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with monotonous Hammerstein-Volterra integral operators. In specific cases of matrix kernels and
nonlinearities the specified systems have applications in various fields of mathematical physics and
mathematical biology. Firstly, a quasilinear system of integral equations on the whole axis with
monotonous nonlinearity will be investigated, and a constructive theorem of existence of a one-
parameter family of componentwise nonnegative (nontrivial) bounded solutions will be proved. Then,
the asymptotic behaviour of the constructed solutions will be studied at −∞. Then, using the
obtained results, a system of integral equations with two nonlinearities with different characteristics
will be investigated. Under certain limitations on the first nonlinearity we will prove the existence
of componentwise nonnegative and bounded solution for such systems. In addition, the limit of the
constructed solution at −∞ will be calculated, and the asymptotics of the difference between the
limit and the solution will be established. At the end of this paper specific examples of matrix kernels
and nonlinearities will be given for the illustration of the obtained results.
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1 Introduction

In the present paper we study the following quasilinear and essentially nonlinear integral equations
with monotonous Hammerstein-Volterra operator on the whole axis R := (−∞,+∞):

fi(x) =
n∑
j=1

x∫
−∞

Kij(x, t){fj(t) + ωij(t, fj(t))}dt, i = 1, 2, ..., n, x ∈ R, (1.1)

ϕi(x) =
n∑
j=1

x∫
−∞

Kij(x, t){Gj(ϕj(t)) + ωij(t, ϕj(t))}dt, i = 1, 2, ..., n, x ∈ R, (1.2)

with respect to the unknown measurable on R vector-functions f(x) = (f1(x), ..., fn(x))T and ϕ(x) =
(ϕ1(x), ..., ϕn(x))T respectively (T is the sign of transposition). In systems (1.1) and (1.2) the matrix
kernel K(x, t) = (Kij(x, t))

n×n
i,j=1 satisfies the following conditions:

a) Kij(x, t) > 0, (x, t) ∈ R2 := R× R, Kij ∈ L∞(R2), i, j = 1, 2, ..., n, where L∞(R2) is the space
of all essentially bounded functions on the set R2,
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b) there exists a symmetric matrix A = (aij)
n×n
i,j=1 with positive elements aij and with a unit

spectral radius such that

b1)
γij(x) :=aij −

x∫
−∞

Kij(x, t)dt ≥ 0, γij(x) 6≡ 0, x ∈ R,

lim
x→−∞

γij(x) = 0, i, j = 1, 2, ..., n,

b2)
∞∫
t

Kij(x, t)dx ≤ aij, t ∈ R, i, j = 1, 2, ..., n,

b3) 0∫
−∞

(−x)γij(x)dx < +∞, i, j = 1, 2, ..., n,

c) there exists a number δ0 > 0 such that

εij := inf
x∈(−∞,0]

∞∫
δ0

Kij(x+ y, x)dy > 0, i, j = 1, 2, ..., n.

From the properties of the matrix A, by Perron’s theorem (see [12]), follows the existence of a vector
η = (η1, ..., ηn)T with positive coordinates ηi, i = 1, 2, ..., n, such that

Aη = η. (1.3)

The nonlinearities {Gj(u)}nj=1 and {ωij(t, u)}n×ni,j=1 satisfy the following conditions:

I) Gj ∈ C[0,+∞), Gj(u) is a concave function on the set [0,+∞), Gj(0) = 0, j = 1, 2, ..., n,

II) Gj(u) are increasing with respect to u on the set [0,+∞), j = 1, 2, ..., n,

III) there exists a number α > 0, such that Gj(η
∗
j ) = η∗j , Gj(u) ≥ u, u ∈ [0, η∗j ], where η∗j = αηj,

j = 1, 2, ..., n,

A) ωij(t, 0) ≡ 0, t ∈ R, i, j = 1, 2, ..., n,

B) for every fixed t ∈ R the functions ωij(t, u), i, j = 1, 2, ..., n monotonically increase with respect
to u on the set [0,+∞),

C) there exist functions
βij(t) := sup

u∈[0,+∞)

(ωij(t, u)) , i, j = 1, 2, ..., n,

such that βij(t), i, j = 1, 2, ..., n are monotone nondecreasing with respect to t on the set R and
satisfy the following inequality

n∑
j=1

βij(x) (aij − γij(x)) ≤
n∑
j=1

ηjγij(x), x ∈ R, i = 1, 2, ..., n, (1.4)
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D) {ωij(t, u)}n×ni,j=1 satisfy the Caratheodory condition with respect to the argument u on the set
R× [0,+∞), i.e. for every fixed u ∈ [0,+∞) the functions {ωij(t, u)}n×ni,j=1 are measurable with
respect to t on R and for almost every t ∈ R these functions are continuous with respect to u
on the set [0,+∞).

The study of systems of nonlinear integral equations (1.1) and (1.2), besides purely mathematical
interest, has also an important interest in different applied problems of mathematical physics and
mathematical biology. In particular, for specific representations of matrix kernels {Kij(x, t)}n×ni,j=1

and nonlinearities {Gj(u)}nj=1 and {ωij(t, u)}n×ni,j=1 such systems of nonlinear integral equations can
be found in the kinetic theory of gases, radiative transfer theory, Markovian processes and in the
mathematical theory of space-time epidemic spread (see [1]-[5], [10], [13], [14]).

In the case, when the kernels {Kij(x, t)}n×ni,j=1 depend on the difference of their arguments and
satisfy the supercritical condition (the spectral radius of the matrix A is greater than one) with
particular restrictions on the functions {ωij(t, u)}n×ni,j=1 system (1.1) on (−∞, 0] (and the corresponding
system of nonlinear integral equations on [0,+∞), whose right-hand-side integrals have limits from
x ≥ 0 to +∞) is studied in sufficient detail in the work [9]. In the present paper a one-parameter
family of positive summable and bounded on (−∞, 0] (on [0,+∞)) solutions is constructed and the
set of the corresponding parameters is described.

It should also be noted that in the case when Kij(x, t) = Kij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n
the corresponding systems of convolution type nonlinear integral equations (NIE) (i.e. when the
integral in the right-hand sides of (1.1) and (1.2) has the limits from −∞ to +∞) were studied in
the works [6]-[8].

In the present paper under conditions a)−c), I) - III) and A) - D) we will deal with the problems of
existence of nonnegative (nontrivial) and bounded solutions of systems of nonlinear integral equations
(1.1) and (1.2) and also will study the asymptotic behaviour of the constructed solutions on −∞.
Firstly, a constructive theorem of existence of a one-parameter family of componentwise nonnegative
(nontrivial) and bounded solutions, which have finite limit values in −∞ will be proved. Then, we
will prove the integrability on the set (−∞, 0] of the difference between the limit (at −∞) and the
constructed solution for every value of the corresponding parameter on the set (0,+∞) (see Theorem
2.1). Owner furthermore, by using these results, we will construct componentwise nonnegative and
bounded on R solution ϕ(x) = (ϕ1(x), ..., ϕn(x))T of system of nonlinear integral equations (1.2).
Additionally, we will prove the existence of

lim
x→−∞

ϕj(x) = η∗j

and that η∗j−ϕj ∈ L1(−∞, 0), j = 1, 2, ..., n (see Theorem 3.1). At the end of the work we will provide
specific examples of matrix kernels {Kij(x, t)}n×ni,j=1 and nonlinearities {Gj(u)}nj=1, {ωij(t, u)}n×ni,j=1 that
satisfy all the conditions of the proved theorem. Note that a part of those examples have applied
character (they arise in specific problems of mathematical physics and biology).

2 One parameter family of solutions for system (1.1)

In the current section we will prove the following result for system of NIE (1.1):

Theorem 2.1. Under conditions a) - c) and A) - D) system of NIE (1.1) has a one-parameter
family of componentwise nonnegative (nontrivial) and bounded solutions fγ(x) = (fγ1 (x), ..., fγn (x))T ,
γ ∈ (0,+∞), such that

lim
x→−∞

fγj (x) = ηjγ

and ηjγ − fγj ∈ L1(−∞, 0), j = 1, 2, ..., n, where η is defined by (1.3).
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Proof. Firstly, let us consider the first auxiliary system of linear nonhomogeneous Volterra type
integral equations:

ψi(x) = gi(x) +
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt, i = 1, 2, ..., n, x ∈ R (2.1)

with respect to an unknown summable on R vector-function ψ(x) = (ψ1(x), ..., ψn(x))T , where the
vector-function g(x) = (g1(x), ..., gn(x))T has the following structure:

gi(x) =
n∑
j=1

βij(x) (aij − γij(x)) , i = 1, 2, ..., n, x ∈ R. (2.2)

We introduce the following iterations for system (2.1):

ψ
(m+1)
i (x) = gi(x) +

n∑
j=1

x∫
−∞

Kij(x, t)ψ
(m)
j (t)dt,

ψ
(0)
i (x) = gi(x), x ∈ R, i = 1, 2, ..., n, m = 0, 1, ... .

(2.3)

By mathematical induction it is not hard to verify that

1) ψ(m)
i (x) are measurable on R, i = 1, 2, ..., n, m = 0, 1, 2, ...,

2) ψ(m)
i (x) ↑ with respect to m, i = 1, 2, ..., n, x ∈ R.

We will prove that

3) ψ(m)
i (x) ≤ ηi, m = 0, 1, 2, ..., i = 1, 2, ..., n, x ∈ R.

Indeed, estimate 3) for m = 0 directly follows from b1), (1.3) and (1.4):

ψ
(0)
i (x) = gi(x) ≤

n∑
j=1

ηjγij(x) ≤
n∑
j=1

aijηj = ηi, x ∈ R, i = 1, 2, ..., n.

Assume that 3) holds for some m ∈ N. Then, with consideration of b1), (1.3), (1.4), a) and (2.2)
from (2.3) we get

ψ
(m+1)
i (x) ≤

n∑
j=1

βij(x) (aij − γij(x)) +
n∑
j=1

ηj

x∫
−∞

Kij(x, t)dt ≤

≤
n∑
j=1

ηjγij(x) +
n∑
j=1

ηj (aij − γij(x)) =
n∑
j=1

aijηj = ηi, i = 1, 2, ..., n, x ∈ R.

Now we will prove that

4) ψ(m)
i ∈ L1(−∞, 0), i = 1, 2, ..., n, m = 0, 1, 2, ... .

Indeed, in the case when m = 0 inclusion 4) follows from the definition of gi(x), i = 1, 2, ..., n, with
consideration of (1.4), conditions b1) and b3). Let ψ

(m)
i ∈ L1(−∞, 0), i = 1, 2, ..., n for some natural
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m. Then, considering (1.4), a), b), c) and (2.2), from (2.3) for every δ < 0 by Fubini’s theorem (see
[11]) we have

0 ≤
0∫
δ

ψ
(m+1)
i (x)dx ≤

n∑
j=1

0∫
δ

ηjγij(x)dx+
n∑
j=1

0∫
δ

x∫
−∞

Kij(x, t)ψ
(m)
j (t)dtdx =

=
n∑
j=1

ηj

0∫
δ

γij(x)dx+
n∑
j=1

0∫
δ

δ∫
−∞

Kij(x, t)ψ
(m)
j (t)dtdx+

n∑
j=1

0∫
δ

x∫
δ

Kij(x, t)ψ
(m)
j (t)dtdx ≤

≤
n∑
j=1

ηj

0∫
−∞

γij(x)dx+
n∑
j=1

δ∫
−∞

ψ
(m)
j (t)

0∫
δ

Kij(x, t)dxdt+
n∑
j=1

0∫
δ

ψ
(m)
j (t)

0∫
t

Kij(x, t)dxdt ≤

≤
n∑
j=1

ηj

0∫
−∞

γij(x)dx+
n∑
j=1

aij

0∫
−∞

ψ
(m)
j (t)dt < +∞.

By passing to the limit as δ → −∞, we conclude that ψ(m+1)
i ∈ L1(−∞, 0). Now let t ≤ 0 be

an arbitrary number. We multiply both sides of (2.3) by ηi, i = 1, 2, ..., n and taking into account
conditions a), b), c), (1.4) and also the proven inclusions 1)-4), we integrate both sides of the obtained
equality by x ∈ (−∞, t], then we add the equations for i = 1, 2, ..., n. As a result we obtain

n∑
i=1

ηi

t∫
−∞

ψ
(m+1)
i (x)dx ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

x∫
−∞

Kij(x, y)ψ
(m+1)
j (y)dydx =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

0∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dτdx =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

0∫
−∞

t∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dxdτ =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

−δ0∫
−∞

t∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dxdτ+

+
n∑
i=1

ηi

n∑
j=1

0∫
−δ0

t∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dxdτ =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

−δ0∫
−∞

t+τ∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+
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+
n∑
i=1

ηi

n∑
j=1

0∫
−δ0

t+τ∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

−δ0∫
−∞

t−δ0∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+

+
n∑
i=1

ηi

n∑
j=1

0∫
−δ0

t∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

t−δ0∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+

+
n∑
i=1

ηi

n∑
j=1

−δ0∫
t−δ0

t−δ0∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+

+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

t−δ0∫
−∞

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

−δ0∫
t−δ0

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

−δ0∫
−∞

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

0∫
−∞

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

∞∫
z

Kij(y, z)dydz+
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+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

aij

t−δ0∫
−∞

ψ
(m+1)
j (z)dz+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)dz

n∑
i=1

ajiηi+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

ηj

t−δ0∫
−∞

ψ
(m+1)
j (z)dz+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz,

from which it follows that

n∑
j=1

ηj

t∫
t−δ0

ψ
(m+1)
j (z)dz ≤

n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz.

(2.4)

Observe that

aij −
z+δ0∫
z

Kij(y, z)dy ≥
∞∫
z

Kij(y, z)dy −
z+δ0∫
z

Kij(y, z)dy =

=

∞∫
z+δ0

Kij(y, z)dy =

∞∫
δ0

Kij(z + u, z)du ≥ εij for z ≤ 0, i, j = 1, 2, ..., n .

(2.5)
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Considering (2.4) and (2.5), we obtain

n∑
j=1

ηj

t∫
t−δ0

ψ
(m+1)
j (z)dz ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

(
n∑
i=1

ajiηi −
n∑
i=1

εijηi

)
dz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

ηj

t∫
t−δ0

ψ
(m+1)
j (z)dz −

n∑
i=1

n∑
j=1

εijηi

t∫
t−δ0

ψ
(m+1)
j (z)dz,

which is the same as

n∑
j=1

n∑
i=1

εijηi

t∫
t−δ0

ψ
(m+1)
j (z)dz ≤

n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx. (2.6)

Let p < 0 be an arbitrary number. We integrate both sides of (2.6) with respect to t from p to 0.
Then, according to b1), b3) and Fubini’s theorem from (2.6) we obtain

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
p

t∫
t−δ0

ψ
(m+1)
j (z)dzdt ≤

n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

t∫
−∞

γij(x)dxdt =

=
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞.

(2.7)

By passing to the limit as p→ −∞, we obtain

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−∞

t∫
t−δ0

ψ
(m+1)
j (z)dzdt ≤

n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx

or

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−∞

0∫
−δ0

ψ
(m+1)
j (t+ τ)dτdt ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞, m = 0, 1, 2, ... .

(2.8)

By changing the order of integration in (2.8), we have

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−δ0

0∫
−∞

ψ
(m+1)
j (t+ τ)dtdτ ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx, m = 0, 1, 2, ... ,
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from which it follows that

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−δ0

−δ0∫
−∞

ψ
(m+1)
j (y)dydτ ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx, m = 0, 1, 2, ...

or

0 ≤
n∑
j=1

n∑
i=1

εijηi

−δ0∫
−∞

ψ
(m+1)
j (y)dy ≤

≤ 1

δ0

n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx, m = 0, 1, 2, ... .

(2.9)

Due to 1)-3) we have

0 ≤
0∫

−δ0

ψ
(m+1)
j (y)dy ≤ ηjδ0, j = 1, 2, ..., n, m = 0, 1, 2, ... . (2.10)

We denote

µ := min
1≤j≤n

n∑
i=1

εijηi. (2.11)

Then, from (2.9), in particular, it follows that

0 ≤
−δ0∫
−∞

ψ
(m+1)
j (y)dy ≤ 1

µδ0
·

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx,

m = 0, 1, 2, ..., j = 1, 2, ..., n.

(2.12)

Therefore, inequalities (2.10) and (2.12) entail the following two-sided estimate

0 ≤
0∫

−∞

ψ
(m+1)
j (y)dy ≤ ( max

1≤j≤n
ηj)δ0 +

1

µδ0

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞,

j = 1, 2, ..., n, m = 0, 1, 2, ... .

(2.13)

From 1)-4) and (2.11) it follows that the sequence of measurable on R vector-functions ψ(m)(x) =(
ψ

(m)
1 (x), ..., ψ

(m)
n (x)

)T
, m = 0, 1, 2, ... has a pointwise limit when m→∞:

lim
m→∞

ψ(m)(x) = ψ(x),

additionally, the limit vector-function ψ(x) = (ψ1(x), ..., ψn(x))T according to B. Levi’s theorem (see
[11]) satisfies system (2.1). Once again using 1)-4) and (2.11), we can state that

gi(x) ≤ ψi(x) ≤ ηi, x ∈ R, i = 1, 2, ..., n, (2.14)
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0 ≤
0∫

−∞

ψj(x)dx ≤ ( max
1≤j≤n

ηj)δ0 +
1

µδ0

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞,

i = 1, 2, ... .

(2.15)

We now consider the second auxiliary linear nonhomogeneous system of integral equations on R:

ψ∗i (x) = g∗i (x) +
n∑
j=1

x∫
−∞

Kij(x, t)ψ
∗
j (t)dt, x ∈ R, i = 1, 2, ..., n (2.16)

with respect to the unknown vector function ψ∗(x) = (ψ∗1(x), ..., ψ∗n(x))T , where

g∗i (x) =
n∑
j=1

ηjγij(x), i = 1, 2, ..., n, x ∈ R. (2.17)

Repeating the same reasoning as for system (2.1), wherein taking ψi(x), i = 1, 2, ..., n as the zero ap-
proximation, we can prove that system of integral equations (2.16) has a componentwise nonnegative
and bounded solution ψ∗(x) = (ψ∗1(x), ..., ψ∗n(x))T , and, besides that

gi(x) ≤ ψi(x) ≤ ψ∗i (x) ≤ ηi, x ∈ R, i = 1, 2, ..., n, (2.18)

0 ≤
0∫

−∞

ψ∗j (x)dx ≤ ( max
1≤j≤n

ηj)δ0 +
1

µδ0

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞,

i = 1, 2, ... .

(2.19)

On the other hand, note that system of integral equations (2.16) also has a trivial solution η =
(η1, ..., ηn)T . Indeed, considering b1), (2.17) and (1.3), we obtain

g∗i (x) +
n∑
j=1

ηj

x∫
−∞

Kij(x, t)dt =
n∑
j=1

ηj(aij − γij(x)) +
n∑
j=1

ηjγij(x) =
n∑
j=1

aijηj = ηi,

i = 1, 2, ..., n.

From (2.18) and (2.19) it follows that ψ∗i (x) 6≡ ηi, x ∈ R, i = 1, 2, ..., n. Therefore,

Φi(x) := ηi − ψ∗i (x) ≥ 0, Φi(x) 6≡ 0, x ∈ R, i = 1, 2, ..., n

and also satisfies the homogeneous system of integral equations

Φi(x) =
n∑
j=1

x∫
−∞

Kij(x, t)Φj(t)dt, x ∈ R, i = 1, 2, ..., n. (2.20)

We now prove that there exists

lim
x→−∞

Φi(x) = ηi, i = 1, 2, ..., n.

Indeed, for negative values of x from (2.16) due to a) and b1) we conclude that

0 ≤ ψ∗i (x) ≤
n∑
j=1

ηjγij(x) +
n∑
j=1

sup
(x,t)∈R2

(Kij(x, t)) ·
x∫

−∞

ψ∗j (t)dt→ 0, when x→ −∞,
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from which we obtain that there exists lim
x→−∞

ψ∗i (x) = 0, i = 1, 2, ..., n. Therefore, there exists

lim
x→−∞

Φi(x) = ηi, i = 1, 2, ..., n. Since ψ∗i ∈ L1(−∞, 0), i = 1, 2, ..., n, hence ηi − Φi ∈ L1(−∞, 0),
i = 1, 2, ..., n.

Finally, we consider the following family of successive approximations for the system (1.1):

f
(m+1)
i,γ (x) =

n∑
j=1

x∫
−∞

Kij(x, t){f (m)
j,γ (t) + ωij(t, f

(m)
j,γ (t))}dt,

f
(0)
i,γ (x) = γΦi(x), m = 0, 1, 2, ..., i = 1, 2, ..., n, x ∈ R,

(2.21)

where γ ∈ (0,+∞) is an arbitrary parameter.
By using mathematical induction it is not hard to verify that for every γ ∈ (0,+∞)

Γ1) f
(m)
i,γ (x) are measurable on R, i = 1, 2, ..., n, m = 0, 1, 2, ..., (2.22)

Γ2) f
(m)
i,γ (x) ↑ with respect to m, i = 1, 2, ..., n, x ∈ R. (2.23)

We will now prove that

Γ3) f
(m)
i,γ (x) ≤ γΦi(x) + ψi(x), i = 1, 2, ..., n, x ∈ R. (2.24)

For m = 0 the given inequality directly follows from the definition of the zero approximation with
consideration of nonnegativity of the functions {ψi(x)}ni=1 on R. Assume that (2.24) holds for some
m ∈ N. Then, taking into account (2.1), (2.20) and A)-C), from (2.21) we get

f
(m+1)
i,γ (x) ≤

n∑
j=1

x∫
−∞

Kij(x, t){γΦj(t) + ψj(t) + ωij(t, γΦj(t) + ψj(t))}dt ≤

≤ γ

n∑
j=1

x∫
−∞

Kij(x, t)Φj(t)dt+
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt+
n∑
j=1

x∫
−∞

Kij(x, t)βij(t)dt ≤

≤ γΦi(x) +
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt+
n∑
j=1

βij(x)(aij − γij(x)) = γΦi(x) + ψi(x),

i = 1, 2, ..., n, x ∈ R.

Let us prove that

Γ4) If γ1, γ2 ∈ (0,+∞) are arbitrary parameters and γ1 > γ2, then

f
(m)
i,γ1

(x)− f (m)
i,γ2

(x) ≥ (γ1 − γ2)Φi(x), x ∈ R, i = 1, 2, ..., n, m = 0, 1, 2, ... (2.25)

Indeed, in the case of m = 0 inequalities (2.25) are transformed to equalities by the definition of the
zero approximation in iterations (2.21). Let (2.25) hold for some natural m. Then, from (2.21) due
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to conditions B) and (2.20) we will obtain

f
(m+1)
i,γ1

(x)− f (m+1)
i,γ2

(x) =

=
n∑
j=1

x∫
−∞

Kij(x, t){f (m)
j,γ1

(t)− f (m)
j,γ2

(t) + ωij(t, f
(m)
j,γ1

(t))− ωij(t, f (m)
j,γ2

(t))}dt ≥

≥ (γ1 − γ2)
n∑
j=1

x∫
−∞

Kij(x, t){Φj(t) + ωij(t, f
(m)
j,γ2

(t) + (γ1 − γ2)Φj(t))− ωij(t, f (m)
j,γ2

(t))}dt ≥

≥ (γ1 − γ2)
n∑
j=1

x∫
−∞

Kij(x, t)Φj(t)dt = (γ1 − γ2)Φi(x), i = 1, 2, ..., n, x ∈ R.

So, from Γ1) - Γ4) it follows that the sequence of measurable vector functions f
(m)
γ (x) =

(f
(m)
1,γ (x), ..., f

(m)
n,γ (x))T , m = 0, 1, 2, ..., for every γ ∈ (0,+∞) has a pointwise limit when m → ∞:

lim
m→∞

f
(m)
γ (x) = fγ(x) = (fγ1 (x), ..., fγn (x))T , moreover,

γΦj(x) ≤ fγj (x) ≤ γΦj(x) + ψj(x), j = 1, 2, ..., n, x ∈ R, (2.26)
fγ1j (x)− fγ2j (x) ≥ (γ1 − γ2)Φj(x), j = 1, 2, ..., n, x ∈ R, (2.27)

where γ1, γ2 ∈ (0,+∞), γ1 > γ2 are arbitrary parameters. Considering conditions D), b) according
to B. Levi’s theorem for every γ ∈ (0,+∞) the vector function fγ(x) = (fγ1 (x), ..., fγn (x))T satisfies
system of NIE (1.1).

Since lim
x→−∞

ψ∗i (x) = 0, i = 1, 2, ..., n, from (2.18) it follows that

lim
x→−∞

ψi(x) = 0, i = 1, 2, ..., n. (2.28)

From (2.15), (2.26) and (2.28) directly follows that

lim
x→−∞

{fγi (x)− γΦi(x)} = 0, i = 1, 2, ..., n, γ ∈ (0,+∞), (2.29)

0 ≤ fγi − γΦi ∈ L1(−∞, 0), i = 1, 2, ..., n, γ ∈ (0,+∞). (2.30)

Since lim
x→−∞

(ηi − Φi(x)) = 0, ηi−Φi ∈ L1(−∞, 0), i = 1, 2, ..., n, hence there exists lim
x→−∞

fγi (x) = γηi,
and from the estimate

0 ≤ |γηi − fγi (x)| ≤ γ(ηi − Φi(x)) + fγi (x)− γΦi(x) ∈ L1(−∞, 0), i = 1, 2, ..., n

it follows that γηi − fγi ∈ L1(−∞, 0), i = 1, 2, ..., n, γ ∈ (0,+∞).

3 Solvability of system of NIE (1.2). Examples

In the current section with the use of the results of Theorem 2.1 and some geometrical inequalities
for concave functions, we will deal with the problem of solvability for system of NIE (1.2).

Theorem 3.1. Under conditions a) - c), I) - III) and A) - D) system of NIE (1.2) has componentwise
nonnegative (nontrivial) and bounded on R solution ϕ(x) = (ϕ1(x), ..., ϕn(x))T , such that

lim
x→−∞

ϕj(x) = η∗j

and η∗j − ϕj ∈ L1(−∞, 0), j = 1, 2, ..., n where η∗ is defined in III).
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Proof. Due to Theorem 2.1 for the number γ∗ = α corresponds a solution fγ
∗
(x) =

(fγ
∗

1 (x), ..., fγ
∗

n (x))T of system (1.1) with the properties

αΦj(x) ≤ fγ
∗

j (x) ≤ αΦj(x) + ψj(x), j = 1, 2, ..., n, x ∈ R, , (3.1)

lim
x→−∞

fγ
∗

j (x) = α · ηj = η∗j , η
∗
j − f

γ∗

j ∈ L1(−∞, 0), j = 1, 2, ..., n. (3.2)

Consider the following iterations for system (1.2):

ϕ
(m+1)
i (x) =

n∑
j=1

x∫
−∞

Kij(x, t){Gj(ϕ
(m)
j (t)) + ωij(t, ϕ

(m)
j (t))}dt,

ϕ
(0)
i (x) = fγ

∗

i (x), m = 0, 1, 2, ..., i = 1, 2, ..., n, x ∈ R.

(3.3)

Using I), II), B), D) and a) with induction on m it is easy to check that

E1) ϕ
(m)
i (x) are measurable with respect to x on R, m = 0, 1, 2, ..., i = 1, 2, ..., n,

E2) ϕ
(m)
i (x) ↑ with respect to m, x ∈ R, i = 1, 2, ..., n.

Below we will prove that

E3) ϕ
(m)
i (x) ≤ η∗i + ψi(x), x ∈ R, m = 0, 1, 2, ..., i = 1, 2, ..., n.

In the case when m = 0 inequalities E3) directly folow from (3.1) and III), by taking into account
the estimates Φi(x) ≤ ηi, i = 1, 2, ..., n, x ∈ R. Assume that E3) holds for some natural m. Then,
using the following inequalities

Gj(η
∗
j + u) ≤ η∗j + u, u ≥ 0, j = 1, 2, ..., n

(which follow from the concaveness of the functions {Gj(u)}nj=1 (see Fig. 1.)), and also C), III), II),
(1.3), (2.1) and (2.14), from (3.3) we have

ϕ
(m+1)
i (x) ≤

n∑
j=1

x∫
−∞

Kij(x, t){Gj(η
∗
j + ψj(t)) + ωij(t, η

∗
j + ψj(t))}dt ≤

≤
n∑
j=1

x∫
−∞

Kij(x, t)(η
∗
j + ψj(t) + βij(t))dt ≤

n∑
j=1

η∗j (aij − γij(x))+

+
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt+ gi(x) ≤ η∗i + ψi(x), i = 1, 2, ..., n, x ∈ R.

So, from E1)-E3) we conclude that the sequence of measurable vector functions ϕ(m)(x) =

(ϕ
(m)
1 (x), ..., ϕ

(m)
n (x))T , m = 0, 1, 2, ... has a pointwise limit when m → ∞: lim

m→∞
ϕ(m)(x) = ϕ(x) =

(ϕ1(x), ..., ϕn(x))T , moreover,

fγ
∗

i (x) ≤ ϕi(x) ≤ η∗i + ψi(x), i = 1, 2, ..., n, x ∈ R. (3.4)

Using conditions I) and D) due to B. Levi’s theorem we obtain that ϕ(x) = (ϕ1(x), ..., ϕn(x))T is a
solution to system of NIE (1.2). From (3.4), (3.2), (2.15) and (2.28) it follows that lim

x→−∞
ϕi(x) = η∗i

and η∗i − ϕi ∈ L1(−∞, 0), i = 1, 2, ..., n.
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Figure 1:

At the end we will present specific examples of monotonous kernels {Kij(x, t)}n×ni,j=1 and non-
linearities {Gj(u)}nj=1, {ωij(t, u)}n×ni,j=1 that satisfy the conditions of the proven Theorems 2.1 and
3.1.

Firstly, we will give examples of matrix kernels {Kij(x, t)}n×ni,j=1. Let functions {λij(x)}n×ni,j=1 be
defined and continuous on the set R and satisfy the following conditions

F1) 0 < ρij := inf
x∈R

λij(x) ≤ λij(x) ≤ 1, λij(x) 6≡ 1, x ∈ R, i, j = 1, 2, ..., n,

F2) lim
x→−∞

λij(x) = 1, x(1− λij(x)) ∈ L1(−∞, 0), i, j = 1, 2, ..., n.

Also, let functions {K̊ij(x)}n×ni,j=1 be continuous on R and satisfy the following conditions:

H1) K̊ij(x) > 0, x ∈ R, K̊ij(−t) = K̊ij(t), t ≥ 0, i, j = 1, 2, ..., n,

H2) K̊ij ∈ L∞(R), aij =
∞∫
0

K̊ij(x)dx, i, j = 1, 2, ..., n.

Then we can choose the following classes of matrix functions as matrix kernels {Kij(x, t)}n×ni,j=1:

W1) Kij(x, t) = λij(x) · K̊ij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n,

W2) Kij(x, t) =
λij(t)+λij(x)

2
· K̊ij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n,

W3) Kij(x, t) = λij(x+ t) · K̊ij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n.

Let us take a look at example W3). Condition a) directly follows from F1) and H1), H2). We will
now verify condition b). We have

γij(x) = aij −
x∫

−∞

λij(x+ t)K̊ij(x− t)dt ≥ aij −
x∫

−∞

K̊ij(x− t)dt = 0, i, j = 1, 2, ..., n, x ∈ R.
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On the other hand, considering equations H2), F2), F1) and H1), we obtain

0∫
−∞

(−x)γij(x)dx =

0∫
−∞

(−x)

x∫
−∞

(1− λij(x+ t))K̊ij(x− t)dtdx =

=

0∫
−∞

(−x)

∞∫
0

(1− λij(2x− y))K̊ij(y)dydx =

∞∫
0

K̊ij(y)

0∫
−∞

(−x)(1− λij(2x− y))dxdy =

=
1

2

∞∫
0

K̊ij(y)

−y∫
−∞

(
−t− y

2

)
(1− λij(t))dtdy ≤

1

4

∞∫
0

K̊ij(y)

0∫
−∞

(−t− y) (1− λij(t))dtdy ≤

≤ 1

4

∞∫
0

K̊ij(y)dy

0∫
−∞

(−t) (1− λij(t))dt =
aij
4

0∫
−∞

(−t) (1− λij(t))dt < +∞, i, j = 1, 2, ..., n.

Now, let us verify that lim
x→−∞

γij(x) = 0, i, j = 1, 2, ..., n. Due to conditions a), F1), and F2), H2)

we have

0 ≤ γij(x) =

x∫
−∞

K̊ij(x− t)(1− λij(x+ t))dt ≤M

x∫
−∞

(1− λij(x+ t))dt =

= M

2x∫
−∞

(1− λij(y))dy → 0, when x→ −∞, where M := max
1≤i,j≤n

(sup
τ∈R

K̊ij(τ)).

Finally, let us verify condition c). Due to F1) and H2) we obtain

∞∫
δ0

Kij(x+ y, x)dy =

∞∫
δ0

λij(2x+ y)K̊ij(y)dy ≥ ρij · ãij, where ãij =

∞∫
δ0

K̊ij(y)dy,

i, j = 1, 2, ..., n, x ∈ R.

Therefore εij ≥ ρij · ãij > 0, i, j = 1, 2, ..., n. Let us now give examples of nonlinearities {Gj(u)}nj=1

and {ωij(u)}n×ni,j=1.

Examples of {Gj(u)}nj=1:

Q1) Gj(u) =
(
η∗j
) p−1

p p
√
u, j = 1, 2, ..., n, where p ≥ 2 is a natural number, u ∈ [0,+∞),

Q2) Gj(u) =
η∗j

1− e−η∗j
(
1− e−u

)
, j = 1, 2, ..., n, u ∈ [0,+∞),

Q3) Gj(u) =
1

2

(
p
√
u
(
η∗j
) p−1

p +
η∗j

1− e−η∗j
(
1− e−u

))
, j = 1, 2, ..., n, u ∈ [0,+∞).

Examples of {ωij(t, u)}n×ni,j=1:

V1) ωij(t, u) = βij(t)(1− e−u), u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,

V2) ωij(t, u) = βij(t)
u
u+1

, u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,
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V3) ωij(t, u) = βij(t) · th(u), u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,

where
th(u) :=

eu − e−u

eu + e−u
.

Note that in all examples V1) − V3) it is assumed that βij ∈ C(R), i, j = 1, 2, ..., n. Let us
verify conditions I)-III) on the example Q2). Firstly, it is obvious that Gj ∈ C[0,+∞), Gj(0) = 0,
j = 1, 2, ..., n. Since G′′j (u) = − η∗j

1−e−η
∗
j
· e−u < 0, u ∈ [0,+∞), j = 1, 2, ..., n, therefore, the functions

{Gj(u)}nj=1 are concave. G′j(u) =
η∗j

1−e−η
∗
j
· e−u > 0, u ∈ [0,+∞), j = 1, 2, ..., n, Gj(u) ↑ with respect

to u on [0,+∞), j = 1, 2, ..., n. Obviously, Gj(η
∗
j ) = η∗j , j = 1, 2, ..., n. It remains to show that

Gj(u) ≥ u, u ∈ [0, η∗j ], j = 1, 2, ..., n. Let us consider the following functions on the segment [0, η∗j ]:

χj(u) =
η∗j

1− e−η∗j
(1− e−u)− u, u ∈ [0, η∗j ], j = 1, 2, ..., n.

Note that χj(0) = 0, χj(η
∗
j ) = 0, χ′′j (u) = − η∗j

1−e−η
∗
j
· e−u < 0, j = 1, 2, ..., n. Therefore χj(u) ≥ 0, u ∈

[0, η∗j ], j = 1, 2, ..., n.
Let us now verify the conditions A) - D) for the example V2). Firstly, it is obvious that ωij(t, 0) =

0, t ∈ R, i, j = 1, 2, ..., n. Since

∂ωij(t, u)

∂u
= βij(t)

1

(u+ 1)2
> 0, u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,

ωij(t, u) ↑ with respect to u on the set [0,+∞), i, j = 1, 2, ..., n. From the representation of V2) it
follows that

sup
u∈[0,+∞)

(ωij(t, u)) = βij(t), t ∈ R, i, j = 1, 2, ..., n.

For the rest of examples Q1), Q3), V1) and V2) the verification of the corresponding conditions is
made similarly.

For the sake of completeness, let us also give specific examples of {K̊ij(x)}n×ni,j=1, {λij(x)}n×ni,j=1 and
{βij(x)}n×ni,j=1.

Examples of {K̊ij(x)}n×ni,j=1:

T1) K̊ij(x) =
2aij√
π
e−x

2
, x ∈ R, i, j = 1, 2, ..., n,

T2) K̊ij(x) =
b∫
a

e−|x|sdσij(s), x ∈ R, i, j,= 1, 2, ..., n,

where σij(s), i, j = 1, 2, ..., n are nondecreasing and continuous functions on the set [a, b), 0 < a <
b ≤ +∞, moreover,

b∫
a

1

s
dσij(s) = aij, i, j = 1, 2, ..., n.

Examples of {λij(x)}n×ni,j=1:

S1) λij(x) = 1− (1− ρij)D(x), x ∈ R, i, j = 1, 2, ..., n, where D(x) :=

{
ex, x < 0

1, x ≥ 0
,

S2) λij(x) = 1− (1− ρij)
2

· (th(x) + 1), x ∈ R, i, j = 1, 2, ..., n.
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Examples of {βij(x)}n×ni,j=1:

J1) βij(x) =
ηj
aij
γij(x), x ∈ R, i, j = 1, 2, ..., n, given that γij(x) ↑ with respect to

x on R, i, j = 1, 2, ..., n,

J2) βij(x) =
ηjγij(x)

aij − γij(x)
, x ∈ R, i, j = 1, 2, ..., n, given that γij(x) ↑ with respect

to x on R, i, j = 1, 2, ..., n.

Let us take a look at example J2). First of all let us give examples of functions {γij(x)}ni,j=1 that
satisfy the condition in J2). For example in the case of W1) the functions γij(x) allow the following
representation:

γij(x) =

x∫
−∞

K̊ij(x− t)(1− λij(x))dt = aij(1− λij(x)), x ∈ R, i, j = 1, 2, ..., n.

Note that in examples S1) and S2) the functions (1 − λij(x)), i, j = 1, 2, ..., n are increasing on
R. Therefore, if as a λij(x), i, j = 1, 2, ..., n we choose examples S1) and S2) we will obtain the
monotonicity of the functions {γij(x)}ni,j=1 on the set R. But in that case the functions {βij(x)}n×ni,j=1 in
examples J2) also will be nondecreasing on the set R. For example J2) inequality (1.4) is automatically
satisfied. The corresponding conditions on the functions {βij(x)}n×ni,j=1 for example J1) are verified
similarly.

It is interesting to note, that the problem of uniqueness of the solution for system (1.2) in conical
segments {[0, η∗j ]}nj=1 still remains open. For system (1.1) the uniqueness of the solution (in the class
of bounded on R vector-functions) fails, since, according to the results of Theorem 2.1, system (1.1)
has a one-parameter family of nonnegative (nontrivial) and bounded (on R) solutions.
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