −η one can take, for example, a circle, centered at the point η (or −η ) with unit
radius. Then, the condition 3) reduces to the existence of a constant c > 0 such that the inequality
|(ξ1− ξ2)6 (ξ1 + ξ2) ≤ c |ξ1− ξ2|6 holds for all ξ ∈ U(η). In this case, this inequality is obvious, since
|ξ − η|| ≤ 1 for the points ξ ∈ U(η). Thus, by Theorem 2.2 Q < P

Let us show, that P 6< P+Q, i.e., that Q is not of lower order term for the polynomial P. Indeed,
simple calculations show, that on the sequence {ξs = (s+

√
s, s)} for s→∞ |P (ξs)| = O(s4) and

|P (ξs) + Q(ξ)| = O(s3,5), i.e. |P (ξs)|/|P (ξs) + Q(ξ)| → ∞ for s → ∞. It is also easy to see, that
Q 6< P +Q.

Thus, in general case, Theorem 2.2 does not answer the question: when (under what conditions
on the polynomials Pj (j = 1, 2, ..., l − 1)) P < P = P + P1? We will do this in the next section.
But, before moving to the next section, we note the following
Remark 7. 1)from Theorem 1.1′ it follows, that if the polynomial P, with the complete Newton
polyhedron <(P ), is non - degenerate, then P < P = P + P1 < P

2) when Γ := <n−1
i0

is a (unique) degenerate principal face of the polyhedron <(P ), the conditions
(necessary and sufficient) for the fulfillment of the right - hand side of this estimation (P = P+P1 <
P) are given by Theorem 2.2 (first part): it means, that each pair of polynomials (Pj,P) (j =
1, ..., l − 1) must satisfy the conditions of Theorem 2.2,

3) in a particular case (sufficient), the validity conditions for relation P < P = P +P1 are given
in the second part of Theorem 2.2.
Remark 8. From the course of the proof of Theorem 2.2, it became obvious that under the conditions
of this theorem a) P0 < P0 + P1 < P (however, this is clear from the proof of Theorem 1.1′ also),
b) the polynomials P2, ..., PM do not affect the behavior at infinity of the polynomial P (although
they can participate in the construction of the Newton polyhedron <(P )).

3 Adding lower-order terms and main result

Recall, that in Theorem 1.1′ we considered only the case, when in the studied degenerate polynomial
P = P0 + P1 + P2 + ... at all points η ∈ Σ(P0) := {η ∈ Rn,0 : P0(η) = 0} it was the first of
polynomials {Pj} that did not vanish: P1(η) 6= 0 ∀η ∈ Σ(P0). Now we want to free ourselves from
this restriction.

Namely, let, like to Theorem 1.1′, Γ := <n−1
i0

be the only degenerate principal face (with the
outward normal µ) of the complete Newton polyhedron <(P ) of polynomial P ∈ In and with
respect to the vector µ the polynomial P is represented as a sum of µ−homogeneous polynomials
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P (ξ) =
M∑
j=0

Pj(ξ) =
M∑
j=0

∑
(µ,α)=dj

γα ξ
α, (3.1)

where d0 > d1 > ... > dl > ... > dM ≥ 0.
Suppose, that Pl(η) 6= 0 (1 ≤ l ≤ M) for all η ∈ Σ(P0) and each polynomial Pj (j =

1, 2..., l − 1) vanishes at least at one point η ∈ Σ(P0) and put <∗ := {β ∈ <, (µ, β) ≤ dl},
P(ξ) := P0(ξ) + Pl(ξ) + Pl+1(ξ) + ... + PM(ξ), P1(ξ) := P1(ξ) + ... + Pl−1(ξ). If l = 1, then
P(ξ) ≡ P (ξ) and it follows from Theorem 1.1′, that ξν < P for all ν ∈ <∗.

A question naturally arises: suppose l ≥ 2, and polynomial P satisfies the conditions of
Theorem 1.1′. Therefore, ξν < P for all ν ∈ <∗. Which conditions must the polynomials
Pj (j = 1, ..., l − 1) satisfy, so that for newly introduced set <∗ the relation ξν < P = P + P1

also holds for all ν ∈ <∗?
To do this, we need to answer the following question (which, besides of numerous applications in

differential equations, of course, is also of independent interest): which lower - order terms Q can be
added to the polynomial P = P0 + P1 + ..., so that a) <(P + Q) = <(P ), b) the polynomials P
and R := P + Q have the same power, i. e. P < R < P ? In this case, we will call the polynomial
Q of lower - order term with respect to the polynomial P.

It is clear, that in this case our question sounds like this: what should be polynomials
P1, P2, ..., Pl−1 so that the polynomials P and P had the same power, i.e., that the relation
P < P = P + P1 < P held ?

The next proposition in a sense solves the question posed in the class of polynomials that we
considered above.
Theorem 3.1. Suppose that a degenerate polynomial P and a µ−homogeneous polynomial Q of
µ−order δQ ∈ (d1, do) satisfy the conditions of the first part of Theorem 2.2 (consequently Q < P ).
Let for each point η ∈ Σ(P0) and for any sequence {ηs} : ηs → η for s→∞ the following relation
is true

ψ(ηs) := |Q(ηs)|/|P0(ηs)|(δQ−d1)/(d0−d1) → 0. (3.2)

Then
1) |Q(ξ)|/[|P (ξ)|+ 1]→ 0 as |ξ| → ∞,
2) Q < P +Q, P < P +Q < P.

Proof of statement 1). Suppose, to the contrary, that conditions of Theorem are satisfied, but there
exist a sequence {ξs} and a number c1 > 0 such that ξs →∞ for s→∞ and

|Q(ξs)|/[|P (ξs)|+ 1] ≥ c1 , (s = 1, 2, ...). (3.3)

Reasoning as in the proof of Theorem 2.2 we obtain (for sufficiently large s) the following esti-
mations for the polynomial P (see the representation (2.24))

P (ξs) = ρλ
s
1 (µ,α)
s P0(ρh

s

s ) + ρλ
s
1(µ,β)
s P1(ρh

s

s ) + o(ρλ
s
1(µ,β)
s ).

Since λs1 → 1 as s→∞, from this, for a number c2 > 0 and sufficiently large s we have

|P (ξs)|+ 1 ≥ c2 [1 + |ρd0s P0(ρh
s

s ) + ρd1s P1(ρh
s

s )|]. (3.4)

Taking into account condition (3.2), for polynomial Q and the same s we have

|Q(ξs)| = ρδQs |Q(ρh
s

s )| = ρδQs |P0(ρh
s

s )|(δQ−d1)/(d0−d1) ψ(ρh
s

s ). (3.5)

Then, from (3.4) - (3.5), with some constant c3 > 0 we have

[|Q(ξs)|/|P (ξs)|+ 1] ≤ c3M(ρh
s

s ) ψ(ρh
s

s ), (3.6)
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where
M(ρh

s

s ) := ρδQs |P0(ρh
s

s )|(δQ−d1)/(d0−d1)]/[|ρd0s P0(ρh
s

s ) + ρd1s P1(η) |+ 1|].

Let us prove the existence of some constant c4 > 0 for which the following inequality holds

M(ρh
s

s ) ≤ c4 (s = 1, 2, ...). (3.7)

We introduce the notation x = xs = ρ
δQ
s , y = ys = |P0(ρh

s

s )|1/(d0−d1), a = δQ, b = δQ − d1, c = d0,
d = d0 − d1. Then inequality (3.7) takes the form

xδQ yδQ−d1 ≤ c4[1 + |xd0 yd0−d1 + P1(η)xc−d|], (3.8)

where P1(η) > 0, x ≥ 1, y ∈ [0, 1] for sufficiently large s.
To prove the inequality ((3.8) we apply the Lemma 2.4. The conditions of this lemma are satisfied,

because a = δQ < d0 = c, c− a = d− b = d0 − δQ, c− d = d1, σ1 = 1, σ2 = P1(η) > 0.
Thus, inequality (3.7) is proved. Since ψ(ρh

s

s ) → 0 for s → ∞, the inequalities (3.6), (3.7)
together contradict the assumption (3.3) and prove the first part of Theorem.

The second part of Theorem is an immediate consequence of the first part. It is only necessary
to reverse the fact, that now the behavior of polynomial Q does not affect the behavior of P + Q
when |ξ| → ∞, (i.e. P (ξ)→∞). �

Let us give an example of a pair of polynomials (P,Q) satisfying the conditions of Theorem 3.1.
Example 4. Let n = 2, P (ξ) = (ξ1 − ξ2)8 + (ξ2

1 + ξ2
2)2, Q(ξ) = (ξ1 − ξ2)5(ξ1 + ξ2).

Here P0(ξ) = (ξ1− ξ2)8, P1(ξ) = (ξ2
1 + ξ2

2)2, Σ(P0) = {±η = ±(1/
√

2, 1/
√

2), }, d0 = 8, d1 = 4,
∆(η, P0) = 8, δQ = 6, ∆(η,Q) = 5, (δQ − d1)/(d0 − d1) = 1/2.

Conditions I.1) - I.3) of Theorem 2.2 can be easily verified, and condition (3.2) of Theorem 3.1 is
satisfied, since for any sequence {ηs} : ηs → η for s→∞ we have

ψ(ηs) := |Q(ηs)|/[|P0(ηs)]1/2 = ((ηs1)2 − (ηs2)2)→ η2
1 − η2

2 = 0.

At the same time, it is obvious, that Q 6< P0.
As for the pair of polynomials from the Example 2.2 for any sequence {ηs} : ηs → (1/

√
2, 1/
√

2)
as s→∞, ψ(ηs) = |Q(ηs)/|P0(ηs)|1/2 = (ηs1)2 + (ηs2)2 → 1, i.e. condition (3.2) is violated. Despite
this, as we saw above, P < P + Q and Q < P + Q because the pair (P,Q) satisfies the condition
of the second part of Theorem 2.2.

Now we are already in a position to turn into the question, posed at the beginning of this section.
Namely, let with respect to a vector µ ∈ Rn a (generalized) polynomial P be represented as a sum
of µ−homogeneous polynomials in the form (3.1). We need to describe those multi - indites ν ∈ Nn

0

for which ξν < P, i.e. a constant c = c(ν, P ) > 0 exists, such that

|ξν | ≤ c [|P (ξ)|+ 1] ∀ξ ∈ Rn. (3.9)

Theorem 3.2 (main result). Let < = <(P ) be the complete Newton polyhedron of a polynomial
P ∈ In. Let all of the principal faces of < with exception of a (n− 1)−dimensional face Γ := <n−1

i0

(with the outward normal µ) be non-degenerate and the face Γ be degenerate.
Let the polynomial P be represented as a sum of µ−homogeneous polynomials in form (3.1) and

P = P0 + P1 + ...Pl + ...+ PM ,

where P0(ξ) =: P i0,n−1 (ξ), Pj is a µ− homogeneous polynomial of µ−order dj j = 0, 1, ..., l, ...,M,
d0 > d1 > ... > dl > ... > dM ≥ 0.

Suppose, that Pl(η) 6= 0 for all η ∈ Σ(P0) := {ξ ∈ Rn,0 |ξ, µ| = 1} and each polynomial
Pj ∈M := {P1, P2, ..., Pl−1} vanishes at least at one point η ∈ Σ(P0).
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Let P(ξ) := P0(ξ) + Pl(ξ), P1(ξ) := P1(ξ) + ... + Pl−1(ξ), p(ξ) := Pl+1(ξ) + ... + PM(ξ), <∗ :=
{β ∈ <, (µ, β) ≤ dl} and suppose, that <(P) = <(P ).

Then
a) if ν /∈ <∗, inequality (3.9) cannot hold,
b) inequality (3.9) holds for any multi-index ν ∈ <∗ if each of polynomials Pj ∈M satisfies one

of the following conditions
b.1) for the pair of (µ−homogeneous) polynomials (Pj, P0) (1 ≤ j ≤ l − 1) the assumptions of

Theorem 2.1 are satisfied,
b.2) for the pair of polynomials (Pj,P) (1 ≤ j ≤ l− 1) the assumptions I)− II) of Theorem 2.2

are satisfied,
b.3) for the pair of polynomials (Pj,P) (1 ≤ j ≤ l − 1) the assumptions of Theorem 3.1 are

satisfied.
Remark 9 Before proceeding to the proof of the theorem, we note that

1) conditions b.2) and b.3) should be set not for a pair of polynomials (Pj,P) but for a pair
(Pj,P + p). On one hand, the notation (Pj,P) simplifies writing and reasoning, on the other hand,
it is legitimate, since by Remark 8, the polynomial p(ξ) does not affect the behaviour of polynomials
P and P at infinity,

2) from condition II.2) of Theorem 2.1, condition I.3) of Theorem 2.2 and (3.2) of Theorem 3.1
it follows that in all b.1) - b.3) cases of this theorem the polynomials Pj ∈M (j = 1, ..., l− 1) must
vanish at all points η ∈ Σ(P0).

Proof of Theorem 3.2. Bearing in mind that for the polynomial P estimate (3.9) is valid for all
ν ∈ <∗, it is sufficient for us to prove that P < P = P + P1.

Firstly, let us add to the polynomial P those polynomials from M that (together with the
polynomial P0 ) satisfy condition b.1) of Theorem (i.e.conditions of Theorem 2.1). Let these be
polynomials M1 = {Pi1 , Pi2 , ..., Pik1} ⊂ M (1 ≤ ij ≤ l − 1, j = 1, ..., k1), k1 ≤ l − 1 i.e Pij < P0

j = 1, ..., k1).
Since dij < d0 (j = 1, ..., k1), by Lemma 2.1 Pij(ξ) = o(|P0(ξ)|) for |P0(ξ)| → ∞ i.e.

|Pi1(ξ)|+ |Pi2(ξ)|+ ..., |Pik(ξ)| = o(|P0(ξ)|) for |P0(ξ)| → ∞.
Remark 8. implies that P0 < P = P0 + Pl, hence |Pi1(ξ)| + |Pi2(ξ)| + ..., |Pik1 (ξ)| = o(| P(ξ)|)

for |P0(ξ)| → ∞. Thus, there exists a constant c > 0 such that, for sufficiently large |P0(ξ)|, the
inequality

|P(ξ)| ≤ c [1 + |P(ξ) + Pi1(ξ) + Pi2(ξ) + ..., Pik1 (ξ)|] (3.10)

holds. If |P0(ξ)| is bounded for |ξ| → ∞ , then the polynomials {Pij} are also bounded on this
sequence (recall that Pij < P0 (j = 1, ..., k1)). On the other hand, since P ∈ In hence P(ξ) → ∞,
and inequality (3.10) (perhaps with a different constant) is obvious. As a result, we get that P <
P +Pi1 +Pi2 + ...+Pik1 < P . It means, that further, when comparing the polynomials P and P, it
suffices to compare the polynomials P1 := P + Pi1 + Pi2 + ...+ Pik1 and P.

If k1 = l − 1, i.e P1(ξ) := P(ξ) + P1(ξ) = P (ξ) ∀ξ ∈ Rn, then this proves Theorem.
Consider the case when k1 < l − 1, i.e. M1 6= M.
Let us first consider those polynomials Pj ∈ M \M1 that satisfy condition b.3). Let these be

polynomials M3 := {Pk1+i1 , Pk1+i2 , ..., Pk1+k2 (1 ≤ ij ≤ l − 1, j = 1, ..., k2), k1 + k2 ≤ l − 1} i.e
|Pij(ξ)|/[ P (ξ)|+ 1]→ 0 as |ξ| → ∞ and P < P + Pij < P for all j = k1 + 1, ..., k1 + k2.

Arguing as in the previous case, we find that P < P2 := P1+ Pk1+i1 +Pk1+i2 + ...+Pik1+k2 < P ,
i.e. further, when comparing the polynomials P and P, it suffices to compare the polynomials P2

and P.
Finally, to the polynomial P2 we add the remaining polynomials from M that satisfy con-

dition b.2) of Theorem (i.e. conditions of Theorem 2.2). Let these be polynomials M2 :=
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{Pk1+k2+i1 , Pk1+k2+i2 , ..., Pk1+k2+k3}, k1 + k2 + k3 = l− 1. Then P2(ξ)+ Pk1+k2+i1(ξ) +Pk1+k2+i2(ξ) +
...+ Pk1+k2+k3(ξ) = P (ξ) for all ξ ∈ Rn.

As a result of the previous two cases we have that P < P2 < P . From Theorem 2.2 it follows that
P < P+ Pk1+k2+i1+Pk1+k2+i2+...+Pk1+k2+k3 . Hence P2 < P2+ Pk1+k2+i1+Pk1+k2+i2+...+Pk1+k2+k3 =
P. So we obtain that P < P < P . �
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[36] B. Pini, Osservazioni sulla ipoellittisità. Boll. Unione Mat. Ital., ser. III, 18 (1963), no. 4, 420 - 433.

[37] B. Pini, Sulla classe di Gevrey della soluzone di certe equazioni ipoellittiche. Boll.Unione Mat. Ital., ser. III, 18
(1963), no. 3, 260 - 269.

[38] L. Rodino, Linear partial differential operators in Gevrey spaces. Word Scientific(1993), Singapore.

Haik Gegamovich Ghazaryan
Department of mathematics and mathematical modelling
Russian - Armenian University
123 Ovsep Emin St.
0051 Yerevan, Armenia.
and
Institute of Mathematics the National Academy of Sciences of Armenia
24/5 Marshal Baghramyan ave
0019 Yerevan, Armenia.
E- mail: haikghazaryan@mail.ru

Received: 27.08.2022


