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1 Introduction

One of the fundamental research problems in the theory of generalized inverses of matrices is to
establish reverse order laws for generalized inverses of matrix products. It was Erik Ivar Fredholm
who seemed to have first mentioned the concept of generalized inverse in 1903. He formulated a
pseudoinverse for a linear integral operator, which is not invertible in the ordinary sense. Hilbert,
Schmidt, Bounitzky, Hurwitz and other mathematicians had studied the generalized inverses of inte-
gral operators and differential operators before Moore introduced the generalized inverse of matrices
by algebraic methods in 1920 [17]. Bjerhammar rediscovered Moore’s inverse and also noted the
relationship of generalized inverses to solutions of linear systems in 1951 [5]. In 1955, Penrose [21]
extended Bjerhammar’s results and showed that Moore’s inverse for a given matrix A is the unique
matrix X satisfying the four equations:

AXA = A;XAX = X; (AX)∗ = AX; (XA)∗ = XA.

In honour of Moore and Penrose, this unique inverse is now commonly called the Moore-Penrose
inverse and is denoted by A†. Meanwhile, generalized inverses were defined for operators by Tseng
[24], Murray and von Neumann [19], Nashed [20] and others. Beutler discussed generalized inverses
for both bounded and unbounded operators with closed and arbitrary ranges [3, 4]. Throughout the
years, the Moore-Penrose inverse was extensively studied. One of the primary reasons for considering
the Moore-Penrose inverse is solving systems of linear equations, which constitutes an important
application in various fields.

It is well known that the reverse order law (AB)−1 = B−1A−1 is not true in general for various
generalized inverses such as the Moore-Penrose inverse, Drazin inverse etc. Cline attempted to find
a reasonable representation for the Moore-Penrose inverse of the product of matrices [9] and Greville
found some necessary and sufficient conditions for the reverse order law to hold in matrix setting
[13]. The reverse order law problem for bounded linear operators on Hilbert spaces was analyzed by
Bouldin [6, 7] and Izumino [16]. The theory of generalized inverses on infinite-dimensional Hilbert
spaces can be found in [2, 15, 25].
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In this paper, we present algebraic proofs of some characterizations of reverse order law for the
Moore-Penrose inverses of closed range Hilbert space operators. In the second section, we collect
some definitions and lemmas which will be used in the sequel. We start the main section with some
examples to show that the reverse order law does not hold for Hilbert space operators in general. In
total, we present 61 results, including some range inclusion results to characterize the reverse order
law in this setting. We extend the results of Arghiriade [1] and Tian [22, 23] to infinite-dimensional
Hilbert spaces.

2 Preliminaries

Let H1 and H2 be Hilbert spaces and B(H1,H2) denote the set of all linear bounded operators from
H1 to H2. We abbreviate B(H1) = B(H1,H1). For A ∈ B(H1,H2), we denote by A∗, N (A) and
R(A), respectively, the adjoint, the null-space and the range of A. An operator A ∈ B(H1) is said to
be self-adjoint (Hermitian) if A = A∗. An operator A ∈ B(H1) is said to be a projection if A2 = A.
A projection is said to be orthogonal if A2 = A = A∗. The Moore-Penrose inverse of A ∈ B(H1,H2)
is the operator X ∈ B(H2,H1) which satisfies the Penrose equations

AXA = A (2.1)
XAX = X (2.2)
(AX)∗ = AX (2.3)
(XA)∗ = XA. (2.4)

A matrix X is called a {i, . . . , j}-generalized inverse of A, denoted by A(i,...,j) if it satisfies the
ith, . . . , jth conditions of the Penrose equations. The collection of all {i, . . . , j}-generalized inverses
of A is denoted by A{i, . . . , j}. If the Moore-Penrose inverse of A exists, then it is unique and it is
denoted by A†. It should be noted that A† is bounded if and only if R(A) is closed in H2.

For the sake of clarity as well as for easier reference, we mention the following properties of the
Moore-Penrose inverse without proof [25].

Lemma 2.1. Let A ∈ B(H1,H2) be a closed range operator. The following statements hold:

(i) (A†)† = A.

(ii) (A†)∗ = (A∗)†.

(iii) A = AA∗(A∗)† = (A∗)†A∗A.

(iv) A† = A∗(AA∗)† = (A∗A)†A∗.

(v) (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†.

(vi) A∗ = A∗AA† = A†AA∗.

(vii) R(A) = R(AA∗) = R(AA†).

(viii) R(A†) = R(A∗) = R(A†A) = R(A∗A).

(ix) AA† = PR(A) and A†A = PR(A∗) = PR(A†).

(x) If H1 = H2, then (An)† = (A†)n for n ≥ 1.

Here, PR(A) and PR(A∗) denote the projections onto R(A) and R(A∗), respectively. We use A†
∗

instead of (A†)∗ throughout the paper.
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Lemma 2.2 ([8], Theorem 1). Let A ∈ B(H1,H2) be a closed range operator such that R(A) =
R(A∗). Then AA† = A†A and AnA† = An−1, n ≥ 2.

Lemma 2.3. Let H be a Hilbert space and P ∈ B(H) be a projection. Then P is Hermitian if and
only if P = PP ∗P.

Proof. Suppose P = PP ∗P and P is a projection. Let B = P − P ∗. Then it is easy to verify that
B3 = 0 and R(B) = R(B∗). By Lemma 2.2, B3(B†)2 = 0 gives B = 0. Thus, P is Hermitian.
Converse follows directly.

Remark 1. If P is an orthogonal projection, then P satisfies all the Penrose equations and hence
P † = P.

Lemma 2.4 ([26], Lemma 1.3). Let A ∈ B(H1,H2) have a closed range and B ∈ B(H2,H1). Then

(i) B ∈ A{1, 3} ⇔ A∗AB = A∗,

(ii) B ∈ A{1, 4} ⇔ BAA∗ = A∗.

Theorem 2.1 ([12], Theorem 1). Let A and B be bounded operators on a Hilbert space H. The
following statements are equivalent:

(i) R(A) ⊆ R(B);

(ii) there exists a bounded operator C on H so that A = BC.

Theorem 2.2 ([14], Theorem 7.20). Let A ∈ B(H) be self-adjoint. Then there exist a measure space
(X,Σ, µ), a bounded measurable real-valued function f on X and a unitary operator U : H → L2(X,µ)
such that

A = U∗TU,

where T is the multiplication operator given by Tψ = fψ, ∀ψ ∈ L2(X,µ).

Definition 1. Let (H, 〈., .〉) be a Hilbert space and A ∈ B(H). The operator A is called a positive
semi-definite operator if 〈Ax, x〉 ≥ 0 for all x ∈ H.

Lemma 2.5. Let H be a Hilbert space and A ∈ B(H) be a positive semi-definite operator such that
Am = An for some natural numbers m 6= n. Then A2 = A.

Proof. We know that a positive semi-definite operator is self adjoint. By Theorem 2.2, we can write

A = U∗TU,

where T is the multiplication operator given by Tψ = fψ, ∀ψ ∈ L2(X,µ). Using the positive semi-
definiteness of the operator, we get f(x) ≥ 0 ∀x ∈ X.

It is given that Am = An which implies

fmψ = fnψ, ∀ψ ∈ L2(X,µ). (2.5)

Let x0 ∈ X and E be a subset of X such that x0 ∈ E and µ(E) 6= 0. Since equation (2.5) holds
for the characteristic function on E, we get fm(x0)(1− fn−m(x0)) = 0, from which we can conclude
f(x0) = 0 or f(x0) = 1 as f(x) ≥ 0 ∀x ∈ X. As x0 is arbitrary f(x) = 0 or f(x) = 1 for all x ∈ X.

Now, T 2ψ(x) = T (f(x)ψ(x)) = f(x)2ψ(x) = f(x)ψ(x) = Tψ(x) for all ψ(x) ∈ L2(X,µ). Also,
U∗T 2U = U∗TU ⇒ A2 = A.
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Lemma 2.6. Let A and B be orthogonal projections on a Hilbert space H and m > n ≥ 1. If
(ABA)m = (ABA)n, then AB = BA.

Proof. ABA = ABBA = ABB∗A∗ = AB(AB)∗. Thus ABA is Hermitian and positive semi-definite
as AB(AB)∗ is so. Then by Lemma 2.5, (ABA)m = (ABA)n implies (ABA)2 = ABA. Consider
(ABA−AB)(ABA−AB)∗ = (ABA−AB)(ABA−BA) = (ABA)2−ABABA−ABABA+ABA = 0.
Thus ABA = AB. Similarly, we can verify (ABA−BA)(ABA−BA)∗ = 0, which gives ABA = BA.
Thus, we get AB = BA.

Lemma 2.7. Let A and B be orthogonal projections on a Hilbert space H and m > n ≥ 1. If
(AB)m = (AB)n, then AB = BA.

Proof. Since (AB)2A = ABABA = ABAABA = (ABA)2, thus (AB)mA = (ABA)m for all m ≥ 1.
Now it is clear that(AB)m = (AB)n gives (ABA)m = (ABA)n. Then by Lemma 2.6, we get AB =
BA.

3 Main results

We start the section with some examples to show that the reverse order law does not hold good for
closed range Hilbert space operators in general.

Example 1. LetH = `2 be the space of all square summable sequences. For x = (x1, x2, x3, . . . ) ∈ H,
define Ax = (x1 + x2, x2, x3, x4, . . . ) and Bx = (x1, 0, x3, 0, x5, . . . ). Then

AB(x) = A(x1, 0, x3, 0, x5, . . . ) = (x1, 0, x3, 0, x5, . . . ) = Bx.

It can be verified easily that A,B and AB are bounded and have closed ranges. We see that

A∗(x) = (x1, x1 + x2, x3, x4, . . . ) and B∗(x) = (x1, 0, x3, 0, x5, . . . ) = Bx.

Using the Euler-Knopp method for finding the Moore-Penrose inverses of operators ([25], p.327) we
get

A†(x) = (x1 − x2, x2, x3, x4, . . . ).
By Remark 1, we get B† = B and (AB)† = B†. Hence, B†A†(x) = B†(x1 − x2, x2, x3, x4, . . . ) =
(x1 − x2, 0, x3, 0, x5, . . . ) 6= (AB)†(x), thus (AB)† 6= B†A†.

Example 2. Let H = `2. For x = (x1, x2, x3, . . . ) ∈ H, define Ax = (0, x2, 0, x4, 0, . . . ) and Bx =
(x1 + x2, 2x1 + 2x2, x3, x4, . . . ). Then AB(x) = (0, 2x1 + 2x2, 0, x4, . . . ). It is easy to verify that A,B
and AB are bounded and have closed ranges. Since A∗(x) = (0, x2, 0, x4, 0, x6, . . . ) = Ax, by Remark
1 we get A†x = Ax. Also, B∗(x) = (x1 + 2x2, x1 + 2x2, x3, x4, . . . ) and B†(x) = ( 1

10
(x1 + 2x2),

1
10

(x1 +
2x2), x3, x4, . . . ) by the Euler-Knopp method. Thus, we get

B†A†(x) = B†(0, x2, 0, x4, 0, x6, . . . ) = (
x2
5
,
x2
5
, 0, x4, 0, . . . )

and
(AB)†x = (

x2
4
,
x2
4
, 0, x4, 0, . . . ).

Hence (AB)† 6= B†A†. One can also check that B†A† satisfies the third and fourth but not the first
and second Penrose equations.

Lemma 3.1 ([16], Proposition 2.1). Let H1,H2,H3 be Hilbert spaces, and let A ∈ B(H2,H3) and
B ∈ B(H1,H2) be such that A,B have closed ranges. Then AB has a closed range if and only if
A†ABB† has a closed range.
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The results mentioned below in Theorems 3.1 to 3.4 are proved in C∗-algebra setting [18] and for
the sake of completeness, we give the proof of those in Hilbert space setting. However, our proofs are
much simpler than those available for the reverse order law for closed range Hilbert space operators.

In the following result, the existence of (A†ABB†)† is guaranteed by Lemma 3.1.

Theorem 3.1. Let H1,H2,H3 be Hilbert spaces, and let A ∈ B(H2,H3) and B ∈ B(H1,H2) be such
that A,B,AB have closed ranges. Then the following statements are equivalent:

(i) ABB†A†AB = AB ;

(ii) B†A†ABB†A† = B†A† ;

(iii) BB†A†A is a projection ;

(iv) A†ABB† = BB†A†A ;

(v) A†ABB† is a projection ;

(vi) (A†ABB†)† = BB†A†A;

(vii) B†(A†ABB†)†A† = B†A†.

Proof. (i)⇒ (ii): If ABB†A†AB = AB, then

B†A† = (B∗B)†B∗A∗(AA∗)† (by Lemma 2.1 (iv))
= (B∗B)†(AB)∗(AA∗)†

= (B∗B)†(ABB†A†AB)∗(AA∗)† (by the assumption)

= (B∗B)†B∗A†ABB†A∗(AA∗)†

= B†A†ABB†A† (by Lemma 2.1 (iv)).

(ii)⇒(iii): Using (ii) we see that (BB†A†A)2 = BB†A†ABB†A†A = BB†A†A. Hence, it shows that
BB†A†A is a projection.
(iii)⇒(iv): We have

BB†A†A(BB†A†A)∗BB†A†A = BB†A†A(A†A)∗(BB†)∗BB†A†A

= BB†A†A(A†A)(BB†)BB†A†A

= BB†A†ABB†A†A = BB†A†A.

Then by Lemma 2.3, we get (BB†A†A)∗ = BB†A†A, since BB†A†A is a projection. Thus BB†A†A =
A†ABB†.
(iv)⇒(v): It is given that A†ABB† = BB†A†A. We have

(A†ABB†)2 = A†ABB†A†ABB† = BB†A†AA†ABB†

= BB†A†ABB† = A†ABB†BB† = A†ABB†.

(v)⇒(vi): Using the fact that A is a projection if and only if A∗ is a projection, it is easy to verify
all Penrose equations.
(vi)⇒(vii): Pre- and post-multiplying by B† and A† respectively in (vi), we get the desired result.
(vii)⇒(i): It is given that B†A† = B†(A†ABB†)†A†. We have

ABB†A†AB = ABB†(A†ABB†)†A†AB

= AA†ABB†(A†ABB†)†A†ABB†B

= AA†ABB†B = AB,

where all the equalities follow using the first Penrose equation.
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Next, we give ten equivalent conditions for B†A† to be a {1, 2, 3}-generalized inverse of AB in
Hilbert space setting. The existence of (ABB†)† follows as the ranges of ABB† and AB are equal.

Theorem 3.2. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) AB(AB)† = ABB†A†;

(ii) B†A† ∈ AB{1, 2, 3};

(iii) BB†A∗AB = A∗AB;

(iv) (AB)(AB)†A = ABB†;

(v) A∗ABB† = BB†A∗A;

(vi) (ABB†)† = BB†A†;

(vii) B†(ABB†)† = B†A†;

(viii) B{1, 3}A{1, 3} ⊆ AB{1, 3};

(ix) B†A† ∈ AB{1, 3};

(x) (BB∗)†A† ∈ ABB∗{1, 2, 3}.

Proof. We prove the equivalence of all the statements in the following order of implications:

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (vi)⇒ (vii)⇒ (ix)⇔ (viii), (ix)⇒ (i).

(i)⇒(ii): Since ABB†A† = AB(AB)†, post-multiplying by AB we get,

ABB†A†AB = AB(AB)†AB = AB.

Hence, B†A† ∈ AB{1}. By Theorem 3.1, B†A† ∈ AB{2}. Now using the assumption we get,
(ABB†A†)∗ = (AB(AB)†)∗ = AB(AB)† = ABB†A†. Thus B†A† ∈ AB{1, 2, 3}.
(ii)⇒(iii): Suppose B†A† ∈ AB{1, 2, 3}. Then by Theorem 3.1, A†ABB† = BB†A†A. Thus, we get

A∗AB = A∗AA†ABB†B = A∗ABB†A†AB

= A∗(ABB†A†)∗AB (since B†A† ∈ AB{3}
= A∗A†

∗
BB†A∗AB = (A†A)∗BB†A∗AB

= A†ABB†A∗AB = BB†A†AA∗AB

= BB†A∗AB (by Lemma 2.1 (vi)).

(iii)⇒(iv): We have

(AB)(AB)†A = ((AB)(AB)†)∗A∗
∗

= (A∗AB(AB)†)∗

= (BB†A∗AB(AB)†)∗ (by the assumption)

= ((AB)(AB)†)∗(BB†A∗)∗ = AB(AB)†ABB†

= ABB†.

(iv)⇒(v): Pre-multiplying the given condition by A∗, we get A∗ABB† = A∗AB(AB)†A. As the RHS
of the previous equality is Hermitian, A∗ABB† is also Hermitian and

A∗ABB† = (A∗ABB†)∗ = BB†A∗A.
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(v)⇒(vi): We show this by verifying all Penrose equations. Given that A∗ABB† = BB†A∗A. Pre-
multiplying by A†

∗
, we get ABB† = AA†ABB† = (AA†)∗ABB† = A†

∗
A∗ABB† = A†

∗
BB†A∗A.

Hence

(ABB†)(BB†A†)(ABB†) = ABB†A†ABB† = A†
∗
BB†A∗AA†ABB†

= A†
∗
A∗ABB†BB† = (AA†)∗ABB† = ABB†.

This shows that BB†A† ∈ ABB†{1}. Now,

BB†A† = BB†A∗(AA∗)† (by Lemma 2.1 (iv))
= (ABB†)∗(AA∗)† = (ABB†BB†A†ABB†)∗(AA∗)†

= (ABB†A†ABB†)∗(AA∗)† = BB†A†ABB†A∗(AA∗)†

= BB†A†ABB†BB†A† (by Lemma 2.1 (iv)).

Thus, BB†A† ∈ ABB†{1, 2}. Also,

(ABB†)(BB†A†) = (A†
∗
A∗ABB†)(BB†A†) = A†

∗
BB†A∗ABB†A†.

As the RHS of the last equality is Hermitian, (ABB†)(BB†A†) is so. Similarly, we can prove
(BB†A†)(ABB†) is Hermitian. It ensures that (ABB†)† = BB†A†.
(vi)⇒(vii): Pre-multiplying the given condition by B†, we get (vii).
(vii)⇒(ix): It is clear that ABB†(ABB†)†ABB† = ABB†. Then by (vii), we have ABB†A†ABB† =

ABB†. Post-multiplying by B we get ABB†A†AB = AB. Thus B†A† ∈ AB{1}. Also, ABB†A† is
Hermitian since ABB†A† = ABB†(ABB†)†. Thus B†A† ∈ AB{1, 3}.
(ix)⇒(viii): Let CD ∈ B{1, 3}A{1, 3} where C ∈ B{1, 3} and D ∈ A{1, 3}. By Lemma 2.4, C and D
satisfy B∗BC = B∗ and A∗AD = A∗. Also, we note that B†BC = (B∗B)†B∗BC = (B∗B)†B∗ = B†

and, similarly we can prove A†AD = A†. By using B†A† ∈ AB{1, 3}, we get

(AB)∗(AB)CD = (ABB†A†AB)∗ABCD = (AB)∗ABB†A†ABCD

= (AB)∗AA†ABB†BCD (by Theorem 3.1)

= (AB)∗AA†ABB†D = (AB)∗ABB†A†AD

= (AB)∗ABB†A† = (ABB†A†AB)∗ = (AB)∗.

(viii)⇒(ix): Obvious.
(ix)⇒(i): By the assumption, we have ABB†A†AB = AB and (ABB†A†)∗ = ABB†A†. Post-
multiplying by (AB)† in the first equation and taking adjoint on both sides, we get AB(AB)† =
ABB†A†.
(ix)⇒(x): The first and third Penrose conditions follow easily from (ix). The second Penrose condi-
tion can be verified with the help of Theorem 3.1 (iv).
(x)⇒(ix): Since (BB∗)†A† ∈ ABB∗{1}, we get ABB∗(BB∗)†A†ABB∗ = ABB∗ i.e.,
ABB†A†ABB∗ = ABB∗ by Lemma 2.1 (iv) and Theorem 3.1. Post-multiplying by B†∗ and us-
ing Lemma 2.1 (iii), we get

ABB†A†AB = AB.

Also, ABB∗(BB∗)†A† = ABB†A† is Hermitian. It shows that B†A† ∈ AB{1, 3}.

The following result is similar to Theorem 3.2. It gives ten equivalent conditions for B†A† to
be a {1, 2, 4}-generalized inverse of AB in Hilbert space setting. Here, the existence of (A†AB)† is
guaranteed as the ranges of (A†AB)∗ and (AB)∗ are the same.
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Theorem 3.3. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) (AB)†AB = B†A†AB;

(ii) B†A† ∈ AB{1, 2, 4};

(iii) ABB∗ = ABB∗A†A;

(vi) B(AB)†AB = A†AB;

(v) A†ABB∗ = BB∗A†A;

(vi) (A†AB)† = B†A†A;

(vii) (A†AB)†A† = B†A†;

(viii) B{1, 4}A{1, 4} ⊆ AB{1, 4};

(ix) B†A† ∈ AB{1, 4};

(x) B†(A∗A)† ∈ A∗AB{1, 2, 4}.

Proof. The proof is similar to that of Theorem 3.2.

Theorem 3.4. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) (AB)† = B†A†;

(ii) (AB)(AB)† = ABB†A† and (AB)†AB = B†A†AB;

(iii) A∗AB = BB†A∗AB and ABB∗ = ABB∗A†A;

(iv) AB(AB)†A = ABB† and B(AB)†AB = A†AB;

(v) A∗ABB† = BB†A∗A and BB∗A†A = A†ABB∗;

(vi) (ABB†)† = BB†A†and (A†AB)† = B†A†A;

(vii) B†(ABB†)† = B†A†and (A†AB)†A† = B†A†;

(viii) B{1, 3}A{1, 3} ⊆ AB{1, 3} and B{1, 4}A{1, 4} ⊆ AB{1, 4};

(ix) B†A† ∈ AB{1, 3, 4};

(x) (BB∗)†A† ∈ ABB∗{1, 2, 3} and B†(A∗A)† ∈ A∗AB{1, 2, 4}.

Proof. Follows from Theorems 3.2 and 3.3.

Remark 2. Consider the operators A and B on H defined in Example 1. Then for all x ∈ H,
A∗ABx = (x1, x1, x3, 0, x5, . . .) and BB†A∗ABx = (x1, 0, x3, 0, x5, . . .). Hence

A∗AB 6= BB†A∗AB and ABB∗x = (x1, 0, x3, 0, x5, . . .) = ABB∗A†Ax.

Note that the conditions in (iii) of Theorem 3.4 are not satisfied and (AB)† 6= B†A† which was shown
in Example 1.

Theorem 3.5. Let the conditions of Theorem 3.1 hold. Then the following statements hold:
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(i) B† = (AB)†A⇔ R(B) = R(A∗AB).

(ii) A† = B(AB)† ⇔ R(A∗) = R(BB∗A∗).

Proof. (i) Suppose that B† = (AB)†A. Pre-multiplying by AB, we get ABB† = (AB)(AB)†A, which
is equivalent to BB†A∗AB = A∗AB by Theorem 3.2. This implies R(A∗AB) ⊆ R(B) as BB† is the
projection onto R(B). Now by Lemma 2.1 (iv),

B† = (AB)†A = [(AB)∗(AB)]†(AB)∗A

implies that B†∗ = A∗AB[(AB)∗(AB)]†, as AB)∗(AB) is Hermitian. Thus

R(B) = R(B†
∗
) = R(A∗AB[(AB)∗(AB)]†) ⊆ R(A∗AB).

Conversely, R(B) = R(A∗AB) =⇒ BB†A∗AB = A∗AB. By Theorem 3.2, B†A† ∈ AB{1, 2, 3},
R(B†

∗
) = R(B) = R(A∗AB) ⊆ R(A∗) and A†A is the projection onto R(A∗) gives A†AB = B

and A†AB†
?

= B†
?

=⇒ B†A†A = B†. It shows that (A†AB)† = B† = B†A†A. By Theorem 3.3,
B†A† ∈ AB{1, 2, 4} and hence (AB)† = B†A†. Therefore B† = B†A†A = (AB)†A.
(ii) Proof is similar to (i).

Theorem 3.6. Let the conditions of Theorem 3.1 hold. Then the following statements hold:

(i) (AB)† = (A†AB)†A† ⇔ R(AA∗AB) = R(AB).

(ii) (AB)† = B†(ABB†)† ⇔ R(B∗B(AB)∗) = R((AB)∗).

Proof. (i) If we replace A by A† and B by AB in Theorem 3.5 (i), we get (AB)† = (A†AB)†A† ⇔
R(AB) = R(A†

∗
A†AB) = R(A†

∗
B). Now by Theorem 2.1, there exists a bounded operator C such

that AB = A†
∗
BC. Pre-multiplying by AA∗ we get AA∗AB = AA∗A†

∗
BC = A(A†A)∗BC = ABC.

Thus we get R(AA∗AB) ⊆ R(AB). Similarly, we can prove R(AB) ⊆ R(AA∗AB).
(ii) Replace A by AB and B by B† in Theorem 3.5 (ii) and use a similar argument as above.

Theorem 3.7. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) (AB)† = B†A†;

(ii) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗);

(iii) R(AA∗AB) = R(AB) and R(BB∗A∗) ⊆ R(A∗);

(iv) R(A∗AB) ⊆ R(B) and R[(ABB∗B)∗] = R[(AB)∗];

(v) R(A∗ABB∗) = R(BB∗A∗A).

Proof. First we note that the condition R(A∗AB) ⊆ R(B) is equivalent to Theorem 3.2 (iii) and the
condition R(BB∗A∗) ⊆ R(A∗) is equivalent to Theorem 3.3 (iii).
(i)⇔(ii): Follows from Theorem 3.4 (iii).
(i)⇒(iii): By Theorem 3.4 (vii), (AB)† = B†A† = (A†AB)†A†. Then (iii) follows from Theorem 3.6
(i).
(iii)⇒(v): By Theorem 2.1, there exists an operator T such that AA∗AB = ABT. Pre-multiplying by
A† we get A∗AB = A†ABT = A†ABB∗B†

∗
T = BB∗A†AB†

∗
T by Theorem 3.3 (v). Also, A∗ABB∗ =

BB∗A†AB†
∗
TB∗. Thus R(A∗ABB∗) ⊆ R(BB∗A∗A). Similarly, AB = AA∗ABS, for some operator

S. Pre- and post-multiplying by A† and B∗A∗A respectively, we get A†ABB∗A∗A = A∗ABSB∗A∗A.
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Then by Theorem 3.3 (v), BB∗A†AA∗A = A∗ABSB∗A∗A. Thus, BB∗A∗A = A∗ABSB∗A∗A. It
shows that

R(A∗ABB∗) = R(BB∗A∗A).

(v)⇒(ii): By Theorem 2.1, there exists an operator T such that A∗ABB∗ = BB∗A∗AT. Pre-
multiplying by BB† and post-multiplying by B†∗ we get,

BB†A∗ABB∗B†
∗

= BB∗A∗ATB†
∗
.

Hence, BB†A∗AB = BB∗A∗ATB†
∗

= A∗ABB∗B†
∗

= A∗AB, thus R(A∗AB) ⊆ R(B). Similarly, we
can prove A†ABB∗A∗ = BB∗A∗ and hence R(BB∗A∗) ⊆ R(A∗).
We can give the proof of (i)⇒(iv) and (iv)⇒(v) in a similar fashion.

Remark 3. Let A and B be as defined in Example 1. Then we get A∗ABx = (x1, x1, x3, 0, x5, . . .).
Thus R(A∗AB) 6⊆ R(B), A∗(x) = (x1, x1 +x2, x3, x4, . . .) and BB∗A∗x = (x1, 0, x3, 0, x5, . . .) implies
R(BB∗A∗) ⊆ R(A∗). This shows that R(A∗AB) ⊆ R(B) is indispensable for the reverse order law
to hold.

Lemma 3.2. Let the conditions of Theorem 3.1 hold. If P = (AA∗)mA and Q = B(B∗B)n, then
P,Q and PQ have closed ranges.

Proof. By Lemma 3.1, AB has a closed range if and only if A†ABB† has a closed range.
Take A as (AA∗)m and B as A to apply Lemma 3.1. Then, we have (AA∗)m†(AA∗)mAA† =
((AA∗)†(AA∗))mAA† = (AA†)mAA† = AA†AA† = AA†. Now, R(AA†) = R(A) is closed implies
R(P ) is closed. Similar argument works for Q also.

Now again by Lemma 3.1, PQ has a closed range if and only if P †PQQ† has a closed range. For,

P †PQQ† = [(AA∗)mA]†(AA∗)mAB(B∗B)n[B(B∗B)n]†

= A†[(AA∗)m]†(AA∗)mAB(B∗B)n[(B∗B)n]†B†

= A†AA†ABB†BB† = A†ABB†.

Here, the reverse order law is applied for [(AA∗)mA]† and [B(B∗B)n]† as they satisfy condition (ii)
in Theorem 3.7.

The next result is an extension of Theorem 11.1 of [23] to infinite e-dimensional setting. Djordjević
and Dinčić [10, 11] have extended the results of Tian [22, 23] using the operator matrix method to
different settings. By Lemma 3.1, R(AB) is closed if and only if R(A†ABB†) = R(A∗A†∗BB†) =
R(A†AB†∗B∗) is closed. This happens if and only if R(A†∗B) and R(AB†∗) are closed. Thus
(A†∗B)† and (AB†∗)† exist. Also, R(A) is closed if and only if R(A∗) is closed implies R(BB†A†A)
is closed and hence R(B†A†) is closed. For natural numbers m and n, the existence of the Moore-
Penrose inverse of (AA∗)m and (B∗B)n is guaranteed as they are powers of Hermitian operators
with closed ranges, according to the spectral mapping theorem. The existence of the Moore-Penrose
inverse of all other operators discussed below can be guaranteed with the closedness of the ranges of
AB,A†∗B,AB†∗ and B†A†.

Theorem 3.8. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(1) (AB)† = B†A†;

(2) B(AB)†A = BB†A†A;

(3) AA∗(B∗A∗)†B∗B = AB;
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(4) (AB)† = B†A†ABB†A†;

(5) (AB)† = (A†AB)†A† and (A†AB)† = B†A†A;

(6) (AB)† = B†(ABB†)† and (ABB†)† = BB†A†;

(7) (AB)† = B†(A†ABB†)†A† and (A†ABB†)† = BB†A†A;

(8) B†A† ∈ AB{1, 3, 4};

(9) (AB)(AB)† = ABB†A† = A†∗BB†A∗ and (AB)†AB = B†A†AB = B∗A†A(B†)∗;

(10) (A†∗B)† = B†A∗;

(11) A†(B∗A†)†B∗ = A†ABB†;

(12) AA†(B∗A†)†B∗B = AB;

(13) (A†∗B)† = B†A†ABB†A∗;

(14) (A†∗B)† = (A†AB)†A∗ and (A†AB)† = B†A†A;

(15) (A†∗B)† = B†(A†∗BB†)† and (A†∗BB†)† = BB†A∗;

(16) (A†∗B)† = B†(A†ABB†)†A∗ and (A†ABB†)† = BB†A†A;

(17) B†A∗ ∈ A†∗B{1, 3, 4};

(18) (B∗A†)†B∗A† = ABB†A† = A†∗BB†A∗ and B∗A†(B∗A†)† = B†A†AB = B∗A†AB†∗;

(19) (AB†∗)† = B∗A†;

(20) B†∗(AB†∗)†A = BB†A†A;

(21) AA∗(B†A∗)†B†B = AB;

(22) (AB†∗)† = B∗A†ABB†A†;

(23) (AB†∗)† = (A†AB†∗)†A† and (A†AB†∗)† = B∗A†A;

(24) (AB†∗)† = B∗(ABB†)† and (ABB†)† = BB†A†;

(25) (AB†∗)† = B∗(A†ABB†)†A† and (A†ABB†)† = BB†A†A;

(26) B∗A† ∈ AB†∗{1, 3, 4};

(27) (B†A∗)†B†A∗ = ABB†A† = A†∗BB†A∗ and B†A∗(B†A∗)† = B†A†AB = B∗A†AB†∗;

(28) (B†A†)† = AB;

(29) A†(B†A†)†B† = A†ABB†;

(30) (AA∗)†(B†A†)†(B∗B)† = A†∗A†∗;

(31) (B†A†)† = ABB†A†AB;

(32) (B†A†)† = A(B†A†A)† and (B†A†A)† = A†AB;



Reverse order law for closed range operators 19

(33) (B†A†)† = (BB†A†)†B and (BB†A†)† = ABB†;

(34) (B†A†)† = A(BB†A†A)†B and (BB†A†A)† = A†ABB†;

(35) AB ∈ B†A†{1, 3, 4};

(36) B†A†(B†A†)† = B†A†AB = B∗A†AB†∗ and (B†A†)†B†A† = ABB†A† = A†∗BB†A∗;

(37) (AB)† = (A∗AB)†A∗ and (A∗AB)† = B†(A∗A)†;

(38) (AB)† = B∗(ABB∗)† and (ABB∗)† = (BB∗)†A†;

(39) (AB)† = B∗(A∗ABB∗)†A∗ and (A∗ABB∗)† = (BB∗)†(A∗A)†;

(40) (AB)† = (B∗B)n((AA∗)mAB(B∗B)n)†(AA∗)m and

((AA∗)mAB(B∗B)n)† = (B(B∗B)n)†((AA∗)mA)†;

(41) (AB)† = B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗ and

((A∗A)m+1(BB∗)n+1)† = ((BB∗)†)n+1((A∗A)†)m+1.

Proof. (1)⇒ (2): Straightforward.
(2)⇒ (3): Pre- and post-multiplying the given condition by B∗ and A∗, respectively, we get
B∗B(AB)†AA∗ = B∗A∗, equivalently AA∗(B∗A∗)†B∗B = AB.
(3)⇒ (1): We have B∗B(AB)†AA∗ = B∗A∗. Pre- and post-multiplying by (B∗B)† and (AA∗)†

respectively, we get B†B(AB)†AA† = B†A†. It is clear that R((AB)†) = R((AB)∗) ⊆ R(B∗)
and R((AB)†∗) = R(AB) ⊆ R(A). Thus B†B(AB)† = (AB)† and (AB)†AA† = (AB)†. Hence,
B†B(AB)†AA† = (AB)† = B†A†.
(1)⇒ (4): It is easy to see from the assumption that

(AB)† = (AB)†AB(AB)† = B†A†ABB†A†.

(4)⇒ (5): Pre-multiplying the given condition by B and post-multiplying by A, we get B(AB)†A =

BB†A†ABB†A†A = (BB†A†A)2. (BB†A†A)4 = (BB†A†A)2(BB†A†A)2 = B(AB)†AB(AB)†A =
B(AB)†A = (BB†A†A)2. Since BB† and A†A are orthogonal projections by Lemma 2.7, BB†A†A =
A†ABB†. The statements (AB)† = (A†AB)†A† and (A†AB)† = B†A†A can be proved by verifying
all Penrose equations using BB†A†A = A†ABB†.
(5)⇒ (6): Note that by substituting the second condition in the first condition of (5), we get
(AB)† = B†A†. Thus, we have AB = AB(AB)†AB = ABB†A†AB, (AB)† = (AB)†AB(AB)† =
B†A†ABB†A†, ABB†A† is a projection and Hermitian. Now (ABB†)† = BB†A† is easily ver-
ifiable, using Theorem 3.1 (iii). Moreover, (AB)† = B†A†ABB†A† = B†A†(AB)(AB)† =
B†BB†A†AB(AB)† = B†(ABB†)†(AB)(AB)† = B†(ABB†)†.
(6)⇒ (7): Suppose (AB)† = B†(ABB†)†. Then

(AB)(AB)† = ABB†(ABB†)† = ABB†BB†A† = ABB†A†.

Thus, AB = ABB†A†AB. Now by Theorem 3.1 (vi), we get (A†ABB†)† = BB†A†A. Since BB†A† =
(ABB†)†, (A†ABB†)† = (ABB†)†A. Therefore B†(A†ABB†)†A† = B†(ABB†)†AA† = (AB)†AA† =
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(AB)†.
(7)⇒ (8): We have

AB = AB(AB)†AB = ABB†(A†ABB†)†A†AB

= ABB†BB†A†AA†AB = ABB†A†AB

and (AB)(AB)† = ABB†(A†ABB†)†A† = ABB†BB†A†AA† = ABB†A†. Similarly, (AB)†AB =
B†A†AB. Thus B†A† ∈ AB{1, 3, 4}.
(8)⇒ (9): Since B†A† ∈ AB{1, 3, 4}, AB = ABB†A†AB and ABB†A† = (ABB†A†)∗. Now,

(AB)(AB)† = ABB†A†AB(AB)† = (ABB†A†)∗AB(AB)†

= (B†A†)∗(AB)∗AB(AB)†

= (B†A†)∗(AB)∗( by Lemma 2.1 (vi))
= (ABB†A†)∗ = ABB†A†

= A†∗BB†A∗.

Similarly, we can prove the other relation.
(9)⇒ (10): Since AB(AB)† = ABB†A†, AB(AB)†AB = ABB†A†AB. Then by Theorem 3.1 (iv),
A†ABB† = BB†A†A. It is clear from the assumption that B†A∗ ∈ A†

∗
B{3, 4}. Also, it is easy to

verify that B†A∗ ∈ A†∗B{1, 2}.
(10)⇒ (1): Applying Theorem 3.1 for A†∗ and B, we get A∗A†∗BB† = BB†A∗A†∗ i.e., A†ABB† =

BB†A†A. Using the third and fourth Penrose conditions for (10), we get

ABB†A†AB = AA†ABB†B = AB,

B†A†ABB†A† = B†BB†A†AA† = B†A†,

(ABB†A†)∗ = A†∗BB†A∗ = ABB†A†,

(B†A†AB)∗ = B∗A†AB†∗ = B†A†AB.

The equivalences of (10)-(18) can be established by replacing A by A†∗ in (1)-(9). Similarly, the
equivalences of (19)-(27) can be established by replacing B by B†∗ in (1)-(9) and the equivalences of
(28)-(36) can be established by replacing A by B† and B by A† in (1)-(9). The equivalence of (1)
and (19) is similar to that of (1) and (10). The equivalence of (1) and (28) follows by applying the
Moore-Penrose inverse on both sides of (1) and (28).
(1)⇒ (37): We use Theorem 3.1 to prove (A∗AB)† = B†(A∗A)†. We get the first Penrose equation
verified as below. By using Lemma 2.1 (iv) and (vi), we get

A∗ABB†(A∗A)†A∗AB = A∗ABB†A†AB = A∗AA†ABB†B = A∗AB.

By Lemma 2.1, Theorem 3.1 and Theorem 3.2 (v), we get

[A∗ABB†(A∗A)†]∗ = [BB†A∗A(A∗A)†]∗ = (BB†A†A)∗ = A†ABB†.

The right-hand side is Hermitian, so is the left-hand side. Similarly, we can prove the second and
fourth Penrose equations. Also, we get

(A∗AB)†A∗ = B†(A∗A)†A∗ = B†A† = (AB)†.
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(1)⇒ (38): Similar to (1)⇒ (37).
(1)⇒ (39): By using Lemma 2.1 and Theorem 3.1, we get

A∗ABB∗(BB∗)†(A∗A)†A∗ABB∗ = A∗ABB†A†ABB∗

= A∗AA†ABB†BB∗

= A∗ABB∗.

Now, using Lemma 2.1 and Theorem 3.2 (v), we have

[A∗ABB∗(BB∗)†(A∗A)†]∗ = [A∗ABB†(A∗A)†]∗ = [BB†A∗A(A∗A)†]∗

= (BB†A†A)∗,

which is Hermitian by Theorem 3.1. Hence the first and third conditions of the Penrose equations
are satisfied. The second and fourth conditions follow similarly.
(1)⇒ (40): Let P = (AA∗)mA and Q = B(B∗B)n. Then R(P ), R(Q) and R(PQ) have closed
ranges by Lemma 3.2. We prove [(AA∗)mAB(B∗B)n]† = [B(B∗B)n]†[(AA∗)mA]† i.e., (PQ)† = Q†P †

by verifying the Penrose equations. By Lemma 2.1 and Theorem 3.1, we get

PQQ†P †PQ = (AA∗)mAB(B∗B)n[(B∗B)n]†B†A†[(AA∗)m]†(AA∗)mAB(B∗B)n

= (AA∗)mABB†BB†A†AA†AB(B∗B)n

= (AA∗)mABB†A†AB(B∗B)n = (AA∗)mAA†ABB†B(B∗B)n

= (AA∗)mAB(B∗B)n = PQ.

Similarly, we can prove the second Penrose equation. For proving the third one we use the following
facts that for all m ≥ 1, A†(AA∗)m = A∗(AA∗)m−1, [(AA∗)m]†A = [(AA∗)m−1]†A†∗ = A†∗ and
(ABB†A†)∗ = ABB†A†. We have

(PQQ†P †)∗ = ((AA∗)mABB†A†[(AA∗)m]†)∗

= [(AA∗)m]†ABB†A†(AA∗)m

= A†∗BB†A∗ = (ABB†A†)∗.

The right-hand side is Hermitian so is the left-hand side. Similarly, the fourth Penrose equation can
be proved. Also, we have

(B∗B)n[(AA∗)mAB(B∗B)n]†(AA∗)m = (B∗B)n[B(B∗B)n]†[(AA∗)mA]†(AA∗)m

= (B∗B)n[(B∗B)n]†B†A†[(AA∗)m]†(AA∗)m

= B†BB†A†AA† = B†A† = (AB)†.

(1)⇒ (41): Let P = (AA∗)m+1 and Q = (B∗B)n+1.We can prove the existence of (PQ)† by a similar
argument in Lemma 3.2.

PQQ†P †PQ = (AA∗)m+1B†BAA†(B∗B)n+1

= (AA∗)m+1AA†B†B(B∗B)n+1

= (AA∗)m+1(B∗B)n+1 = PQ.

Using the fact AA∗B†B = B†BAA∗, we have

(PQQ†P †)∗ = (AA∗)m+1B†B[(AA∗)m+1]†

= B†B(AA∗)m+1[(AA∗)m+1]†

= B†BAA†.
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The right-hand side is Hermitian so is the left-hand side. Similarly, the second and fourth Penrose
equations can be proved. Now we have

B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗ = B∗(BB∗)n[(BB∗)n+1]†

[(A∗A)m+1]†(A∗A)mA∗

= B∗BB†(BB∗)†(A∗A)†A†AA∗

= B∗(BB∗)†(A∗A)†A∗ = B†A† = (AB)†.

(37)− (41)⇒ (1): Using the given conditions we get

(AB)† = (A∗AB)†A∗ = B†(A∗A)†A∗ = B†A†.

Similarly, other implications also follow by substituting the second set of equations into the first ones
and using the properties of the Moore-Penrose inverse given in Lemma 2.1.

Proposition 3.1. Let the conditions of Theorem 3.1 hold. Then the following statements are true.

(i) A∗ABB†A†A is Hermitian if and only if B†A† ∈ AB{3}.

(ii) BB†A†ABB∗ is Hermitian if and only if B†A† ∈ AB{4}.

Proof. Since ABB†A† = A†∗A∗ABB†A†AA† we get B†A† ∈ AB{3} if and only if A∗ABB†A†A is
Hermitian. Similarly, we can prove (ii).

The next result is a continuation of Theorem 3.8.

Theorem 3.9. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(1) (AB)† = B†A†;

(42) (ABB∗)† = (BB∗)†A† and BB†A†ABB∗ is Hermitian;

(43) (A∗AB)† = B†(A∗A)† and A∗ABB†A†A is Hermitian;

(44) (ABB†)† = BB†A† and BB†A†ABB∗ is Hermitian;

(45) (A†AB)† = B†A†A and A∗ABB†A†A is Hermitian;

(46) (A∗ABB†)† = (BB∗)†(A∗A)†; A∗ABB†A†A and BB†A†ABB∗ are Hermitian;

(47) (A†ABB∗)† = (BB∗)†A†A; A∗ABB†A†A and BB†A†ABB∗ are Hermitian;

(48) (A∗ABB†)† = BB†(A∗A)†; A∗ABB†A†A and BB†A†ABB∗ are Hermitian;

(49) (A†ABB†)† = BB†A†A; A∗ABB†A†A and BB†A†ABB∗ are Hermitian.

Proof. In all the implications of the proof, Proposition 3.1 is also used.
(1)⇒ (42): Follows from Theorem 3.8 (38).
(42)⇒ (1): Follows from Theorem 3.2 (x).
(1)⇒ (43): Follows from Theorem 3.8 (37).
(43)⇒ (1): Follows from Theorem 3.3 (x).
(1)⇒ (44): Follows from Theorem 3.8 (6).
(44)⇒ (1): Follows from Theorem 3.2 (vi).
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(1)⇒ (45): Follows from Theorem 3.8 (5).
(45)⇒ (1): Follows from Theorem 3.3 (vi).
(1)⇒ (46): Follows from Theorem 3.8 (39).
(46)⇒ (1): It is easy to verify that B†A† ∈ AB{1, 2}.
(46)⇔ (47): Replacing B by BB∗ in the equivalence (43)⇔ (45).
(46)⇔ (48): Replacing A by A∗A in the equivalence (42)⇔ (44).

(47)⇔ (49): Replacing A by A†A in the equivalence (42)⇔ (44).
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