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1 Introduction

It is well known that function spaces have increasing applications in many areas of modern analysis,
in particular, harmonic analysis and partial differential equations. The most general function spaces,
probably, are the Besov spaces and the Triebel–Lizorkin spaces which cover many classical concrete
function spaces such as Lebesgue spaces, Lipschitz spaces, Sobolev spaces, Hardy spaces and BMO
spaces ([37], [38]).

D. Yang and W. Yuan in [41], [42] and W. Sickel, D. Yang and W. Yuan in [36], introduced
a class of Besov type and Triebel–Lizorkin type spaces which generalized many classical function
spaces such as Besov spaces, Triebel-Lizorkin spaces, Morrey spaces and Q-type spaces. Recently
the Besov type and Triebel-Lizorkin type space with variable exponents was investigated by many
authors (e.g. [43], [44]).

The 2-microloal space is due to Bony [3] in order to study the propagation of singularities of
the solutions of nonlinear evolution equations. It is an appropriate instrument to describe the local
regularity and the oscillatory behavior of functions near singularity (Meyer [32]). The theory has
been elaborated and widely used in fractal analysis and signal processing. For systematic discussions
of the concept and further references of 2-microlocal spaces, we refer to Meyer[31], [32], Levy-Vehel
and Seuret [30], Jaffard ([17], [18], [19], [20]), Jaffard and Mélot [21], and Jaffard and Meyer [22].

The 2-microlocal spaces have been generalized by Jaffard as a general pointwise regularity associ-
ated with Banach or quasi-Banach spaces [19], [20]. In this paper we introduce new inhomogeneous
2-microlocal spaces based on Jaffard’s idea (See [33] for the homogeneous 2-microlocal spaces) and
we will investigate the properties and the characterizations of these new 2-microlocal Besov and
Triebel–Lizorkin spaces which unify many classical function spaces such as the Besov type and
Triebel–Lizorkin type spaces, the 2–microlocal spaces in the sense of Meyer [32], the Morrey space
and the local Morrey spaces. These new function space are very similar to the classical 2-microlocal
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Besov and Triebel-Lizorkin spaces studied recently by many authors ([1], [6], [8], [13], [14], [15], [16],
[25], [26], [39], [40]).

The plan of the remaining sections in the paper is as follows:
In Section 2 we give the definitions of our new 2-microlocal spaces via the Littlewood-Paley

decomposition and the notations which are used later and we give examples for these spaces.
In Section 3 we define corresponding sequence spaces for our function spaces. Furthermore, we

give some auxiliary lemmas which are needed in later sections.
In Section 4 we will characterize our function spaces via the corresponding sequence spaces by

the ϕ–transform in the sense of Fraizer–Jarwerth [10], the atomic and molecular decomposition and
the wavelet decomposition. Moreover, we investigate the properties for these function spaces and we
also study relations between our 2-microlocal spaces and the classical 2-microlocal spaces.

In Section 5, as applications, we give the conditions under which the Calderón–Zygmund operators
and the pseudo–differential operators are bounded on the function spaces.

In Section 6 we give the characterizations via differences and oscillations.
Throughout the paper, we use C to denote a positive constant. But the same notation C are not

necessarily the same on any two occurrences. We use the notations i∨j = max{i, j}, i∧j = min{i, j},
and a+ = a ∨ 0. The symbol X ∼ Y means that there exist positive constants C1 and C2 such that
X ≤ C1Y and Y ≤ C2X.

2 Definitions

We consider the dyadic cubes in Rn of the form Q = [0, 2−l)n + 2−lk for k ∈ Zn and l ∈ Z, and
use the notation l(Q) = 2−l for the side length and xQ = 2−lk for the corner point. Throughout the
paper, we use the notations P, Q, R for the dyadic cubes of the form [0, 2−l)n + 2−lk in Rn, and
when the dyadic cubes Q appear as indices, it is understood that Q runs over all dyadic cubes of
this form in Rn. We denote by D the set of all dyadic cubes of this form. For a dyadic cube Q and
a constant c > 1, cQ denotes the cube of same center as Q and c times larger. We denote by χE the
characteristic function of a set E in Rn.

We set N = {1, 2, · · · } and N0 = N ∪ {0}. Let S = S(Rn) be the space of all Schwartz functions
on Rn and S ′ its dual.

We use 〈f, g〉 for the standard inner product
∫
fḡ of two functions and the same notation is

employed for the action of a distribution f ∈ S ′ on ḡ ∈ S.
Let φ0 be a Schwartz function and φ̂0 its Fourier transform satisfying

(1.1) supp φ̂0 ⊂ {ξ ∈ Rn : |ξ| ≤ 2},
(1.2) φ̂0(ξ) = 1 if |ξ| ≤ 1.
We set
φ(x) = φ0(x)− 2−nφ0(2

−1x), φj0 = 2jnφ0(2
jx), Sjf = f ∗ φj0 for j ∈ N0, and φj(x) = 2jnφ(2jx) for

j ∈ N.
Then we have
(1.3) supp φ̂ ⊂ {ξ ∈ Rn : 1

2
≤ |ξ| ≤ 2}, and

(1.4) there exist positive numbers c and a sufficiently small ε such that φ̂(ξ) ≥ c in 1− ε ≤ |ξ| ≤
1 + ε.

It holds that
∑

j∈N0
φ̂j = 1. Let f ∈ S ′, then we have the Littlewood-Paley decomposition

f =
∑

j∈N0
f ∗ φj (convergence in S ′) [36, Triebel 2.3.1(6)].

Let s ∈ R. For f ∈ S ′, we define some sequences indexed by dyadic cubes P :

c(Bs
pq)(P ) = (

∑
i≥(− log2 l(P ))∨0 ||2isf ∗ φi||

q
Lp(P ))

1/q, 0 < p, q ≤ ∞,
c(F s

pq)(P ) = ||{
∑

i≥(− log2 l(P ))∨0(2
is|f ∗ φi|)q}1/q||Lp(P ),
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0 < p <∞, 0 < q ≤ ∞,
c(F s

∞q)(P ) = l(P )−
n
q ||{
∑

i≥(− log2 l(P ))∨0(2
is|f ∗ φi|)q}1/q||Lq(P ),

0 < q ≤ ∞,
with the usual modification for q =∞.

We shall use the notation Es
pq with either Bs

pq or F s
pq. We say the B-type case when Es′

pq = Bs′
pq,

and the F-type case when Es′
pq = F s′

pq.

Definition 1. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
The space As(Es′

pq)
σ
x0

is defined to be the space of all f ∈ S ′ such that

||f ||As(Es′pq)σx0 ≡ sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−sc(Es′

pq)(P ) <∞.

The following abbreviation A0(Es′
pq)

σ
x0
≡ (Es′

pq)
σ
x0
, As(Es′

pq)
0
x0
≡ As(Es′

pq) and A0(Es′
pq)

0
x0
≡ Es′

pq ≡
Es′
pq(Rn) will be used in the sequel. We note that the space As(Es′

pq) is the inhomogeneous Besov type
space or the inhomogeneous Triebel–Lizorkin type space in the sense of Yang–Sickel–Yuan [26] and
the space Es′

pq ≡ Es′
pq(Rn) is the classical inhomogeneous Besov or inhomogeneous Triebel–Lizorkin

space.
Let f ∈ S ′, then we define some sequences indexed by dyadic cubes P :

c(B̃s′
pq)

σ
x0

(P ) =

(
∑

i≥(− log2 l(P ))∨0 ||2is
′|f ∗ φi(x)|(2−i + |x0 − x|)−σ||qLp(P ))

1/q,
0 < p, q ≤ ∞,

c(F̃ s′
pq)

σ
x0

(P ) =

||{
∑

i≥(− log2 l(P ))∨0(2
is′|f ∗ φi(x)|(2−i + |x0 − x|)−σ)q}1/q||Lp(P ),

0 < p <∞, 0 < q ≤ ∞,
c(F̃ s′

∞q)
σ
x0

(P ) =

l(P )−
n
q ||{
∑

i≥(− log2 l(P ))∨0(2
is′|f ∗ φi(x)|(2−i + |x0 − x|)−σ)q}1/q||Lq(P ),

0 < q ≤ ∞,
with the usual modification for q =∞.

We shall use the notation Ẽs′
pq with either B̃s′

pq or F̃ s′
pq. We say the B-type case when Ẽs′

pq = B̃s′
pq,

and the F-type case when Ẽs′
pq = F̃ s′

pq.

Definition 2. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
The space As(Ẽs′

pq)
σ
x0

is defined to be the space of all f ∈ S ′ such that

||f ||As(Ẽs′pq)σx0 ≡ sup
D3P

l(P )−sc(Ẽs′

pq)
σ
x0

(P ) <∞.

The space As(Ẽs′
pq)

σ
x0

is the classical 2–microlocal Besov or Triebel–Lizorkin space.
We use the abbreviation A0(Ẽs′

pq)
σ
x0
≡ (Ẽs′

pq)
σ
x0
.

Examples.

(i) The spaces A0(Es′
pq)

0
x0

= A0(Ẽs′
pq)

0
x0

= Es′
pq(Rn) are the inhomogeneous Besov spaces or inhomo-

geneous Triebel–Lizorkin spaces [37], [38].



78 K. Saka

(ii) The Besov type spaces Bs,τ
pq (Rn) and the Triebel–Lizorkin type spaces F s,τ

pq (Rn) introduced by
D. Yang , W. Sickel and W. Yuan [36] , are contained in our definition as

Es′,s
pq (Rn) = Ans(Es′

pq)
0
x0

= Ans(Ẽs′
pq)

0
x0
.

(iii) The Besov-Morrey spaces N s
uqp, and the Triebel–Lizorkin-Morrey spaces Esuqp studied by Y.

Sawano and H. Tanaka [34], or Y. Sawano, D. Yang and W. Yuan [35] are realized in our
definition as

N s
uqp ⊂ An(

1
p
− 1
u
)(Bs

pq)
0
x0

if 0 < p ≤ u ≤ ∞ and 0 < q ≤ ∞,

Esuqp = An(
1
p
− 1
u
)(F s

pq)
0
x0

if 0 < p ≤ u ≤ ∞ and 0 < q ≤ ∞.

The Morrey spaceMu
p is realized as

Mu
p = An(

1
p
− 1
u
)(F 0

p2)
0
x0

if 1 < p < u <∞.

(iv) The Ḃσ-Morrey spaces Ḃσ(Lp,λ) studied by Y. Komori-Furuya et al. [28], are contained in our
definition as

Ḃσ(Lp,λ) = Aλ+
n
p (F 0

p2)
σ
0 , 1 < p <∞.

(v) The 2-microlocal Besov spaces Bs,s′
pq (U) studied in H. Kempka [23, 24], are realized in our

definition as

Bs,s′
pq (U) = (B̃s+s′

pq )−s
′

x0
when U = {x0}.

(vi) The local Morrey spaces LMp,λ introduced by V.I. Burenkov and H.V. Guliyes [6] and studied
in Ts. Batbold and Y. Sawano [2] and a number of papers, are realized in our definition as

LMp,λ = (F 0
p2)

λ/p
0 , 1 < p <∞.

(vii) The spaces Cs,s′
x0

studied in Y. Meyer [31], [32], are realized in our definition as

Cs,s′
x0

= (B̃s+s′
∞∞)−s

′
x0

= (Bs+s′
∞∞)−s

′
x0

.

3 Sequence spaces

For a sequence c = (c(R)) with l(R) ≤ 1 we define some sequences indexed by dyadic cubes P :

c(bspq)(P ) = (
∑

i≥(− log2 l(P ))∨0 ||
∑

l(R)=2−i 2is|c(R)|χR||qLp(P ))
1/q,

0 < p, q ≤ ∞,
c(f spq)(P ) = ||

{∑
i≥(− log2 l(P ))∨0

(∑
l(R)=2−i 2is|c(R)|χR

)q}1/q||Lp(P ),
0 < p <∞, 0 < q ≤ ∞, and

c(f s∞q)(P ) = l(P )−
n
q ||
{∑

i≥(− log2 l(P ))∨0
(∑

l(R)=2−i 2is|c(R)|χR
)q}1/q||Lq(P ),

0 < q ≤ ∞, with the usual modification for q =∞.

The notation espq is used to denote either bspq or f spq. We say the B-type case when es′pq = bs
′
pq, and

the F-type case when es′pq = f s
′
pq.

Definition 3. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
We define the sequence space as(es′pq)σx0 to be the space of all sequences c = (c(R))l(R)≤1 such that

||c||as(es′pq)σx0 ≡ sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−sc(es
′

pq)(P ) <∞.
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We use the abbreviation a0(es′pq)σx0 ≡ (es
′
pq)

σ
x0
, as(es′pq)0x0 ≡ as(es

′
pq) and

a0(es
′
pq)

0
x0
≡ es

′
pq ≡ es

′
pq(Rn). We note that the space as(es′pq) is the sequence space of the inhomogeneous

Besov type space or the inhomogeneous Triebel–Lizorkin type space in the sense of Yang–Sickel–
Yuan [36] and the space es′pq ≡ es

′
pq(Rn) is the sequence space of the classical inhomogeneous Besov or

inhomogeneous Triebel–Lizorkin space.

Remark 1. It is easy that when σ < 0, we have As(Es′
pq)

σ
x0

= {0} and as(es
′
pq)

σ
x0

= {0} for
0 < p, q ≤ ∞ (See Proposition 4.1 below).

We define that for a sequence (c(R))l(R)≤1,

c(b̃s
′
pq)

σ
x0

(P ) =

(
∑

i≥(− log2 l(P ))∨0 ||
∑

l(R)=2−i 2is
′ |c(R)|(2−i + |x0 − x|)−σχR||qLp(P ))

1/q,
0 < p, q ≤ ∞,

c(f̃ s
′
pq)

σ
x0

(P ) =

||{
∑

i≥(− log2 l(P ))∨0(
∑

l(R)=2−i 2is
′|c(R)|(2−i + |x0 − x|)−σχR)q}1/q||Lp(P ),

0 < p <∞, 0 < q ≤ ∞,
c(f̃ s

′
∞q)

σ
x0

(P ) = l(P )−
n
q ×

||{
∑

i≥(− log2 l(P ))∨0(
∑

l(R)=2−i 2is
′ |c(R)|(2−i + |x0 − x|)−σχR)q}1/q||Lq(P ),

0 < q ≤ ∞,
with the usual modification for q =∞.

The notation ẽs′pq is used to denote either b̃s′pq or f̃ s
′
pq. We say the B-type case when ẽs′pq = b̃s

′
pq, and

the F-type case when ẽs′pq = f̃ s
′
pq.

Definition 4. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
We define the sequence space as(ẽs′pq)σx0 to be the space of all sequences c = (c(R))l(R)≤1 such that

||c||as(ẽs′pq)σx0 ≡ sup
D3P

l(P )−sc(ẽs
′

pq)
σ
x0

(P ) <∞.

We use the abbreviation a0(ẽs′pq)σx0 ≡ (ẽs
′
pq)

σ
x0
.

Definition 5. Let r1, r2 ≥ 0 and L > 0. We say that a matrix operator A = {aQP}QP , indexed by
dyadic cubes Q and P , is (r1, r2, L)-almost diagonal if the matrix {aQP} satisfies

|aQP | ≤ C
( l(Q)
l(P )

)r1(1 + l(P )−1|xQ − xP |)−L if l(Q) ≤ l(P ),
|aQP | ≤ C

( l(P )
l(Q)

)r2(1 + l(Q)−1|xQ − xP |)−L if l(Q) > l(P ).

The results about the boundedness of almost diagonal operators in [9: Theorem 3.3], also hold
in our cases.

Lemma 3.1. Suppose that s, s′, σ ∈ R, x0 ∈ Rn and 0 < p, q ≤ ∞. Then,
(i) an (r1, r2, L)–almost diagonal matrix operator A is bounded on as(es′pq)σx0 for r1 > max(s′, σ+

s + s′ − n
p
), r2 > J − s′ and L > J where J = n/min(1, p, q) in the case es

′
pq = f s

′
pq , and

J = n/min(1, p) in the case es′pq = bs
′
pq, respectively,

(ii) an (r1, r2, L)-almost diagonal matrix operator A is bounded on as(ẽs
′
pq)

σ
x0

for r1 > max(s′ +
(σ ∨ 0), (σ ∨ 0) + s + s′ − n

p
), r2 > J − s′ + (σ ∧ 0) and L > J where J = n/min(1, p, q) in the

case ẽs′pq = f̃ s
′
pq, and J = n/min(1, p) in the case ẽs′pq = b̃s

′
pq, respectively.
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Proof : (i) We may assume σ ≥ 0 by Remark 1. We assume that A = (aRR′) is (r1, r2, L)–
almost diagonal. Let c = (c(R)) ∈ as(es

′
pq)

σ
x0
. For dyadic cubes P and R with R ⊂ P , we write

Ac = A0c+ A1c+ A2c with

(A0c)(R) =
∑

l(R)≤l(R′)≤l(P )

aRR′c(R
′),

(A1c)(R) =
∑

l(R′)<l(R)≤l(P )

aRR′c(R
′),

(A2c)(R) =
∑

l(R)≤l(P )<l(R′)≤1

aRR′c(R
′).

We claim that
||Aic||as(es′pq)σx0 ≤ C||c||as(es′pq)σx0 , i = 0, 1, 2.

We will consider the case of F-type for 0 < p < ∞, 0 < q ≤ ∞. Since A is almost diagonal, we see
that for dyadic cubes P with l(P ) = 2−j,

(A0c)(f
s′

pq)(P ) = ||
{∑
i≥j∨0

∑
l(R)=2−i

(
2is
′ |(A0c)(R)|

)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q
( ∑
i≥k≥j∨0

∑
l(R′)=2−k

|aRR′||c(R′)|
)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q ×

( ∑
i≥k≥j∨0

∑
l(R′)=2−k

2−(i−k)r1(1 + 2k|xR − xR′|)−L|c(R′)|
)q
χR
}1/q||Lp(P ).

Using the maximal function Mtf(x), 0 < t ≤ 1, defined by

Mtf(x) = sup
x∈Q

( 1

l(Q)n

∫
Q

|f(y)|t dy
)1/t

(cf. [28: Lemma 7.1] or [9: Remark A.3]), we have for L > n/t,

(A0c)(f
s′

pq)(P ) ≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q2−ir1q×

( ∑
i≥k≥j∨0

2kr12(k−i)+n/tMt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q

χR
}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2−i(r1−s
′)q
( ∑
i≥k≥j∨0

2kr1Mt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

2is
′qMt

( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2is
′q
( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P ) = Cc(f s

′

pq)(P ),

where these inequalities follow from Hardy’s inequality if r1 > s′ and the Fefferman-Stein inequality
if 0 < t < min(p, q).
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For the B-type case we have the same estimate for r1 > s′ and 0 < t < min(1, p).
Therefore, we get the estimate

A0c(e
s′

pq)(P ) ≤ Cc(es
′

pq)(P )

if r1 > s′, 0 < p <∞, 0 < q ≤ ∞, L > J .
In the sane way we will get the estimate for (A1c)(f

s′
pq)(P ). We have that for dyadic cubes P with

l(P ) = 2−j,

(A1c)(f
s′

pq)(P ) = ||
{∑
i≥j∨0

∑
l(R)=2−i

(
2is
′|(A1c)(R)|

)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q
(∑
i≤k

∑
l(R′)=2−k

|aRR′||c(R′)|
)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q ×

(∑
i≤k

∑
l(R′)=2−k

2−(k−i)r2(1 + 2i|xR − xR′|)−L|c(R′)|
)q
χR
}1/q||Lp(P ).

Using the maximal function Mtf(x) as above, we have

(A1c)(f
s′

pq)(P ) ≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q2ir2q×

(∑
i≤k

2−kr22(k−i)+n/tMt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q

χR
}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2i(r2+s
′−n/t)q ×(∑

i≤k

2−k(r2−n/t)Mt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

2is
′qMt

( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2is
′q
( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P ) = Cc(f s

′

pq)(P ),

where these inequalities follow from Hardy’s inequality if r2 + s′ − n/t > 0 and the Fefferman-Stein
inequality if 0 < t < min(p, q).

In the same way we get the same estimate for the B-type case that

(A1c)(b
s′

pq)(P ) ≤ Cc(bs
′

pq)(P )

if r2 + s′ − n/t > 0, 0 < t < min(1, p). Therefore, we get the estimate

A1c(e
s′

pq)(P ) ≤ Cc(es
′

pq)(P )

if r2 > J − s′, 0 < p <∞, 0 < q ≤ ∞, L > J .
When p =∞, we get the same estimate. Thus, we get

||Aic||as(es′pq)σx0 ≤ C||c||as(es′pq)σx0 , i = 0, 1
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if r1 > s′, r2 > J − s′, L > J , 0 < p ≤ ∞ and 0 < q ≤ ∞.
Next, we will give the estimates for the A2 case.

We note that if L > n , ∑
l(P )=2−j

(1 + 2j|xR − xP |)−L <∞

(cf. [4, Lemma 3.4]), and if c ∈ as(es′pq)σx0 , then

|c(R)| ≤ C(|x0 − xR|+ l(R))σl(R)s+s
′−n/p||c||as(es′pq)σx0

for a dyadic cube R ⊂ 3Q and x0 ∈ Q. Hence, we obtain, for dyadic cubes P with l(P ) = 2−j,
0 < p <∞ and 0 < q ≤ ∞,

(A2c)(f
s′

pq)(P ) = ||
{∑
i≥j

∑
l(R)=2−i

(
2is
′|(A2c)(R)|

)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j

∑
l(R)=2−i

2is
′q×

( ∑
j≥k≥0

∑
l(R′)=2−k

2−(i−k)r1(1 + 2k|xR − xR′|
)−L|c(R′)|)qχR}1/q||Lp(P )

≤ C||
{∑
i≥j

2−i(r1−s
′)q×

( ∑
j≥k≥0

2kr12−k(σ+s+s
′−n/p)(1 + 2k|x0 − xP |)σ||c||as(fs′pq)σx0

)q}1/q||Lp(P )

≤ C2−j(r1−s
′)2−jn/p

∑
j≥k≥0

2k(r1−σ−s−s
′+n/p)(1 + 2j|x0 − xP |)σ||c||as(fs′pq)σx0

≤ C2−j(r1−s
′+n/p)2j(r1−σ−s−s

′+n/p)(1 + 2j|x0 − xP |)σ||c||as(fs′pq)σx0
≤ C2−js(2−j + |x0 − xP |)σ||c||as(fs′pq)σx0

where these inequalities follow if r1 > σ + s+ s′ − n
p
, r1 > s′, L > n and σ ≥ 0.

In the same way for the B-type case we have the same estimate.
Hence, we have,

||A2c||as(es′pq)σx0 ≤ C||c||as(es′pq)σx0

if r1 > σ + s+ s′ − n/p, r1 > s′, 0 < p <∞ and 0 < q ≤ ∞.
We get the same estimate for the case p =∞. Therefore, we obtain the desired conclusion.
(ii) We put wi = (2−i + |x0− x|)−σ. We see that wi ≤ 2(i−k)+σwk if 0 ≤ σ, and wi ≤ 2(k−i)+σwk if

0 > σ. Then, using these inequalities we can prove the desired result by using the same way in the
above proof of (i).

Lemma 3.2. Let r1, r2 ∈ N0, L > n and L1 > n+ r1, L2 > n+ r2. Assume that for dyadic cubes P



New 2-microlocal Besov and Triebel-Lizorkin spaces via the Littlewood - Paley decomposition 83

and R, φP and ϕR are functions on Rn satisfying following properties:

(2.1)

∫
Rn
φP (x)xγdx = 0 for |γ| < r1,

(2.2) |φP (x)| ≤ C(1 + l(P )−1|x− xP |)−max(L,L1),

(2.3) |∂γφP (x)| ≤ Cl(P )−|γ|(1 + l(P )−1|x− xP |)−L

for 0 < |γ| ≤ r2,

(2.4)

∫
Rn
ϕR(x)xγdx = 0 for |γ| < r2,

(2.5) |ϕR(x)| ≤ C(1 + l(R)−1|x− xR|)−max(L,L2),

(2.6) |∂γϕR(x)| ≤ Cl(R)−|γ|(1 + l(R)−1|x− xR|)−L

for 0 < |γ| ≤ r1,

where (2.1) and (2.6) are void when r1 = 0, and (2.3) and (2.4) are void when r2 = 0. Then, we have
that

l(P )−n|〈φP , ϕR〉| ≤ C
( l(P )
l(R)

)r1(1 + l(R)−1|xP − xR|)−L

if l(P ) ≤ l(R),
l(R)−n|〈φP , ϕR〉| ≤ C

( l(R)
l(P )

)r2(1 + l(P )−1|xP − xR|)−L

if l(R) < l(P ).

Proof. We refer to [10: Corollary B.3] , [5: Lemma 6.3] or [29: Lemma 3.1].

Lemma 3.3. Suppose that s, s′, σ ∈ R, x0 ∈ Rn and 0 < p, q ≤ ∞. Let r1, r2 ∈ N0 and L > n.
Assume that functions φP and ϕP satisfy (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) in Lemma 3.2. Let J
as in Lemma 3.1. Then we have

(i) for a dyadic cube R and a sequence c ∈ as(es′pq)σx0,∑
D3P, l(P )≤1 c(P )〈φP , ϕR〉 is convergent if r1 > J − n− s′ and L > J ,

(ii) for a dyadic cube R and a sequence c ∈ as(ẽs′pq)σx0,∑
D3P, l(P )≤1 c(P )〈φP , ϕR〉 is convergent if r1 > J − n− s′ − (σ ∧ 0) and L > J + σ.

Proof : (i) We may assume that σ ≥ 0 by Remark 1.
We write

∑
D3P c(P )〈φP , ϕR〉 = I = I0 + I1 with

I0 =
∑

l(R)≤l(P )≤1

c(P )〈φP , ϕR〉,

I1 =
∑

l(P )<l(R)

c(P )〈φP , ϕR〉

for c ∈ as(es′pq)σx0 . We claim that Ii <∞, i = 0, 1.
For a dyadic cube R with l(R) = 2−i we have, by Lemma 3.2 that

|I0| ≤ C
∑
i≥j≥0

∑
l(P )=2−j

|c(P )||〈φP , ϕR〉|

≤ C
∑
i≥j≥0

∑
l(P )=2−j

|c(P )|2−in2(j−i)r2(1 + 2j|xR − xP |)−L

≤ C
∑
i≥j≥0

2−i(r2+n)2jr2Mt(
∑

l(P )=2−j

|c(P )|χP )(x),
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for L > n/t, 0 < t < 1 and x ∈ R. Taking L1(R) norm and using the Fefferman-Stein inequality, we
have,

|I0|2−in = ||I0||L1(R)

≤ C2−in||
∑
i≥j≥0

Mt(
∑

l(P )=2−j

|c(P )|χP )||L1(R)

≤ C2−in||
∑
i≥j≥0

∑
l(P )=2−j

|c(P )|χP ||L1(R)

≤ C
∑

1≥l(P ), R⊂P

|c(P )|2−2in <∞.

In the same way we obtain the estimate of I1:

|I1| ≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )||〈φP , ϕR〉|

≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )|2−jn2(i−j)r1(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

2−j(r1+n)2ir1
∑

l(P )=2−j

|c(P )|(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

2−j(r1+n−n/t+s
′)2ir12−in/tMt(

∑
l(P )=2−j

2js
′|c(P )|χP )(x)

if 0 < t ≤ 1, L > n/t and x ∈ R with l(R) = 2−i.
By using the monotonicity of lq-norm and Hölder’s inequality, we get the following result,

|I1| ≤ C2−i(n+s
′){
∑
j≥i∨0

(Mt(
∑

l(P )=2−j

2js
′|c(P )|χP )(x))q}1/q

if r1 + n− n/t+ s′ > 0, 0 < q ≤ ∞ and x ∈ R.
Taking Lp(R) norm and using the Fefferman-Stein inequality, we have, for a dyadic cube R with

l(R) = 2−i and c ∈ as(f s′pq)σx0 ,

|I1|2−in/p = ||I1||Lp(R) ≤ C2−i(n+s
′)c(f s

′

pq)(R)

≤ C2−i(n+s
′+σ+s)||c||as(fs′pq)σx0 <∞

if 0 < t < min(p, q), 0 < p < ∞, 0 < q ≤ ∞. In the same way we get the same estimate for
the case p = ∞. Furthermore, we obtain the same estimate for the B-type case if 0 < t < p,
0 < p ≤ ∞, 0 < q ≤ ∞. Therefore, we obtain that I1 is convergent if r1 > J − n− s′ and L > J .

(ii) Let I0 and I1 be as in the proof of (i). Then by arguing as in the proof of (i), we have I0 <∞
for L > n. We put wj(P ) = (2−j + |xP − x0|)−σ for a dyadic cube P with l(P ) = 2−j.

Note that
|c(P )| ≤ Cl(P )s+s

′−n/pwj(P )−1||c||as(ẽs′pq)σx0

for c ∈ as(ẽs′pq)σx0 . We have, by Lemma 3.2 for a dyadic cube R with l(R) = 2−i and σ ≥ 0,
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|I1| ≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )||〈φP , ϕR〉|

≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )|2−jn2(i−j)r1(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )|2−jn2(i−j)r1wj(P )wj(P )−1 ×

(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

2−j(r1+n)2ir12−iσ
∑

l(P )=2−j

|c(P )|wj(P )×

(1 + 2i|xR − xP |)−(L−σ)

≤ C
∑
j≥i∨0

2−j(r1+n−n/t+s
′)2i(r1+σ−n/t) ×

Mt(
∑

l(P )=2−j

2js
′
wj(P )|c(P )|χP )(x).

By using the same way as in the proof of (i), we get

|I1|2−ip/n ≤ C2−i(n+s
′+σ)c(ẽs

′

pq)
σ
x0

(R)

≤ C2−i(n+s
′+σ+s)||c||as(ẽs′pq)σx0 <∞

if r1 > J − n− s′ and L > σ + J . We also obtain the same estimate for the case σ < 0.

For a sequence c(P ) with l(P ) = 2−j, we define the sequence c∗(P ) by

c∗(P ) =
∑

l(R)=2−j

|c(R)|(1 + 2j|xP − xR|)−L

for L > J where J is as in Lemma 3.1.
We define for f ∈ S ′, γ ∈ N0 and a dyadic cube P with l(P ) = 2−j, the sequence infγ(f)(P ) and

tγ(P ) by
infγ(f)(P ) = max{infR3y |φj ∗ f(y)| : R ⊂ P, l(R) = 2−(γ+j)},

tγ(P ) = inf
P3y
|φj−γ ∗ f(y)|.

Lemma 3.4. For s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞, f ∈ S ′ and a dyadic cube P with l(P ) = 2−j,
we have

(i)
c(es

′

pq)(P ) ∼ c∗(es
′

pq)(P ), c(ẽs
′

pq)
σ
x0

(P ) ∼ c∗(ẽs
′

pq)
σ
x0

(P ),

(ii)

infγ(f)(P )χP ≤ C2γL
∑

R⊂P,l(R)=2−(γ+j) t∗γ(R)χR.

for γ sufficient large.

Proof. (i) It suffices to prove
c∗(es

′

pq)(P ) ≤ Cc(es
′

pq)(P )
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since |c(P )| ≤ c∗(P ).
Using the Fefferman-Stein inequality, we have

c∗(f s
′

pq)(P ) = ||{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

|c∗(R)|χR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

∑
l(R′)=2−i

|c(R′)| ×

(1 + 2i|xR − xR′ |)−LχR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

Mt(
∑

l(R′)=2−i

|c(R′)|χR′)χR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(
∑

l(R′)=2−i

2is
′|c(R′)|χR′)q}1/q||Lp(P ) = Cc(f s

′

pq)(P )

if 0 < t < min(p, q), L > n/t and 0 < p < ∞, 0 < q ≤ ∞. Moreover, for the p = ∞ case, we have
the same result. For the B-type case , we obtain the same result by the same argument as above.
We also obtain the same result for the other case.

(ii) Let R0 and R in P be cubes with l(R0) = l(R) = 2−(γ+j). It suffices to show

tγ(R0) ≤ C2γLt∗γ(R).

Since
1 ≤ 2L2γL(1 + 2γ+j|xR − xR0|)−L,

we have

tγ(R0) ≤ Ctγ(R0)2
γL(1 + 2γ+j|xR − xR0|)−L

≤ C2γL
∑

l(R′)=2−(γ+j)

tγ(R
′)(1 + 2γ+j|xR − xR′|)−L = C2γLt∗γ(R).

4 Characterizations

Remark 2. (See [11: (3.20)] ). Let φ0 be a Schwartz function satisfying (1.1) and (1.2) and let φ
be a Schwartz function satisfying (1.3) and (1.4). Then there exist a Schwartz function ϕ0 satisfying
the same conditions (1.1) and (1.2) and a Schwartz function ϕ satisfying the same conditions (1.3)
and (1.4) such that∑

j∈N0
ϕ̂j(ξ)φ̂j(ξ) = 1 for any ξ where ϕj(x) = 2jnϕ(2jx), j ∈ N.

Hence we have the ϕ-transform [8; Lemma 2.1] for f ∈ S ′ such that

f =
∑
l(Q)≤1

l(Q)−n〈f, ϕQ〉φQ,

where φQ(x) = φ(l(Q)−1(x−xQ)) and ϕQ(x) = ϕ(l(Q)−1(x−xQ)) for a dyadic cube Q with l(Q) < 1,
and φQ(x) = φ0(l(Q)−1(x−xQ)) and ϕQ(x) = ϕ0(l(Q)−1(x−xQ)) for a dyadic cube Q with l(Q) = 1.

Theorem 4.1. For s, s′, σ ∈ R, 0 < p, q ≤ ∞, x0 ∈ Rn and φ0, φ ∈ S as in Remark 2, we have
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(i)

As(Es′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)φQ : (c(Q)) ∈ as(es′pq)σx0},

and
(ii)

As(Ẽs′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)φQ : (c(Q)) ∈ as(ẽs′pq)σx0}.

Remark 3. (1) We see that
∑

l(Q)≤1 c(Q)φQ is convergent in S ′ for each sequence c ∈ as(es′pq)σx0 or
c ∈ as(ẽs′pq)σx0 by Lemma 3.3.

(2) We notice that D ≡ {f =
∑

l(Q)≤1 c(Q)φQ : c ∈ as(es
′
pq)

σ
x0
} is independent of the choice

of φ0, φ ∈ S as in Remark 2. Indeed, suppose {φ1
0, φ

1} and {φ2
0, φ

2} are Schwartz functions as in
Remark 2, and the spaces D1 and D2 are defined by using {φ1

0, φ
1} and {φ2

0, φ
2} in the place of

{φ0, φ} respectively. We consider the ϕ-transform

φ1
P =

∑
l(R)≤1

l(R)−n〈φ1
P , ϕ2

R〉φ2
R.

Then for D1 3 f =
∑

l(P )≤1 c(P )φ1
P , c ∈ as(es

′
pq)

σ
x0
, we have

f =
∑
l(P )≤1

c(P )φ1
P =

∑
l(R)≤1

Ac(R)φ2
R

where A = {l(R)−n〈φ1
P , ϕ2

R〉}RP . From Lemma 3.1 and Lemma 3.2, we see that for c ∈ as(es′pq)σx0 ,
Ac ∈ as(es′pq)σx0 . This shows that D1 ⊂ D2. By the same argument, we see that D2 ⊂ D1. That is,
D1 = D2. These imply that the space D is independent of the choice of {φ0, φ}. In the same way
D̃ = {f =

∑
l(Q)≤1 c(Q)φQ : (c(Q)) ∈ as(ẽs′pq)σx0} is independent of the choice of {φ0, φ}.

Proof of Theorem 4.1. (i) We may assume σ ≥ 0 by Remark 1. We put D ≡ {f =
∑

l(Q)≤1 c(Q)φQ :

c ∈ as(es
′
pq)

σ
x0
}. In order to prove D ⊂ As(Es′

pq)
σ
x0

we claim for a dyadic cube P , and for f =∑
Q c(Q)φQ ∈ D,

c(Es′

pq)(P ) ≤ Cc(es
′

pq)(P ) (a)

if 0 < p, q ≤ ∞. Let (c(P )) ∈ as(es′pq)σx0 . Since S is closed under the convolution, we have, for i ≥ 0,

|φi ∗ f(x)| = |
∑
l(P )≤1

c(P )φi ∗ φP (x)|

= |
i+1∑

j=(i−1)∨0

∑
l(P )=2−j

c(P )φi ∗ φP (x)|

≤ C

i+1∑
j=(i−1)∨0

∑
l(P )=2−j

|c(P )|(1 + 2j|x− xP |)−L

for a sufficiently large number L. Hence we have, using the maximal function Mtf(x), 0 < t ≤ 1, as
in the proof of Lemma 3.1
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{
∑
i≥j∨0

(2is
′ |φi ∗ f |)q}1/q ≤ C{

∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

|φi ∗ f |χR)q}1/q

≤ C{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

|c(R′)|(1 + 2k|x− xR′ |)−L)χR)q}1/q

≤ C{
∑
i≥j∨0

(
∑

l(R)=2−i

Mt(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

2is
′|c(R′)|χR′)χR)q}1/q

if 0 < t ≤ 1 and L > n/t. Taking Lp(P )-norm and using the Fefferman-Stein inequality, we have for
a dyadic cube P with l(P ) = 2−j

c(F s′

pq)(P ) = ||{
∑
i≥j∨0

(2is
′ |φi ∗ f |)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(Mt(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

2is
′ |c(R′)|χR′))q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

2is
′ |c(R′)|χR′)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(
∑

l(R′)=2−i

2is
′ |c(R′)|χR′)q}1/q||Lp(P ) = Cc(f s

′

pq)(P )

if 0 < t < min(p, q) and 0 < p < ∞. For the p = ∞ case , we obtain the same result. In the same
way for the B-type case we have the same estimate

c(Bs′

pq)(P ) ≤ Cc(bs
′

pq)(P ) if 0 < p ≤ ∞.

This implies D ⊂ As(Es′
pq)

σ
x0
.

In order to complete the proof of Theorem 4.1 (i), we will show the inverse. We consider the
ϕ-transform f =

∑
l(P )≤1 c(f)(P )ϕP , c(f)(P ) = l(P )−n〈f , φP 〉 where φP and ϕP as in Remark 2.

It suffices to show that c(f)(P ) ∈ as(es′pq)σx0 for f ∈ As(Es′
pq)

σ
x0
. More precisely, we claim that for a

dyadic cube P with l(P ) = 2−j,

c(f)(es
′

pq)(P ) ≤ Cc(Es′

pq)(P ) (b)

where c(f)(es
′
pq)(P ) is a sequence defined by replacing the sequence c(P ) by the sequence c(f)(P ) in

the definition of c(es′pq)(P ). For f ∈ S ′ and a dyadic cube P with l(P ) = 2−j, we define the sequence
sup(f)(P ) by setting

sup(f)(P ) = sup
P3y
|φj ∗ f(y)|.

For γ ∈ N0 the sequences infγ(f)(P ), tγ(P ) are defined previously and for a sequence c(P ), we also
define a sequence c∗(P ) previously (See Lemma 3.4). We have, from the fact in [9, Lemma A.4] that
sup(f)∗(P ) ∼ infγ(f)∗(P ) for γ sufficiently large.

Thus, we have

|c(f)(P )| = l(P )−n|〈f , φP 〉| = |φj ∗ f(xP )| ≤ sup(f)(P ) ≤ sup(f)∗(P ) ∼ infγ(f)∗(P )

for γ sufficiently large. Therefore, from Lemma 3.4 (i) and (ii) we have
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|c(f)(f s
′

pq)(P )| ≤ Cinfγ(f)∗(f s
′

pq)(P ) ≤ Cinfγ(f)(f s
′

pq)(P )

≤ C||{
∑
i≥j∨0

(
∑

l(R)=2−i

2is
′
infγ(f)(R)χR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(2is
′
2γL

∑
l(R′)=2−(γ+i)

t∗γ(R
′)χR′)

q}1/q||Lp(P )

≤ C2γL||{
∑

i≥(j∨0)+γ

(2is
′
2−γs

′ ∑
l(R′)=2−i

tγ(R
′)χR′)

q}1/q||Lp(P )

≤ C2γ(L−s
′)||{

∑
i≥(j∨0)+γ

(2is
′ ∑
l(R′)=2−i

|φi−γ ∗ f(y)|χR′)q}1/q||Lp(P )

≤ C2γ(L−s
′)||{

∑
i≥j∨0

(2is
′
2s
′γ

∑
l(R′)=2−(i+γ)

|φi ∗ f(y)|χR′)q}1/q||Lp(P )

≤ C2γL||{
∑
i≥j∨0

(2is
′ |φi ∗ f(y)|)q}1/q||Lp(P ) = Cc(F s′

pq)(P )

if 0 < p < ∞. For p = ∞ , we obtain the same result. For the B-type case we can prove the same
result by the same argument as above,

c(f)(bs
′

pq)(P ) ≤ Cc(Bs′

pq)(P )

if 0 < p ≤ ∞. Thus, we obtain
c(f)(es

′

pq)(P ) ≤ Cc(Es′

pq)(P ).

By Remark 3 (2) this implies that, As(Es′
pq)

σ
x0
⊂ D, 0 < p ≤ ∞. Hence, we obtain As(Es′

pq)
σ
x0

= D.
(ii) We can prove (ii) in the same way as (i).

We have the following properties from Theorem 4.1.

Proposition 4.1. Suppose that s, s,′ σ ∈ R and x0 ∈ Rn.
(i) When σ < 0, we have As(Es′

pq)
σ
x0

= {0}, for 0 < p, q ≤ ∞,
(ii) When σ + s < 0, we have As(Bs′

pq)
σ
x0

= {0}, for 0 < p, q ≤ ∞, and As(F s′
pq)

σ
x0

= {0}, for
0 < p <∞, 0 < q ≤ ∞,

(iii) When s < 0, we have As(B̃s′
pq)

σ
x0

= {0}, for 0 < p, q ≤ ∞, and As(F̃ s′
pq)

σ
x0

= {0}, for
0 < p <∞, 0 < q ≤ ∞.

Proof. These properties are shown easily.

Proposition 4.2. Suppose that s, s,′ σ ∈ R and x0 ∈ Rn.

(i) When s ≤ 0, we have

As(Bs′
pq)

σ
x0

= (Bs′
pq)

s+σ
x0

for 0 < p, q ≤ ∞, and As(F s′
pq)

σ
x0

= (F s′
pq)

s+σ
x0

for 0 < p <∞, 0 < q ≤ ∞,

In particular, when σ ≥ 0 and σ + s = 0, we have

As(Bs′
pq)

σ
x0

= Bs′
pq(Rn) for 0 < p, q ≤ ∞, and As(F s′

pq)
σ
x0

= F s′
pq(Rn) for 0 < p <∞, 0 < q ≤ ∞.

(ii) When σ ≥ 0, we have

As(Es′+σ
pq ) ⊂ As(Ẽs′

pq)
σ
x0
⊂ As(Es′

pq)
σ
x0
,

and when σ < 0, we have

As(Ẽs′
pq)

σ
x0
⊂ As(Es′+σ

pq ).
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(iii) If σ ≥ 0, then we have
(Es′
∞∞)σx0 = (Ẽs′

∞∞)σx0.

Proof. The property (i) can be proved from the fact that

Cl(Q)−σ sup
D3P⊂3Q

l(P )−sc(es
′

pq)(P ) ≥ l(Q)−(σ+s)c(es
′

pq)(Q)

and
l(Q)−σ sup

D3P⊂3Q
l(P )−sc(es

′

pq)(P ) ≤ Cl(Q)−(σ+s) sup
D3P⊂3Q

c(es
′

pq)(P ),

if s ≤ 0.
We obtain the property (ii) from the fact that

c(ẽs
′

pq)
σ
x0

(P ) ≤ Cc(eσ+s
′

pq )(P ),

and
l(Q)−σl(P )−sc(es

′

pq)(P ) ≤ Cl(P )−sc(ẽs
′

pq)
σ
x0

(P )

since l(Q)−σ ≤ C(l(P ) + |x0 − xP |)−σ for P ⊂ 3Q if σ ≥ 0. The last half of property (ii) can be
proved since

c(ẽs
′

pq)
σ
x0

(P ) ≥ c(es
′+σ
pq )(P )

if σ < 0. To prove the property (iii), it suffices to see from property (ii),

(es
′

∞∞)σx0 ⊂ (ẽs
′

∞∞)σx0 .

We consider any dyadic cube R with l(R) = 2−i and dyadic cubes Ql with x0 ∈ Ql and l(Ql) =
2−l, i ≥ l such that Qi ⊂ · · · ⊂ Ql ⊂ Ql−1 ⊂ · · · and ∪i≥lQl = Rn. We set Q0

l ≡ 3Ql \ 3Ql+1, i > l
and Q0

i ≡ 3Qi. We divide the proof into two cases:
Case (a): R ⊂ Q0

l , i > l case. Then we have 2−i + |x0 − xR| ≥ C2−l,
Case (b): R ⊂ Q0

i . Then we have 2−i + |x0 − xR| ≥ 2−i.
In the case (a) we have

2is
′ |c(R)|(2−i + |x0 − xR|)−σ ≤ C2is

′
2lσ|c(R)|

≤ C sup
x0∈Q

2lσ sup
R⊂3Q

2is
′ |c(R)| <∞.

In the case (b) we have

2is
′ |c(R)|(2−i + |x0 − xR|)−σ ≤ C2is

′
2iσ|c(R)|

≤ C sup
x0∈Q

2lσ sup
R⊂3Q

2is
′ |c(R)| <∞.

Proposition 4.3. Suppose that s, s,′ σ ∈ R, and x0 ∈ Rn.
When 0 < q1 ≤ q2 ≤ ∞, 0 < p ≤ ∞, we have

As(Bs′

pq1
)σx0 ⊂ As(Bs′

pq2
)σx0 , As(B̃s′

pq1
)σx0 ⊂ As(B̃s′

pq2
)σx0 ,

and when 0 < q1 ≤ q2 ≤ ∞, 0 < p <∞, we have

As(F s′

pq1
)σx0 ⊂ As(F s′

pq2
)σx0 , As(F̃ s′

pq1
)σx0 ⊂ As(F̃ s′

pq2
)σx0 .

Proof. These inclusions are corollaries of the monotonicity of the lp-norm.

Proposition 4.4. Suppose that s, s,′ σ ∈ R, 0 < ε and x0 ∈ Rn. We have
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(i) As(Bs′+ε
pq1

)σ−εx0
⊂ As(Bs′

pq2
)σx0 for 0 < p ≤ ∞, 0 < q1, q2 ≤ ∞, and

As(F s′+ε
pq1

)σ−εx0
⊂ As(F s′

pq2
)σx0 for 0 < p <∞, 0 < q1, q2 ≤ ∞, and

(ii) As+ε(Es′
pq)

σ−ε
x0
⊂ As(Es′

pq)
σ
x0

for 0 < p, q ≤ ∞, and

(iii) As−ε(Bs′+ε
pq1

)σx0 ⊂ As(Bs′
pq2

)σx0, and A
s−ε(B̃s′+ε

pq1
)σx0 ⊂ As(B̃s′

pq2
)σx0 for 0 < p, q1, q2 ≤ ∞, and

As−ε(F s′+ε
pq1

)σx0 ⊂ As(F s′
pq2

)σx0, and A
s−ε(F̃ s′+ε

pq1
)σx0 ⊂ As(F̃ s′

pq2
)σx0 for 0 < p <∞, 0 < q1, q2 ≤ ∞.

Proof. (ii) is obvious. (i) and (iii) are corollaries of Hölder’s inequality and the monotonicity of the
lp-norm.

Proposition 4.5. Suppose that s, s,′ σ ∈ R and x0 ∈ Rn.

(i) If 0 < p2 ≤ p1 ≤ ∞ and 0 < q ≤ ∞, then

A
s+ n

p1 (Bs′
p1q

)σx0 ⊂ A
s+ n

p2 (Bs′
p2q

)σx0, A
s+ n

p1 (B̃s′
p1q

)σx0 ⊂ A
s+ n

p2 (B̃s′
p2q

)σx0,

and, if 0 < p2 ≤ p1 <∞ and 0 < q ≤ ∞, then

A
s+ n

p1 (F s′
p1q

)σx0 ⊂ A
s+ n

p2 (F s′
p2q

)σx0, A
s+ n

p1 (F̃ s′
p1q

)σx0 ⊂ A
s+ n

p2 (F̃ s′
p2q

)σx0.

(ii) If 0 < q ≤ ∞, 0 < p ≤ ∞, n
p
< s, then

As(Es′
pq)

σ
x0

= (E
s+s′−n

p
∞∞ )σx0 and As(Ẽs′

pq)
σ
x0

= (Ẽ
s+s′−n

p
∞∞ )σx0.

In particular, if 0 ≤ σ, 0 < q ≤ ∞, 0 < p ≤ ∞, n
p
< s, then

As(Es′
pq)

σ
x0

= As(Ẽs′
pq)

σ
x0
.

(iii) If 0 < p1, p2, q ≤ ∞, then

A
n
p1 (Es′

p1∞)σx0 = A
n
p2 (Es′

p2∞)σx0 = (Es′
∞∞)σx0,

A
n
p1 (Ẽs′

p1∞)σx0 = A
n
p2 (Ẽs′

p2∞)σx0 = (Ẽs′
∞∞)σx0,

A
n
p1 (F s′

p1q
)σx0 = A

n
p2 (F s′

p2q
)σx0, A

n
p1 (F̃ s′

p1q
)σx0 = A

n
p2 (F̃ s′

p2q
)σx0.

Proof. The properties (i) are corollaries of Hölder’s inequality. We will prove the properties (ii). We
see that

as+
n
p (es

′

pq)
σ
x0
⊂ (es

′+s
∞∞)σx0 ,

since
l(P )−(s+

n
p
)c(es

′

pq)(P ) ≥ l(P )−(s
′+s)|c(P )|.

Hence in order to prove (ii), it suffices to prove

(es
′+s
∞∞)σx0 ⊂ as+

n
p (es

′

pq)
σ
x0
.

Since
c(ės

′

pq)(P ) ≤ C(es
′+s
∞∞)(P )× l(P )s+

n
p

if s > 0 and 0 < q <∞, we get the desired result. Similarly, for the other case, we can prove.
The first part of properties (iii) is obtained in the same way in the proof of (ii) and the last part

is just [ 10: Corollary 5.7 ].

Proposition 4.6. (Embedding) Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn. We have
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(i) As(E
s′1
pξ)

σ
x0
⊂ As(E

s′2
pη)σx0, A

s(Ẽ
s′1
pξ)

σ
x0
⊂ As(Ẽ

s′2
pη)σx0, for s

′
1 > s′2 and 0 < ξ, η ≤ ∞,

(ii) As(B
s′1
p1q)

σ
x0
⊂ As(B

s′2
p2q)

σ
x0
, As(B̃

s′1
p1q)

σ
x0
⊂ As(B̃

s′2
p2q)

σ
x0
, for s′1 − s′2 = n( 1

p1
− 1

p2
) and 0 < p1 ≤

p2 ≤ ∞,

As(F
s′1
p1ξ

)σx0 ⊂ As(F
s′2
p2η)

σ
x0
, As(F̃ s′1

p1ξ
)σx0 ⊂ As(F̃

s′2
p2η)

σ
x0
, for s′1−s′2 = n( 1

p1
− 1
p2

) and 0 < p1 < p2 <∞,
0 < ξ, η ≤ ∞,

(iii) As(Bs′
pq)

σ
x0
⊂ As(F s′

pq)
σ
x0
, As(B̃s′

pq)
σ
x0
⊂ As(F̃ s′

pq)
σ
x0
, for 0 < q ≤ p ≤ ∞,

As(F s′
pq)

σ
x0
⊂ As(Bs′

pq)
σ
x0
, As(F̃ s′

pq)
σ
x0
⊂ As(B̃s′

pq)
σ
x0
, for 0 < p ≤ q ≤ ∞.

Proof. The embedding properties (i) and the first embedding of (ii) are corollaries of Hölder’s
inequality and the monotonicity property of the lp-norm. For the second embedding of (ii), see [37;
Proposition 2.5] (cf. [38; Theorem 2.7.1]). (iii) is a corollary of Minkowski’s inequality (cf. Triebel[
38: 2.3.2 Proposition 2 ] ).

Remark 4. Let 0 < p, q ≤ ∞, s, σ ∈ R, x0 ∈ Rn and s′ > n(1
p
− 1)+. If f ∈ As(Es′

pq)
σ
x0
,

then f is locally integrable (and locally Lp integrable). Indeed, we consider the Littlewood-Paley
decomposition

f =
∑
i≥0

f ∗ φi.

It suffices to show that
∑

i≥0 f ∗ φi is locally integrable and locally Lp integrable. We may consider
any dyadic cube P with l(P ) ≥ 1. Then we have if 1 ≤ p <∞,

||
∑
i≥0

f ∗ φi||L1(P ) ≤ C||
∑
i≥0

f ∗ φi||Lp(P )

≤ C||{
∑
i≥0

(2is
′|f ∗ φi|)q}1/q||Lp(P ) ≤ Cc(F s′

pq)(P ) <∞

by using Hölder inequality if 1 ≤ q ≤ ∞ and the monotonicity property of the lp-norm if 0 < q ≤ 1.
In the same way we have

||
∑
i≥0

f ∗ φi||L1(P ) ≤ C||
∑
i≥0

f ∗ φi||Lp(P ) ≤ C
∑
i≥0

||f ∗ φi||Lp(P )

≤ C{
∑
i≥0

(2is
′ ||f ∗ φi||Lp(P ))

q}1/q ≤ Cc(Bs′

pq)(P ) <∞.

If 0 < p ≤ 1, in the same way we have

||
∑
i≥0

f ∗ φi||Lp(P ) ≤ C||
∑
i≥0

f ∗ φi||L1(P )

≤ C{
∑
i≥0

(2i(s
′−n( 1

p
−1))||f ∗ φi||L1(P ))

q}1/q

= Cc(B
s′−n( 1

p
−1)

1q )(P ) ≤ Cc(Bs′

pq)(P ) <∞,

where we use Proposition 4.6 in the last inequality. Similarly, by using the fact that c(Bs′
p p∨q)(P ) ≤

c(F s′
pq)(P ) we have the same estimate for the F-type case if 0 < p ≤ 1. Therefore, we obtain the
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desired result for f ∈ As(Es′
pq)

σ
x0
. But we note that it holds for 0 < p <∞ in the F-type case and for

0 < p ≤ ∞ in the B-type case. We note that it holds an analogous result for f ∈ As(Ẽs′
pq)

σ
x0

with the
weight wi = (2−i + |x0 − x|)−σ.

We recall the definitions of smooth atoms and molecules.

Definition 6. Let r1, r2 ∈ N0, L > n. A family of functions m = (mQ) indexed by dyadic cubes
Q with l(Q) ≤ 1 is called a family of (r1, r2, L)– smooth molecules if

(3.1) |mQ(x)| ≤ C(1 + l(Q)−1|x− xQ|)−max(L,L2) for some L2 > n+ r2 when l(Q) < 1,
(3.2) |∂γmQ(x)| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−L for 0 < |γ| ≤ r1, when l(Q) < 1 and
(3.3)

∫
Rn x

γmQ(x)dx = 0 for |γ| < r2 when l(Q) < 1,
where (3.2) is void when r1 = 0, and (3.3) is void when r2 = 0,

(3.4) |∂γmQ(x)| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−L, |γ| ≤ r1 when l(Q) = 1,
(3.5) we do not assume the vanishing moment condition (3.3) when l(Q) = 1.

A family of functions a = (aQ) indexed by dyadic cubes Q with l(Q) ≤ 1 is called a family of (r1, r2)–
smooth atoms if

(3.6) supp aQ ⊂ 3Q for each dyadic cube Q when l(Q) ≤ 1,
(3.7) |∂γaQ(x)| ≤ Cl(Q)−|γ| for |γ| ≤ r1 when l(Q) ≤ 1, and
(3.8)

∫
Rn x

γaQ(x)dx = 0 for |γ| < r2 when l(Q) < 1,
where (3.8) is void when r2 = 0,

(3.9) we do not assume the vanishing moment condition (3.8) when l(Q) = 1.

Theorem 4.2. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn. Let r1, r2 ∈ N0, J as in Lemma 3.1
and L > n.

(i) We assume that r1, r2 and L satisfy the following condition:
(4.1) r1 > max(s′, σ + s+ s′ − n

p
),

(4.2) r2 > J − n− s′,
(4.3) L > J .
Then we have

As(Es′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)mQ :

(r1, r2, L)− smooth molecules (mQ), (c(Q)) ∈ as(es′pq)σx0}

= {f =
∑
l(Q)≤1

c(Q)aQ :

(r1, r2)− smooth atoms (aQ), (c(Q)) ∈ as(es′pq)σx0}.
(ii) We assume that r1, r2 and L satisfy
(4.1)′ r1 > max(s′ + (σ ∨ 0), (σ ∨ 0) + s+ s′ − n

p
),

(4.2)′ r2 > J − n− s′ − (σ ∧ 0),
(4.3)′ L > J + σ

Then we have

As(Ẽs′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)mQ :

(r1, r2, L)− smooth molecules (mQ), (c(Q)) ∈ as(ẽs′pq)σx0}

= {f =
∑
l(Q)≤1

c(Q)aQ :

(r1, r2)− smooth atoms (aQ), (c(Q)) ∈ as(ẽs′pq)σx0}.
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Remark 5. From Lemma 3.3, we remark that f =
∑

l(Q)≤1 c(Q)mQ and f =
∑

l(Q)≤1 c(Q)aQ are
convergent in S ′ for each c ∈ as(es′pq)σx0 or as(ẽs′pq)σx0 .

Proof of Theorem 4.2. (i) We may assume σ ≥ 0 by Remark 1. We put
A ≡ {f =

∑
l(Q)≤1 c(Q)aQ : (r1, r2)−smooth atoms (aQ), (c(Q)) ∈ as(es′pq)σx0},

M ≡ {f =
∑

l(Q)≤1 c(Q)mQ : (r1, r2, L)−smooth molecules (mQ),

(c(Q)) ∈ as(es′pq)σx0}.
Since an (r1, r2)– atom is an (r1, r2, L)– molecule, it is easy to see that A ⊂ M . Let M 3 f =∑
l(Q)≤1 c(Q)mQ and we consider the ϕ-transform

mQ =
∑
l(P )≤1

l(P )−n〈mQ , ϕP 〉φP ,

where φP and ϕP as in Remark 2. Then we have

f =
∑
l(Q)≤1

c(Q)mQ =
∑
l(P )≤1

(Ac)(P )φP ,

where A = {l(P )−n〈mQ , ϕP 〉}PQ. Lemma 3.1 and Lemma 3.2 yield that A is (r1, r2+n, L)– almost
diagonal and Ac ∈ as(es′pq)σx0 for c ∈ as(es′pq)σx0 . Hence, if we put D ≡ {f =

∑
l(Q)≤1 c(Q)φQ : c ∈

as(es
′
pq)

σ
x0
}, then we see that M ⊂ D. From Theorem 4.1 we see D = As(Es′

pq)
σ
x0
. Hence, we obtain

A ⊂M ⊂ As(Es′
pq)

σ
x0
.

Using the argument similar to the proof of [10: Theorem 4.1] (cf. [4: Theorem 5.9] or [5: Theorem
5.8]), for D 3 f =

∑
l(Q)≤1 c(Q)φQ, c ∈ as(es

′
pq)

σ
x0
, we see that there exist a family of (r1, r2)–

atoms {aQ} and a sequence of coefficients {c′(Q)} ∈ as(es
′
pq)

σ
x0

such that f =
∑

l(Q)≤1 c(Q)φQ =∑
l(Q)≤1 c

′(Q)aQ. Hence, we see that D ⊂ A. Therefore, we have As(Ės′
pq)

σ
x0

= M = A. We can prove
(ii) by the same way in (i).

We recall the definition of smooth wavelets.

Definition 7. Let r ∈ N0 and L > n. A family of {ψ0, ψ
(i)} is called (r, L)– smooth wavelets if

{ψ0(x− k) (k ∈ Zn), 2nj/2ψ(i)(2jx− k) (i = 1, · · · , 2n − 1, j ∈ N0, k ∈ Zn)} forms an orthonormal
basis of L2(Rn), and ψ(i) satisfies (5.1), (5.2) and (5.3), and a scaling function ψ0 satisfies (5.4)

(5.1) |ψ(i)(x)| ≤ C(1 + |x|)−max(L,L0) for some L0 > n+ r,
(5.2) |∂γψ(i)(x)| ≤ C(1 + |x|)−L for 0 < |γ| ≤ r,
(5.3)

∫
Rn ψ

(i)(x)xγdx = 0 for |γ| < r
where (5.2) and (5.3) are void when r = 0.

(5.4) |∂γψ0(x)| ≤ C(1 + |x|)−L for |γ| ≤ r,
but ψ0 does not satisfy the vanishing moment condition (5.3). We will forget to write the index i of
the wavelet, which is of no consequence.

We put ψ0,k(x) = ψ0(x − k), k ∈ Zn, ψQ(x) = ψ(l(Q)−1(x − xQ)) for a dyadic cube Q with
l(Q) ≤ 1.

Theorem 4.3. Let s, s′, σ ∈ R, x0 ∈ Rn and 0 < p, q ≤ ∞.
(i) For a family of (r, L)– smooth wavelets {ψ0, ψ} satisfying
(6.1) r > max(s′, σ + s+ s′ − n

p
, J − n− s′) and

(6.2) L > J , where J as in Lemma 3.1,
we have
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As(Es′
pq)

σ
x0

= {f =
∑

k∈Zn ckψ0,k +
∑

l(Q)≤1 c(Q)ψQ : (ck) ∈ as(es
′
pq)

σ
x0
,

(c(Q)) ∈ as(es′pq)σx0},

where (ck)k∈Zn ∈ as(es
′
pq)

σ
x0

means that (c0(Q))l(Q)≤1 ∈ as(es
′
pq)

σ
x0

such as c0(Q) = ck if Q = Q0,k =
[0, 1)n + k, k ∈ Zn and c0(Q) = 0 if l(Q) < 1.

(ii) For a family of (r, L)– smooth wavelets {ψ0, ψ} satisfying
(6.1)′ r > max(s′ + (σ ∨ 0), (σ ∨ 0) + s+ s′ − n

p
, J − n− s′ − (σ ∧ 0)) and

(6.2)′ L > J + σ
we have

As(Ẽs′
pq)

σ
x0

= {f =
∑

k∈Zn ckψ0,k +
∑

l(Q)≤1 c(Q)ψQ : (ck) ∈ as(ẽs
′
pq)

σ
x0
,

(c(Q)) ∈ as(ẽs′pq)σx0}.

Remark 6. We see that by Lemma 3.3,
∑

k∈Zn ckψ0,k and∑
l(Q)≤1 c(Q)ψQ are convergent in S ′ for (ck), (c(Q)) ∈ as(es′pq)σx0 or as(ẽs′pq)σx0 .

Proof of Theorem 4.3. (i) We may assume σ ≥ 0 by Remark 1. We put W = {f =
∑

k∈Zn ckψ0,k +∑
l(Q)≤1 c(Q)ψQ : (ck), (c(Q)) ∈ as(es′pq)σx0}.
Let W 3 f =

∑
k∈Zn ckψ0,k +

∑
l(Q)≤1 c(Q)ψQ and we consider the ϕ–transform

ψ0,k =
∑
l(P )≤1

l(P )−n〈ψ0,k , ϕP 〉φP

ψQ =
∑
l(P )≤1

l(P )−n〈ψQ , ϕP 〉φP

where φP and ϕP as in Remark 2. Then we have

f =
∑
l(P )≤1

(B1ck)(P )φP +
∑
l(P )≤1

(A1c)(P )φP

where B1 = {l(P )−n〈ψ0,k , ϕP 〉}Pk and A1 = {l(P )−n〈ψQ , ϕP 〉}PQ. Lemma 3.1 and Lemma 3.2
yield that B1 and A1 are almost diagonal and B1ck, A1c ∈ as(es

′
pq)

σ
x0

for ck, c ∈ as(es
′
pq)

σ
x0
. Hence, by

Theorem 4.1, we see that W ⊂ D = As(Es′
pq)

σ
x0

where D is as in the proof of Theorem 4.1.
Conversely, let D 3 f =

∑
l(Q)≤1 c(Q)φQ and we consider the wavelet expansion

φQ =
∑
k∈Zn
〈φQ , ψ0,k〉ψ0,k +

∑
l(P )≤1

l(P )−n〈φQ , ψP 〉ψP .

Then we have

f =
∑
k∈Zn

(B2c)(k)ψ0,k +
∑
l(Q)≤1

(A2c)(Q)φQ

where B2 = {〈φQ , ψ0,k〉}kQ and A2 = {l(P )−n〈φQ , ψP 〉}PQ. Lemma 3.1 and Lemma 3.2 yield that
B2 and A2 are almost diagonal and B2c A2c ∈ as(es

′
pq)

σ
x0

for c ∈ as(es′pq)σx0 . Hence, by Theorem 4.1,
we see that As(Ės′

pq)
σ
x0

= D ⊂ W .
We can prove (ii) by the same way in (i). Hence we obtain the result of Theorem 4.3.

Remark 7. (1) we see that Theorem 4.3 is independent of the choice of smooth wavelets {ψ0, ψ
(i)}

(see Remark 3 (2)).
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(2) For f ∈ As(Es′
pq)

σ
x0

or As(Ẽs′
pq)

σ
x0

the parings 〈f , ψ0,k〉 and 〈f , ψQ〉 are well-defined. More
explicitly, we see that for any {φQ, ϕQ} as in Remark 2,

〈f , ψ0,k〉 =
∑
l(P )≤1

l(P )−n〈f , φP 〉〈ψ0,k , ϕP 〉 ≡
∑
l(P )≤1

c(f)(P )〈ψ0,k , ϕP 〉

and
〈f , ψQ〉 =

∑
l(P )≤1

l(P )−n〈f , φP 〉〈ψQ , ϕP 〉 ≡
∑
l(P )≤1

c(f)(P )〈ψQ , ϕP 〉

are convergent by Lemma 3.3 and (b) in the proof of Theorem 4.1. Thus, for f ∈ As(Es′
pq)

σ
x0

or
As(Ẽs′

pq)
σ
x0

we have a wavelet expansion f =
∑

k∈Zn ckψ0,k+
∑

l(Q)≤1 c(Q)ψQ in S ′ and its representation
is unique in S ′, that is, ck = 〈f , ψ0,k〉 and c(Q) = l(Q)−n〈f , ψQ〉. Hence, we have that by Lemma
3.1, Lemma 3.2 and (b) in the proof of Theorem 4.1,

||(ck)||as(es′pq)σx0 = ||〈f , ψ0,k〉||as(es′pq)σx0
≤ ||

∑
l(P )≤1

c(f)(P )〈ψ0,k , ϕP 〉||as(es′pq)σx0

≤ C||c(f)||as(es′pq)σx0 ≤ C||f ||As(Es′pq)σx0
and

||(c(Q))||as(es′pq)σx0 = ||l(Q)−n〈f , ψQ〉||as(es′pq)σx0
≤ C||

∑
l(P )≤1

c(f)(P )l(Q)−n〈ψQ , ϕP 〉||as(es′pq)σx0

≤ C||c(f)||as(es′pq)σx0 ≤ C||f ||As(Es′pq)σx0 .

Conversely, we consider the ϕ-transform

ψ0,k =
∑
P

l(P )−n〈ψ0,k , ϕP 〉φP

and
ψQ =

∑
P

l(P )−n〈ψQ , ϕP 〉φP .

Then we have

f =
∑
k∈Zn

ckψ0,k +
∑
Q

c(Q)ψQ =
∑
k∈Zn

(Bck)(P )φP +
∑
Q

Ac(P )φP

where B = {l(P )−n〈ψ0,k , ϕP 〉} and A = {l(P )−n〈ψQ , ϕP 〉}. Hence we have by Lemma 3.1, Lemma
3.2 and (a) in the proof of Theorem 4.1,

||f ||As(Es′pq)σx0 ≤ C||(Bck) + (Ac)||as(es′pq)σx0
≤ C||Bck||as(es′pq)σx0 + C||Ac||as(es′pq)σx0
≤ C||ck||as(es′pq)σx0 + C||c||as(es′pq)σx0 .

Therefore, we have
||f ||As(Es′pq)σx0 ∼ ||(ck)||as(es′pq)σx0 + ||(c(Q))||as(es′pq)σx0 .

Similarly, we also obtain

||f ||As(Ẽs′pq)σx0 ∼ ||(ck)||as(ẽs′pq)σx0 + ||(c(Q))||as(ẽs′pq)σx0 .
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5 Applications

Definition 8. Let T be the space of Schwartz test functions (C∞-functions with compact support)
and T ′ its dual. For arbitrary r1, r2 ∈ N0 the Calderón–Zygmund operator T with an exponent ε > 0
is a continuous linear operator T → T ′ such that its kernel K off the diagonal {(x, y) ∈ Rn × Rn :
x = y} satisfies

(7.1) |∂γ1K(x, y)| ≤ C|x− y|−(n+|γ|) for |γ| ≤ r1,
(7.2) |K(x, y)−K(x, y′)| ≤ C|y − y′|r2+ε|x− y|−(n+r2+ε) if 2|y′ − y| ≤ |x− y|,
(7.3) |∂γ1K(x, y)− ∂γ1K(x, y′)| ≤ C|y − y′|ε|x− y|−(n+|γ|+ε)
if 2|y′ − y| ≤ |x− y| for 0 < |γ| ≤ r1
(where this statement is void when r1 = 0),
|∂γ1K(x, y)− ∂γ1K(x′, y)| ≤ C|x′ − x|ε|x− y|−(n+|γ|+ε)
if 2|x′ − x| ≤ |x− y| for |γ| ≤ r1,

(where the subindex 1 stands for derivatives in the first variable)
(7.4) T is bounded on L2(Rn).

We obtain the following theorem.

Theorem 5.1. Let s, s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞, r1, r2 ∈ N0 and J as in Lemma 3.1.
(i) The Calderón–Zygmund operator T with an exponent ε > J − n satisfying T (xγ) = 0 for

|γ| ≤ r1 and T ∗(xγ) = 0 for |γ| < r2, is bounded on As(Es′
pq)

σ
x0

if r1 and r2 satisfy (4.1) and (4.2) as
in Theorem 4.2 respectively.

(ii) The Calderón–Zygmund operator T with an exponent ε > J − n+ σ satisfying T (xγ) = 0 for
|γ| ≤ r1 and T ∗(xγ) = 0 for |γ| < r2, is bounded on As(Ẽs′

pq)
σ
x0

if r1 and r2 satisfy (4.1)’ and (4.2)’ as
in Theorem 4.2 respectively.

Proof. The proof is similar to ones of [12].
(i) We may assume σ ≥ 0 by Remark 1. Let f ∈ As(Es′

pq)
σ
x0
. Then we consider a wavelet

expansion f =
∑

k ckψ0,k +
∑

l(Q)≤1 c(Q)ψQ : (ck), (c(Q)) ∈ as(es′pq)σx0 from Theorem 4.3. We may
suppose that smooth wavelets {ψ0 ψ} are compactly supported by Remark 7 (1). Then there exists
a positive constant c such that supp ψ0,k ⊂ cQ0,k where Q0,k = [0, 1)n + k and supp ψQ ⊂ cQ for
every dyadic cube Q with l(Q) = 2−l ≤ 1.

We claim that Tf =
∑

k ck(Tψ0,k) +
∑

l(Q)≤1 c(Q)(TψQ) ≡
∑

k ckmk +
∑

l(Q)≤1 c(Q)mQ is conver-
gent in S ′ and ||Tf ||As(Es′pq)σx0 ≤ C||f ||As(Es′pq)σx0 .

More precisely , we will show that mk and mQ satisfy following properties:
(8.1) |mk(x)| ≤ C(1 + l(Q)−1|x− xk|)−L with L > J ,
(8.2) |mQ(x)| ≤ C(1 + l(Q)−1|x− xQ|)−(n+r2+ε),
(8.3) |∂γmQ(x)| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−(n+ε) for 0 < |γ| ≤ r1, and
(8.4)

∫
Rn x

γmQ(x)dx = 0 for |γ| < r2.
From the assumption T ∗xγ = 0 for |γ| < r2 we have

∫
Rn x

γmQ(x)dx = 0 for |γ| < r2, that is,
(8.4) holds.

We choose a suitable large constant C0. From Fraizer–Torres–Weiss [12: Corollary 2.14], when
|x− xQ| < 2C02

−l, we have

|mk(x)| ≤ ||mk||∞ ≤ C
∑
|β|≤1

||∂βψ0,k||∞ ≤ C ≤ C(1 + |x− xk|)−L

and
|∂γmQ(x)| ≤ ||∂γmQ||∞ ≤ C

∑
|α|≤|γ|+1

2l(|γ|−|α|)2l|α|||∂αψQ||∞
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≤ C2l|γ| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−L

for any L ≥ 0 and |γ| ≤ r1. When |x−xQ| ≥ 2C02
−l, using (7.1) and (7.2) in Definition 8, we obtain

|mk(x)| = |
∫
Rn
K(x, y)ψ0,k(y)dy| ≤ C

∫
Rn
|K(x, y)||ψ0,k(y)|dy

≤ C

∫
|y−xk|≤C0

|x− y|−n(1 + |y − xk|)−Ldy ≤ C(1 + |x− xk|)−(L+n).

Moreover, using (7.3) in Definition 8 for 0 < |γ| ≤ r1, we have

|∂γmQ(x)| ≤ C

∫
|y−xQ|≤C02−l

|∂γ1K(x, y)− ∂γ1K(x, xQ)||ψQ(y)|dy

≤ C

∫
|y−xQ|≤C02−l

|y − xQ|ε|x− xQ|−(n+|γ|+ε)dy

≤ C2−l(n+ε)|x− xQ|−(n+|γ|+ε) ≤ C2l|γ|(1 + 2l|x− xQ|)−(n+ε).

Therefore, we obtain (8.1), (8,2) and (8.3). Hence by Lemma 3.3, Tf =
∑

k ckmk +
∑

Q c(Q)mQ is
convergent in S ′ from (8.1), (8.2), (8.3) and (8.4). For the wavelet expansion

mk =
∑
k

〈mk , ψ0,k〉ψ0,k +
∑
P

l(P )−n〈mk , ψP 〉ψP ,

mQ =
∑
k

〈mQ , ψ0,k〉ψ0,k +
∑
P

l(P )−n〈mQ , ψP 〉ψP ,

we have

Tf =
∑
k

ckmk +
∑
l(Q)≤1

c(Q)mQ =

∑
k

((B1ck) + (B2ck))ψ0,k +
∑
l(P )≤1

((A1c) + (A2c))(P )ψP

where B1 = {〈mk , ψ0,k′〉}k′k, B2 = {〈mQ , ψ0,k′〉}k′Q,
A1 = {l(P )−n〈mk , ψP 〉}Pk, A2 = {l(P )−n〈mQ , ψP 〉}PQ. By Lemma 3.1, Lemma 3.2, (8.1), (8,2),
(8,3) and (8.4) the operators B1, B2, A1, A2 are bounded on as(es′pq)σx0 if r1 and r2 satisfy (4.1) and
(4.2) respectively. By Remark 7 (2), it follows that

||Tf ||As(Es′pq)σx0 ∼ ||(B1ck +B2ck)||as(es′pq)σx0 + ||(A1c+ A2c)||as(es′pq)σx0
≤ C(||ck||as(es′pq)σx0 + ||c||as(es′pq)σx0 ) ∼ C||f ||As(Es′pq)σx0 .

Similarly, we obtain (ii).

Definition 9. Let µ ∈ R. A smooth function a defined on Rn × Rn is said to belong to the class
Sµ1,1(Rn) if a satisfies the following differential inequalities that for all α, β ∈ Nn

0 ,

sup
x,ξ

(1 + |ξ|)−µ−|α|+|β||∂αx∂
β
ξ a(x, ξ)| <∞.

a(x,D) is the corresponding pseudo-differential operator such that

a(x,D)f(x) =

∫
Rn
eixξa(x, ξ)f̂(ξ) dξ
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for f ∈ S.

Theorem 5.2. Let s, s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞. Let µ ∈ R, J as in Lemma 3.1 and
a ∈ Sµ1,1(Rn).

(i) a(x,D) is a continuous linear mapping from As(Es′
pq)

σ
x0

to As(Es′−µ
pq )σx0 if s′ > J − n + µ or

a(x, ξ) = a(ξ).
(ii) a(x,D) is a continuous linear mapping from As(Ẽs′

pq)
σ
x0

to As(Ẽs′−µ
pq )σx0 if s

′ > J−n+µ+σ∧0
or a(x, ξ) = a(ξ).

Proof. (i) We may assume σ ≥ 0 by Remark 1. We write T ≡ a(x,D). Let f ∈ As(Es′
pq)

σ
x0
. By

Theorem 4.1, we consider the ϕ-transform f =
∑

P c(P )φP where c(P ) = c(f)(P ) = l(P )−n〈f, ϕP 〉
and φP , ϕP as in Remark 2. Then we see (c(P )) ∈ as(es′pq)σx0 . We write that Tf =

∑
P c(P )mP where

mP = TφP . We see for a dyadic cube P with l(P ) = 2−j

mP =

∫
eixξa(x, ξ)φ̂P (ξ) dξ.

Then we have, using a change of variables,

mP (x) =

∫
ei(x−xP )(2

jξ)a(x, 2jξ)φ̂(ξ) dξ.

By the fact that (1 −4ξ)
L(eixξ) = (1 + |x|2)Leixξ for the Laplacian 4 and using an integration by

parts, we obtain for γ ∈ Nn
0 and l(P ) < 1,

∂γxmP (x)

=

∫
(1−4ξ)

L(ei2
j(x−xP )ξ)(1 + (2j|x− xP |)2)−L ×∑

δ≤γ

(2jiξ)δ∂γ−δx a(x, 2jξ)φ̂(ξ) dξ

= C(1 + (2j|x− xP |)2)−L
∫
ei2

j(x−xP )ξ(1−4ξ)
L ×∑

δ≤γ

(2jiξ)δ∂γ−δx a(x, 2jξ)φ̂(ξ) dξ.

Thus, we have

|∂γxmP (x)|

≤ C(1 + 2j|x− xP |)−2L
∫ ∑

δ≤γ

∑
|α+β+τ |≤2L,α≤δ

×

2j|δ|2j|β||∂αξ (ξ)δ||∂βξ ∂
γ−δ
x a(x, 2jξ)||∂τξ φ̂(ξ)| dξ

≤ C(1 + 2j|x− xP |)−2L
∫ ∑

δ≤γ

∑
|α+β+τ |≤2L,α≤δ

×

2j|δ|2j|β||ξ||δ|−|α|(1 + 2j|ξ|)µ+|γ|−|δ|−|β||∂τξ φ̂(ξ)| dξ
≤ C2jµ2j|γ|(1 + 2j|x− xP |)−2L
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and similarly, for P with l(P ) = 1,

|∂γxmP (x)|
≤ C(1 + |x− xP |)−2L ×∫ ∑

|α+β+τ |≤2L

(1 + |ξ|)µ+|γ|−|α|−|β||∂τξ φ̂0(ξ)| dξ

≤ C(1 + |x− xP |)−2L.

Hence, mP (x) satisfies

|2−jµ∂γmP (x)| ≤ C2j|γ|(1 + 2j|x− xP |)−2L

for P with l(P ) ≤ 1, any γ ∈ N0 and any L ≥ 0. We choose a suitable large L. For the ϕ– transform

2−jµmP =
∑
l(R)≤1

l(R)−n〈2−jµmP , ϕR〉φR,

we have
Tf =

∑
l(P )≤1

2jµc(P )(2−jµmP ) =
∑
l(R)≤1

A(2jµc)(R)φR,

where A = {l(R)−n〈2−jµmP , ϕR〉}RP . From Lemma 3.1 and Lemma 3.2, A is bounded on as(es′−µpq )σx0
if s′ > J − n+µ or a(x, ξ) = a(ξ). We remark that in the case s′ > J − n+µ, we do not assume the
vanishing moment condition for mP . But in the case a(x, ξ) = a(ξ), we have the vanishing moment
condition formP , indeed, for any P with l(P ) < 1,

∫
xγmP (x) dx = C∂γm̂P (0) = C∂γ(φ̂P )·a)(0) = 0

for any γ ∈ N0. From (a) and (b) in the proof of Theorem 4.1, it follows that

||Tf ||
As(Es

′−µ
pq )σx0

≤ C||A(2jµc)||
as(es

′−µ
pq )σx0

≤ C||2jµc||
as(es

′−µ
pq )σx0

≤ C||c||as(es′pq)σx0 ≤ C||f ||As(Es′pq)σx0 .

(ii) Similarly, we can prove for this case.

Corollary . Let s, s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞.
(i) Let µ ∈ R. Then the Bessel potential (1−4)µ/2 is a continuous isomorphisms from As(Es′

pq)
σ
x0

onto As(Es′−µ
pq )σx0, and from As(Ẽs′

pq)
σ
x0

onto As(Ẽs′−µ
pq )σx0.

(ii) Let γ ∈ Nn
0 . Then the differential operator ∂γ is continuous from As(Es′

pq)
σ
x0

to As(Es′−|γ|
pq )σx0,

and from As(Ẽs′
pq)

σ
x0

to As(Ẽs′−|γ|
pq )σx0.

Proof. These are immediate corollaries of Theorem 5.2. To finish the proof of (i) we need to show
the mapping is surjective and one to one. For h ∈ As(Es′−µ

pq )σx0 , we set f = (1 − 4)−µ/2h. Then
h = (1−4)µ/2f .

6 Characterizations via differences and oscillations

Definition 10. Let k ∈ N0. We define the differences of functions

41
uf(x) = f(x+ u)− f(x) and 4k+1 = 414k.

We set
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dki f(y) = 1
|Bi(y)|

∫
k|u|≤2−i |4

k
uf(y)| du

where Bi(x) is the ball with a center x and a radius 2−i, and |Bi(x)| means its volume. It is obvious
that |dki f(y)| ≤ C supk|u|≤2−i |4k

uf(y)|.
We define the oscillation of locally Lp integrable functions f (0 < p ≤ ∞) by

osckpf(x, i) = inf(
1

|Bi(x)|

∫
Bi(x)

|f(y)− P (y)|p dy)1/p

with the suitable modification for p =∞, where the infimum is taken over all polynomials P (x) ∈ Pk,
the space of all polynomials with deg ≤ k on Rn. By PBf for a ball B we denote the unique
polynomial in Pk such that

∫
B

(f(x)−PBf(x))xα dx = 0 for all |α| ≤ k. We see that ||PBf ||L∞(B) ≤
1
|B|

∫
B
|f(x)| dx and PBf = f for f ∈ Pk. We put

Ωk
pf(x, i) = (

1

|Bi(x)|

∫
Bi(x)

|f(y)− PBi(x)f(y)|p dy)1/p.

Then we see osckpf(x, i) ∼ Ωk
pf(x, i) if 1 ≤ p ≤ ∞ (cf. [19]).

Lemma 6.1. (i) Let s ∈ R, σ ≥ 0 and let k ∈ N, k > s′ > 0, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and let f
be locally Lp integrable.

Then we have

sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

(
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(
∑

i≥(− log2 l(P ))∨0

(2is
′||osck−1p f(x, i)||Lp(P ))

q)1/q,

and

sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

(
∑

i≥(− log2 l(P ))∨0

(2is
′ ||osck−1p f(x, i)||Lp(P ))

q)1/q

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(||f ||Lp(P ) + (
∑

i≥(− log2 l(P ))∨0

(2is
′ ||dki f ||Lp(P ))

q)1/q).

(ii) Let s ∈ R, σ ≥ 0 and let k ∈ N, k > s′ > 0, 1 ≤ p <∞, 0 < q ≤ ∞ and let f be locally
Lp integrable . Then we have
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sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

||(
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

|4k
uf |)q)1/q||Lp(P )

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

||(
∑

i≥(− log2 l(P ))∨0

(2is
′
osck−1p f(x, i))q)1/q||Lp(P ),

and

sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

||(
∑

i≥(− log2 l(P ))∨0

(2is
′
osck−1p f(x, i))q)1/q||Lp(P )

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(||f ||Lp(P ) + ||(
∑

i≥(− log2 l(P ))∨0

(2is
′
dki f)q)1/q)||Lp(P ).

Proof. We will see that for k|u| ≤ 2−i,

|4k
uf(x)| ≤ C(

∑k
e=0 |f(x+ eu)− PBi(x+eu)f(x+ eu)|)

≤ C
∑k

e=0

∑
l≥i Ω

k−1
p f(x+ eu, l).

We consider a sequence for i < · · · < m→∞,

Bi(x+ eu) ⊃ · · · ⊃ Bm(x+ eu) ⊃ · · · → x+ eu.

Then we have
1

|Bm|

∫
Bm

|f − PBif | dy ≤
1

|Bm|

∫
Bm

|f − PBmf | dy

+
1

|Bm|

m∑
l=i+1

∫
Bm

|PBlf − PBl−1
f | dy

≤ 1

|Bm|

∫
Bm

|f − PBmf | dy + C
m∑

l=i+1

1

|Bl|

∫
Bl

|f − PBl−1
f | dy

≤ 1

|Bm|

∫
Bm

|f − PBmf | dy + C

m∑
l=i

1

|Bl|

∫
Bl

|f − PBlf | dy.

Hence, we have

|f(x+ eu)− PBi(x+ eu)| = lim
m→∞

1

|Bm|

∫
Bm

|f − PBif | dy

≤ lim
m→∞

1

|Bm|

∫
Bm

|f − PBmf | dy + C

∞∑
l=i

1

|Bl|

∫
Bl

|f − PBlf | dy

≤ C

∞∑
l=i

Ωk−1
p f(x+ eu, l).
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Therefore, we have for a dyadic cube P with l(P ) = 2−j,

(
∑
i≥j∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C(
∑
i≥j∨0

(2is
′∑
l≥i

||Ωk−1
p f(x, l)||Lp(3P ))

q)1/q

≤ C(
∑
i≥j∨0

(2is
′ ||Ωk−1

p f(x, i)||Lp(3P ))
q)1/q

≤ C(
∑
i≥j∨0

(2is
′ ||osck−1p f(x, i)||Lp(3P ))

q)1/q

≤ C(|x0 − xP |+ 2−j)σ2−js sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(
∑
i≥j∨0

(2is
′||osck−1p f(x, i)||Lp(P ))

q)1/q

by using Hardy’s inequality if s′ > 0. This completes the proof of the first half of (i).
Next, we will prove the last half of (i).
We consider a function θ ∈ S such that supp θ ⊂ {k|u| ≤ 1} and

∫
θ(u) du = 1. We put

hi(x) =

∫
(f(x)−4k

uf(x))θi(u) du

where θi(u) = 2niθ(2iu). We claim that

osck−1p f(x, i) ≤ C( 1
|Bi(x)|

∫
Bi(x)
|dki f(y)|p dy)1/p + Cosck−1p hi(x, i).

We see that

osck−1p f(x, i) ∼ Ωk−1
p f(x, i) =

(
1

|Bi(x)|

∫
Bi(x)

|f(y)− PBi(x)f(y)|p dy)1/p

≤ (
1

|Bi(x)|

∫
Bi(x)

|f(y)− hi(y)|p dy)1/p

+ (
1

|Bi(x)|

∫
Bi(x)

|hi(y)− PBi(x)hi(y)|p dy)1/p

+ (
1

|Bi(x)|

∫
Bi(x)

|PBi(x)hi(y)− PBi(x)f(y)|p dy)1/p

≤ C(
1

|Bi(x)|

∫
Bi(x)

|f(y)− hi(y)|p dy)1/p

+ C(
1

|Bi(x)|

∫
Bi(x)

|hi(y)− PBi(x)hi(y)|p dy)1/p

≤ C(
1

|Bi(x)|

∫
Bi(x)

(

∫
k|u|≤2−i

|4k
uf(y)||θi(u)| du)p dy)1/p

+CΩk−1
p hi(x, i)

≤ C(
1

|Bi(x)|

∫
Bi(x)

|dki f(y)|p dy)1/p + Cosck−1p hi(x, i).
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Next, we will estimate osck−1p hi(x, i). We consider the (k − 1)th Taylor polynomial q(x) of hi at x.
Then we have

hi(y)− q(y)

=

∫ 1

0

∑
|β|=k

k

β!
∂βhi(x+ t(y − x))(x− y)β(1− t)k−1 dt

=

∫ 1

0

∑
|β|=k

k

β!

∫ k∑
m=1

(
k
m

)
(−1)k−m∂βf(x+ t(y − x) +mu)×

θl(u) du(x− y)β(1− t)k−1 dt

=

∫ 1

0

∑
|β|=k

k

β!

∫ k∑
m=1

(
k
m

)
(−1)k−mmkf(x+ t(y − x) +m2−iu)×

∂βθ(u) du(x− y)β(1− t)k−1 dt.

Hence, we see by using Minkowski’s inequality

||osck−1p hi(x, i)||Lp(P ) ≤ ||(
1

|Bi(x)|

∫
Bi(x)

|hi(y)− q(y)|p dy)1/p||Lp(P )

≤ C(

∫
P

1

|Bi(x)|

∫
Bi(x)

(

∫ 1

0

∫
k|u|≤1

k∑
m=1

|f(x+ t(y − x) +m2−iu)| ×

|∂βθ(u)|du|x− y|k(1− t)k−1 dt)p dydx)1/p

≤ C

∫ 1

0

∫
k|u|≤1

k∑
m=1

(
1

|Bi(x)|

∫
Bi(0)

∫
P

|f(x+ ty +m2−iu)|p dxdy)1/p×

2−ik(1− t)k−1 dudt

≤ C

∫ 1

0

∫
k|u|≤1

k∑
m=1

(
1

|Bi(x)|

∫
Bi(0)

∫
P+ty+m2−iu

|f(x)|p dxdy)1/p×

2−ik(1− t)k−1 dudt

≤ C2−ik(

∫
5P

|f(x)|p dx)1/p ≤ C2−ik||f ||Lp(5P ).

Moreover, we have

||( 1

|Bi(x)|

∫
Bi(x)

|dki f(y)|p dy)1/p||Lp(P )

≤ C(

∫
P

(
1

|Bi(x)|

∫
Bi(0)

|dki f(x+ y)|p dydx)1/p

≤ C(
1

|Bi(x)|

∫
Bi(0)

∫
P+y

|dki f(x)|p dxdy)1/p

≤ C(

∫
3P

|dki f(x)|p dx)1/p ≤ C||dki f ||Lp(3P ).

Thus, we have for a dyadic cube P with l(P ) = 2−j

(
∑
i≥j∨0

(2is
′ ||osck−1p f(x, i)||Lp(P ))

q)1/q
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≤ C(
∑
i≥j∨0

(2is
′||dki f ||Lp(3P ))

q)1/q + C(
∑
i≥j∨0

2−i(k−s
′)q)1/q||f ||Lp(5P )

≤ C(
∑
i≥j∨0

(2is
′ ||dki f ||Lp(3P ))

q)1/q + C||f ||Lp(5P )

≤ C(|x0 − xP |+ 2−j)σ2−js sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s(
∑
i≥j∨0

(2is
′ ||dki f ||Lp(P ))

q)1/q

+C(|x0 − xP |+ 2−j)σ2−js sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s||f ||Lp(P )

if k > s′. The proof of (i) is complete. In the same way we can prove (ii).
Theorem 6.1. (i) Let s′, s, σ ∈ R with 0 < s′, 0 ≤ σ, and let x0 ∈ Rn, 1 ≤ p ≤ ∞, 0 < q ≤ ∞.
Let k ∈ N with k > s′ > 0. Then we have following equivalences for f ∈ S ′

||f ||As(Bs′pq)σx0 + sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ (
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q)

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ (
∑

i≥(− log2 l(P ))∨0

(2is
′||osck−1p f ||Lp(P ))

q)1/q)

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ (
∑

i≥(− log2 l(P ))∨0

(2is
′||dki f ||Lp(P ))

q)1/q).

(ii) Let s, s′, σ ∈ R with 0 < s′, 0 ≤ σ, x0 ∈ Rn, 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Let k ∈ N with
k > s′ > 0. Then we have following equivalences for f ∈ S ′

||f ||As(F s′pq)σx0 + sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ ||(
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

|4k
uf |)q)1/q||Lp(P ))

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ ||(
∑

i≥(− log2 l(P ))∨0

(2is
′
osck−1p f)q)1/q||Lp(P ))

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ ||(
∑

i≥(− log2 l(P ))∨0

(2is
′
dki f)q)1/q||Lp(P )).
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Proof. (i) It suffices to prove the first part of (i) by Lemma 6.1. We consider the Littlewood-Paley
decomposition f = Sif +

∑
l>i f ∗ φl. Then we have for k|u| ≤ 2−i and a dyadic cube P with

l(P ) = 2−j , i ≥ j

||4k
uf ||Lp(P ) ≤ ||4k

u(f − Sif)||Lp(P ) + ||4k
uSif ||Lp(P )

≤ C
∑
l>i

||4k
u(f ∗ φl)||Lp(P ) + C||4k

uSif ||Lp(P ).

We will estimate ||4k
uSif ||Lp(P ). Note the following formula

4k
uSif(x) =

∫ ∞
−∞

∑
|ν|=k

k!

ν!
uν∂νSif(x+ ξu)Nk(ξ) dξ

where Nk is the B-spline of order k (e.g. See [27]). Therefor we have for k|u| ≤ 2−i

||4k
uSif ||Lp(P ) ≤ C

∑
|ν|=k |u|k||∂νSif ||Lp(2P ).

Next, we will estimate ||∂νSif ||Lp(2P ):

||∂νSif ||Lp(2P ) = ||
∫
f(x− 2−iy) ∂νφ0(y) dy||Lp(2P )

≤ C

∫
(

∫
2P+2−iy

|f(x)|p dx)1/p|∂νφ0(y)| dy

≤ C2−js
∫

(|x0 − xP |+ 2−j(1 + |y|))σ|∂νφ0(y)| dy

× sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

≤ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

Hence, we have

||4k
uf ||Lp(P )

≤ C
∑
l>i

||4k
u(f ∗ φl)||Lp(P )

+C(|x0 − xP |+ 2−j)σ2−js2−ik sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

Moreover, we obtain by using Hardy’s inequality if s′ > 0

(
∑
i≥j∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C(
∑
i≥j∨0

(2is
′∑
l>i

||4k
u(f ∗ φl)||Lp(P ))

q)1/q

+ C(
∑
i≥j∨0

(2−i(k−s
′)(|x0 − xP |+ 2−j)σ2−js

× sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ))
q)1/q

≤ C(
∑
i>j∨0

(2is
′ ||4k

u(f ∗ φi)||Lp(P ))
q)1/q

+ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).
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This implies that

sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i≥j∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i>j∨0

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q

+ C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

≤ C||f ||As(Bs′pq)σx0 + C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

We will show the converse statement. It is easy to see that there exist φm ∈ S m = 1, · · ·n such
that φ =

∑n
m=14k

cemφ
m for enough small c where e1, · · · , en are the canonical basis vectors in Rn.

Then we have for i ∈ N

f ∗ φi =
n∑

m=1

f ∗ 4k
c2−iem

φmi =
n∑

m=1

4k
c2−iem

f ∗ φmi .

Therefore, we have for a dyadic cube P with l(P ) = 2−j and i ≥ j

||f ∗ φi||Lp(P )

≤ C||
n∑

m=1

4k
c2−iem

f ∗ φmi ||Lp(P )

≤ C

∫ n∑
m=1

(

∫
P+2−iy

|4k
c2−iem

f(x)|p dx)1/p|φm(y)| dy

≤ C

∫ n∑
m=1

(

∫
P+2−iy

sup
k|u|≤2−i

|4k
uf(x)|p dx)1/p|φm(y)| dy.

Hence, we have if l(P ) < 1

(
∑
i≥j

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q

≤ C(|x0 − xP |+ 2−j)σ2−js ×
sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i≥j

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

and if l(P ) ≥ 1

(
∑
i≥0

(2is
′||f ∗ φi||Lp(P ))

q)1/q

≤ (
∑
i>0

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q + ||f ∗ φ0||Lp(P )

≤ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s ×

(
∑
i>0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

+ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).
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Thus, we have

sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i≥0

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q

≤ C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s ×

(
∑
i≥0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

+ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

This completes the proof of Theorem 6.1 (i). In the same way we can prove (ii).
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[14] H.F. Gonçalves, H. Kempka, Non-smooth atomic decomposition of 2-microlocal spaces and application to point-
wise multipliers, J. Math. Anal. Appl., 434 (2016), 1875-1890.
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[16] H.F. Gonçalves, H. Kempka, J. Vybiral, Franke-Jawerth embeddings for Besov and Triebel-Lizorkin spaces with
variable exponents, Ann. Acad. Sci. Fenn. Math., 43 (2018), 187-209.

[17] S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Pub. Mat., 35 (1991), 155-168.

[18] S. Jaffard, Pointwise regularity criteria, C. R. Acad. Sci. Paris, 1339 (2004), 757-762.

[19] S. Jaffard, Wavelet techniques for pointwise regularity, Annal. Fac. Sci. Toulouse, 15 (2006), 3-33.

[20] S. Jaffard, Pointwise regularity associated with function spaces and multifractal analysis, Approximation and
Probability, Banach Center Publications, vol. 72, Institute of Mathematics, Polish Academy of Sciences,
Warszawa, (2006), 93-110.
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[26] H. Kempka, M. Schäfer, T. Ullrich, General coorbit space theory for quasi-Banach spaces and inhomogeneous
function spaces with variable smoothness and integrability, J. Fourier. Anal. Appl., 23 (2017), no 6, 1348-1407.

[27] D.-G. Kim, Littlewood-Paley type estimates for Besov spaces on a cube by wavelet coefficients, J. Korean Math.
Soc., 36 (1999), no 6, 1075-1090.

[28] Y. Komori-Furuya, K. Matsuoka, E. Nakai, Y. Sawano, Applications of Littlewood–Paley theory for Ḃσ- Morrey
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