
ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2023, Volume 14, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University

in cooperation with
the M.V. Lomonosov Moscow State University

the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University

and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)

and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors–in–Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice–Editors–in–Chief
K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (Kazakhstan), O.V. Besov (Russia),
N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud
(France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov
(Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan),
B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin
(Great Britain), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan),
P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), F. Lanzara (Italy), V.G. Maz’ya (Sweden),
K.T. Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Para-
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On the 90th birthday
of Professor Oleg Vladimirovich Besov

This issue of the Eurasian Mathematical Journal is dedicated to the 90th birthday of Oleg
Vladimirovich Besov, an outstanding mathematician, Doctor of Sciences in physics and mathematics,
corresponding member of the Russian Academy of Sciences, academician of the European Academy of
Sciences, leading researcher of the Department of the Theory of Functions of the V.A. Steklov Insti-
tute of Mathematics, honorary professor of the Department of Mathematics of the Moscow Institute
of Physics and Technology.

Oleg started scientific research while still a student of the Faculty of Mechanics and Mathematics
of the M.V. Lomonosov Moscow State University. His research interests were formed under the
influence of his scientific supervisor, the great Russian mathematician Sergei Mikhailovich Nikol’skii.

In the world mathematical community O.V. Besov is well known for introducing and studying
the spaces Br

pθ(Rn), 1 ≤ p, θ ≤ ∞, of differentiable functions of several real variables, which are now
named Besov spaces (or Nikol’skii–Besov spaces, because for θ = ∞ they coincide with Nikol’skii
spaces Hr

p(Rn)).
The parameter r may be either an arbitrary positive number or a vector r = (r1, ..., rn) with

positive components rj. These spaces consist of functions having common smoothness of order r in
the isotropic case (not necessarily integer) and smoothness of orders rj in variables xj, j = 1, ..., n, in
the anisotropic case, measured in Lp-metrics, and θ is an additional parameter allowing more refined
classification in the smoothness property.
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O.V. Besov published more than 150 papers in leading mathematical journals most of which are
dedicated to further development of the theory of the spaces Br

pθ(Rn). He considered the spaces
Br
pθ(Ω) on regular and irregular domains Ω ⊂ Rn and proved for them embedding, extension, trace,

approximation and interpolation theorems. He also studied integral representations of functions, den-
sity of smooth functions, coercivity, multiplicative inequalities, error estimates in cubature formulas,
spaces with variable smoothness, asymptotics of Kolmogorov widths, etc.

The theory of Besov spaces had a fundamental impact on the development of the theory of
differentiable functions of several variables, the interpolation of linear operators, approximation the-
ory, the theory of partial differential equations (especially boundary value problems), mathematical
physics (Navier–Stokes equations, in particular), the theory of cubature formulas, and other areas of
mathematics.

Without exaggeration, one can say that Besov spaces have become a recognized and extensively
applied tool in the world of mathematical analysis: they have been studied and used in thousands
of articles and dozens of books. This is an outstanding achievement.

The first expositions of the basics of the theory of the spaces Br
pθ(Rn) were given by O.V. Besov

in [2], [3].
Further developments of the theory of Besov spaces were discussed in a series of survey papers,

e.g. [18], [12], [15]. The most detailed exposition of the theory of Besov spaces was given in the
book by S.M. Nikol’skii [19] and in the book by O.V. Besov, V.P. Il’in, S.M. Nikol’skii [11], which in
1977 was awarded a State Prize of the USSR. Important further developments of the theory of Besov
spaces were given in a series of books by Professor H. Triebel [21], [22], [23]. Many books on real
analysis and the theory of partial differential equations contain chapters dedicated to various aspects
of the theory of Besov spaces, e.g. [16], [1], [13]. Recently, in 2011, Professor Y. Sawano published
the book “Theory of Besov spaces” [20] (in Japanese, in 2018 it was translated into English).

A survey of the main facts of the theory of Besov spaces was given in the dedication to the 80th
birthday of O.V. Besov [14].

We would that like to add that during the last 10 years Oleg continued active research and
published around 25 papers (all of them without co-authors) on various aspects of the theory of
function spaces, namely, on the following topics:

Kolmogorov widths of Sobolev classes on an irregular domain (see, for example, [4]),
embedding theorems for weighted Sobolev spaces (see, for example, [5]),
the Sobolev embedding theorem for the limiting exponent (see, for example, [7]),
multiplicative estimates for norms of derivatives on a domain (see, for example, [8]),
interpolation of spaces of functions of positive smoothness on a domain (see, for example, [9]),
embedding theorems for spaces of functions of positive smoothness on irregular domains (see, for

example, [10]).
In 1954 S.M. Nikol’skii organized the seminar “Differentiable functions of several variables and

applications”, which became the world recognized leading seminar on the theory of function spaces.
Oleg participated in this seminar from the very beginning, first as the secretary and later, for more
than 30 years, as the head of the seminar first jointly with S.M. Nikol’skii and L.D. Kudryavtsev,
then up to the present time on his own.

O.V. Besov participated in numerous research projects supported by grants of several countries,
led many of them, and currently is the head of one of them: “Contemporary problems of the theory
of function spaces and applications” (project 19-11-00087, Russian Science Foundation).

He takes active part in the international mathematical life, participates in and contributes to
organizing many international conferences. He has given more than 100 invited talks at conferences
and has been invited to universities in more than 20 countries.

For more than 50 years O.V. Besov has been a professor at the Department of Mathematics of
the Moscow Institute of Physics and Technology. He is a celebrated and sought-after lecturer who is
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able to develop the student’s independent thinking. On the basis of his lectures he wrote a popular
text-book on mathematical analysis [6].

He spends a lot of time on supervising post-graduate students. One of his former post-graduate
students H.G. Ghazaryan, now a distinguished professor, plays an active role in the mathematical
life of Armenia and has many post-graduate students of his own.

Professor Besov has close academic ties with Kazakhstan mathematicians. He has many times
visited Kazakhstan, is an honorary professor of the Shakarim Semipalatinsk State University and a
member of the editorial board of the Eurasian Mathematical Journal. He has been awarded a medal
for his meritorious role in the development of science of the Republic of Kazakhstan.

Oleg is in good physical and mental shape, leads an active life, and continues productive research
on the theory of function spaces and lecturing at the Moscow Institute of Physics and Technology.

The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate Oleg
Vladimirovich Besov on occasion of his 90th birthday, wishes him good health and further productive
work in mathematics and mathematical education.

On behalf of the Editorial Board
V.I. Burenkov, T.V. Tararykova
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Abstract. We prove Hardy-type inequalities(∫ ∞
d

∣∣∣∣∫ s

d

f(x)dx

∣∣∣∣p sβds)1/p

≤ C

(∫ ∞
d

|f(s)|qsαds
)1/q

for the class of p-weakly monotone functions with q or p smaller than 1 and d ≥ 0.
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1 Introduction

The goal of this paper is to extend the results presented in [25] and [5] by proving inequalities of the
type (∫ ∞

d

∣∣∣∣∫ s

d

f(x)dx

∣∣∣∣p sβds)1/p

≤ C

(∫ ∞
d

|f(s)|qsαds
)1/q

for p or q smaller than one and for p-weakly monotone f .

Definition 1. [31, 3] Let f : R+ → R+ ∪ {0} be a measurable function, then we say that f is
p-weakly monotone

(
and write f ∈ WM(K,λ, p), where K > 0, λ > 1, p > 0

)
, if the inequality

f(x)p ≤ K

∫ λx

x/λ

f(s)p

s
ds (1.1)

holds for every x > 0. Similarly, let f : I = [a, b]→ R+ ∪ {0} be a measurable function, then we say
that f ∈ WM(K,λ, p) on I whenever fχI satisfies inequality (1.1).

Here and throughout the paper by χI we denote the characteristic function of I. The next concept
was studied in [28] with applications to number series. It appeared in [25] as a quasi-monotonicity.

Definition 2. [28] Let f : R+ → R+ ∪ {0} be a function, then we say that f is weakly monotone(
and write f ∈ WM(K), where K > 0

)
if the inequality

f(x) ≤ Kf(y) (1.2)

holds for every 2y ≥ x ≥ y > 0.
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Let us mention that both weakly monotone and p-weakly monotone functions/sequences play
an important role in various problems in analysis (see the precise references below). It is worth
mentioning that the class of weakly monotone functions contains as a subclass the class of general
monotone functions. Recall that for C > 0, the GM(C) class (see [30, 27]) is defined in the following
way:

GM(C) =
{
f ∈ BVloc : Var(f)[x;2x] ≤ C|f(x)| for all x ∈ (0,∞)

}
.

Here assuming that f is locally absolutely continuous on R+, the expression Var(f)[x;2x] can be
replaced by

∫ 2x

x
|f ′(t)|dt. Similarly, any p-general monotone function is always p-weakly monotone

(see [3, 27]), that is, GM(C, λ, p)  WM(K,λ, p), where K only depends on p, C and λ, and where

GM(C, λ, p) =
{
f ∈ BVloc : Var(f)[x;2x] ≤ C

(∫ λx

x/λ

|f(t)|p

t
dt

)1/p

for all x > 0
}
.

It is known that for p > 1 GM(C)  GM(C ′, λ, 1)  GM(C ′′, λ, p), where C ′ depends on C and λ;
and C ′′ depends on C ′ and λ. For the first embedding see [27, 31], for the second one see [3]. We
will see in Proposition 1.1 that the scale of weakly monotone functions has a similar structure.

Various applications of both general and weakly monotone sequences can be found in Fourier
analysis and approximation theory. In particular, in the study of integrability of Fourier transforms
[8, 17, 22] and trigonometric series [3, 4, 12, 14, 18], investigating various problems in approximation
theory [11, 15, 20, 19, 26, 30, 31], convergence problems [7, 13, 16, 23, 27, 30], theory of number
series [7, 28], and embedding theorems for smooth function spaces [3, 10, 9]. We emphasise that in
many problems the consideration of either general monotone or weakly monotone sequences/functions
imply completely different answers; see e.g. [3, 15, 27].

Let us present the main properties of weakly monotone and p-weakly monotone functions.

Proposition 1.1. The following properties hold:

1. f ∈ WM(K,λ, p) if and only if, for all x ∈ R

f(exp(x))p ≤ K

∫ lnλ+x

x−lnλ

f(exp(t))pdt;

2. WM(K) ( WM(K ′, λ, p), where K ′ depends only on K, p and λ;

3. Let q > p > 0, then WM(K,λ, p) ( WM(K ′, λ, q), where K ′ depends only on K, p, q and λ;

4. Let f ∈ WM(K,λ, p), then g(t) = f(t−1) ∈ WM(K,λ, p). However, if f ∈ WM(K), then g may
not be in WM(K ′) for any K ′;

5. Let f ∈ WM(K,λ, p) and α ∈ R. If g(t) = f(t)tα, then g ∈ WM(λ|α|pK,λ, p). If f ∈ WM(K),
then g ∈ WM(K ′), where K ′ depends only on K and α;

6. Let f ∈ WM(K,λ, p) and α ∈ R, then g(t) = f(t)α ∈ WM(K,λ, p/α). If f ∈ WM(K), then
g ∈ WM(K ′), where K ′ depends only on K and α;

7. Let f ∈ WM(K,λ, p) and α > 0, then g(t) = f(t/α) ∈ WM(K,λ, p). If f ∈ WM(K), then
g ∈ WM(K ′), where K ′ depends only on K and α.
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Proof. To show 1), we use a logarithmic change of variable. Furthermore, if f ∈ WM(K), we have
that

x(λ− 1)

λ
f(x)p ≤ K ′

∫ x

x/λ

f(y)pdy ≤ K ′
∫ λx

x/λ

f(y)pdy.

Hence, f is p-weakly monotone and 2) follows. To see that the inclusion is proper, consider f(x) =
xaχ(0,1)∪(1,+∞)(x). Since f(1) = 0, f cannot be WM(K) for any K and a simple calculation shows
that f ∈ WM(K(λ, a, p), λ, p), for every λ > 1, p > 0.

The embedding WM(K,λ, p) ( WM(K ′, λ, q) follows from Hölder’s inequality. To see its sharp-
ness, for c > 1, consider f such that

f q(exp(x)) = g(x) =
∞∑
n=1

cn42nχ[n,n+4−2n−1 ](x).

It is easy to see that f ∈ WM(1/c, e2, q) but f 6∈ WM(K,µ, q/2) for any K or µ. Therefore if
r = p/q < 1 there must be some n ≥ 0 such that

f r
n ∈ WM(1/c, e2, 1) but f r

n+1 6∈ WM(K,µ, 1),

therefore f rn/q ∈ WM(1/c, e2, q) but f rn/q 6∈ WM(K,µ, p). For λ other than e2, we can modify the
previous example correspondingly.

To show the first part of 4) we use a change of variables, for the second part, consider f(x) =
x−1χ(0,1)(x). Property 5) follows from the monotonicity of power functions while 6) is obvious.
Finally, the first part of 7) follows from a change of variables and the second part is clear.

2 Weighted Lp spaces and Hardy inequalities

For p > 0 and α ∈ R we denote

‖f‖p,α =

(∫ ∞
0

|f(s)|psαds
)1/p

, (2.1)

and for d > 0 we denote

‖f‖(d)
p,α =

(∫ ∞
d

|f(s)|psαds
)1/p

. (2.2)

Note that if d > 0, then ‖f‖(d)
p,α ≤ d−ε/p‖f‖(d)

p,α+ε for ε > 0.
First we are going to study the embeddings between weighted Lp spaces for p-weakly monotone

functions.
From now on, by p and q we will denote positive numbers, by α and β, real numbers; and by C,

a constant which depends only on p, q, α, β,K, λ.

Lemma 2.1. Let p ≥ q > 0, β ∈ R, and f ∈ WM(K,λ, q). Let α = q
p
(β + 1)− 1. Then(∫ x

0

fp(s)sβds

)q/p
≤ C

∫ λx

0

f(s)qsαds

and (∫ ∞
x

fp(s)sβds

)q/p
≤ C

∫ ∞
x/λ

f(s)qsαds.
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Proof. Let n ∈ Z be such that λn−1 < x ≤ λn. For each j ∈ Z, let λj ≤ sj ≤ λj+1 be such that∫ λj+1

λj
f(s)psβds ≤

(
λj+1 − λj

)
f(sj)

psβj .

Note that if for all λj ≤ t ≤ λj+1,∫ λj+1

λj
f(s)psβds >

(
λj+1 − λj

)
f(t)ptβ,

integrating both sides,

(
λj+1 − λj

) ∫ λj+1

λj
f(s)psβds =

∫ λj+1

λj

(∫ λj+1

λj
f(s)psβds

)
dt >

(
λj+1 − λj

) ∫ λj+1

λj
f(t)ptβdt,

we arrive at a contradiction, therefore sj must exist.
We see that(∫ x

0

fp(s)sβds

)q/p
≤

(∫ λn−1

0

fp(s)sβds

)q/p

+

(∫ x

λn−1

fp(s)sβds

)q/p
.

Hence (∫ λn−1

0

fp(s)sβds

)q/p

≤
n−2∑
j=−∞

(∫ λj+1

λj
f(s)psβds

)q/p

≤ C
n−2∑
j=−∞

s
qβ/p
j f(sj)

qλqj/p.

Now, since f ∈ WM(K,λ, q)

n−2∑
j=−∞

s
qβ/p
j f(sj)

qλqj/p ≤ C
n−2∑
j=−∞

s
qβ/p
j λqj/p

∫ λj+2

λj−1

f(s)q

s
ds ≤ C

∫ λx

0

f(s)qsαds.

Finally, by the same token (∫ x

λn−1

fp(s)sβds

)q/p
≤ C

∫ λx

λn−2

f(s)qsαds.

And the result follows by adding both inequalities up. The proof of the second inequality is analogous.

Proposition 2.1. There is a C > 0 such that for all f ∈ WM(K,λ, q)

‖f‖p,β ≤ C‖f‖q,α ⇐⇒ α + 1

q
=
β + 1

p
and q ≤ p.

Proof. The "if" part is a restatement of Lemma 2.1. The proof of the "only if" part will be given in
section 3.

Remark 1. In the general case, that is, without the assumption that f ∈ WM(K,λ, p), it is not
possible to obtain any non-trivial embedding of the type ‖f‖p,β ≤ C‖f‖q,α.
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Proof. First, let f be a non-negative function which is not zero almost everywhere. For λ > 0, let
fλ(t) = f(λt). Then a change of variables shows that ‖fλ‖p,β = λ−

β+1
p ‖f‖p,β. Therefore if such a

C > 0 exists, we derive

‖fλ‖p,β = λ−
β+1
p ‖f‖p,β ≤ C‖fλ‖q,α = Cλ−

α+1
q ‖f‖q,α,

which implies α+1
q

= β+1
p
.

Next, consider fn(t) = χ(1,1+1/n)(t). A simple calculation shows that

lim
n→∞

n1/p‖fn‖p,β = 1.

Therefore, if such a C > 0 exists,

1 = lim
n→∞

n1/p‖fn‖p,β
n1/q‖fn‖q,α

≤ C lim
n→∞

n1/p−1/q,

from which it follows that p ≤ q.
Finally, let f(x) = x−(β+1)/p ln(x+ 1)−1/pχ[1,∞)(x). Then

‖f‖pp,β =

∫ ∞
1

1

x ln(x+ 1)
dx =∞,

and
‖f‖qq,α =

∫ ∞
1

1

xq(β+1)/p−α ln(x+ 1)q/p
dx.

The last integral is finite when α+1
q

= β+1
p

and q > p. Thus the only remaining possibility is the
trivial one: p = q and α = β.

Proposition 2.2. Let d > 0, then there is a C > 0 such that for all f ∈ WM(K,λ, q) on [d,∞],

‖f‖(d)
p,β ≤ C ‖f‖(d)

q,α

if and only if

α + 1

q
>
β + 1

p
and q > p or

α + 1

q
≥ β + 1

p
and q ≤ p.

Proof. For the "if" part, the q > p case follows from Hölder’s inequality and the q ≤ p case from
Lemma 2.1 by considering fχ[d,∞] and the following fact:

‖f‖(d)
p,α ≤ d−ε/p ‖f‖(d)

p,α+ε for ε > 0 and d > 0.

The proof of the "only if" part will be given in Section 3.

We now state and prove Hardy-type inequalities for p-weakly monotone functions.
Let us recall the original Hardy inequality. Denote

F (x) =

∫ x

0

f(s)ds.

Theorem A. (see, e.g., [24]) Let p > 1. Then

‖F‖p,−p ≤
p

p− 1
‖f‖p,0 .
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There are many generalizations of this result in various settings. Let us mention the following
classical result by Bradley [5] for power weights.

Theorem B. [5] Let 1 < q ≤ p. Then there is a C > 0 such that

‖F‖p,β ≤ C ‖f‖q,α ⇐⇒ α + 1

q
=
β + 1

p
+ 1 and β < −1.

For q < 1 it is necessary to restrict ourselves to a narrower class of functions, as the following
example shows.

Example 1. Let 1 > ε > q. Consider the following function

f(x) =
∞∑
n=1

4nχ[n,n+4−εn](x)

An easy calculation shows that

‖f‖q,α ≤ C

(
∞∑
n=1

4(q−ε)nnα

)1/q

<∞

and, if 2 ≤ n ≤ x < n+ 1, ∫ x

0

f(s)ds ≥
n−1∑
j=1

4j(1−ε) ≥ C4n(1−ε).

Hence,

‖F‖p,β ≥ C

(
∞∑
n=2

nβ4(1−ε)pn

)1/p

=∞.

We mention that the Hardy inequalities ‖F‖p,α−p ≤ C ‖f‖p,α for 0 < p < 1 and −1 < α < p− 1
under some monotone-type condition of f have been recently studied in [6, 1, 2]. This topic has
been originated by Konuyshkov [21], who considered quasi-monotone functions, and Leindler [25],
who restricted himself to consideration of functions from the WM(K) class.

In this paper we investigate the (p, q) case and weakly monotone functions.

Theorem 2.1. Let p ≥ q ≤ 1, and β < −1. Let f ∈ WM(K,λ, q). Then,

‖F‖p,β ≤ C ‖f‖q,α ⇐⇒ α + 1

q
=
β + 1

p
+ 1.

Furthermore, if 0 < p < q <∞ there is no such C.

Proof. Note that F is monotonically increasing and thus F ∈ WM(K,λ, p) for any λ and p. Hence,
applying Proposition 2.1, we obtain

‖F‖p,β ≤ C ‖F‖
q,
q(β+1)
p
−1
.

Let γ = α− q = q(β+1)
p
− 1 < −1. Then, by Lemma 2.1 with p = 1,

‖F‖qq,γ =

∫ ∞
0

xγ
(∫ x

0

f(s)ds

)q
dx ≤ C

∫ ∞
0

xγ
∫ λx

0

f(s)q

s1−q dsdx = C

∫ ∞
0

f(s)q

s1−q

∫ ∞
s/λ

xγdxds.
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Since γ < −1, we continue as follows

C

(∫ ∞
0

f(s)q

s1−q s
1+γds

)1/q

= C

(∫ ∞
0

f(s)qsq+γ
)1/q

= C ‖f‖q,q+γ = C ‖f‖q,α .

The "only if" part as well as the q > p case will be proved in Section 3.

Remark 2. Note that Theorem 2.1 is optimal with respect to q, that is, for every 1 > q ≤ p and
q′ > q there exists f ∈ WM(K,µ, q′) such that the inequality ‖F‖p,β ≤ C ‖f‖q,α does not hold.

Proof. Let q′ > q < 1 and λ > 1 such that q′ > λ−1 > q. Consider the following function:

g =
∞∑
n=1

4λ
n

χ[n,n+4−λn−1 ]

and let f(ex) = g(x). Note that if 1 ≤ n ≤ x < n+ 1, one has

g(x)q
′ ≤ 4q

′λn ≤ 4(λn)(q′−λ−1)λm ≤
∫ n+m+1

n+m

g(s)q
′
ds ≤

∫ x+m+1

x−m−1

g(s)q
′
ds

for m ∈ N such that (q′ − λ−1)λm > q′. Thus, from Proposition 1.1 we conclude that f ∈
WM(1, em+1, q′).

First, we show that∫ ∞
0

f(x)qxαdx =

∫ ∞
−∞

g(s)qes(α+1)ds ≤ C ′
∞∑
n=1

4(q−λ−1)λnen(α+1) <∞.

Now, ∫ ∞
0

(∫ x

0

f(y)dy

)p
xβdx =

∫ ∞
−∞

(∫ x

−∞
g(y)eydy

)p
es(β+1)dx

and, for n ∈ N,∫ n+2

n+1

(∫ x

−∞
g(y)eydy

)p
es(β+1)dx ≥ C ′e(n+1)(β+1)

(∫ n+1

−∞
g(y)eydy

)p
≥ C ′e(n+1)(β+1)4λ

np(1−λ−1)epn.

Therefore, ∫ ∞
0

(∫ x

0

f(y)dy

)p
xβdx ≥ C ′

∞∑
n=1

e(n+1)(β+1)4λ
np(1−λ−1)epn =∞

and consequently, the inequality ‖F‖p,β ≤ C ‖f‖q,α is not valid.

Now, similarly to F , we define an average of f with a lower limit of the integral being non zero
and we will see that in this case the set of admissible parameters α, β becomes wider. For d > 0, we
denote

Fd(x) =

∫ x

d

f(s)ds.

Theorem 2.2. Let d > 0. Let p ≥ q ≤ 1, and β < −1. Let f ∈ WM(K,λ, q) on [d,∞]. Then,

‖Fd‖(d)
p,β ≤ C ‖f‖(d)

q,α ⇐⇒ α + 1

q
≥ β + 1

p
+ 1.
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Proof. Applying Theorem 2.1 to fχ[d,∞] we obtain the result in the case α+1
q

= β+1
p

+1. The remaining
cases follow from the following fact:

‖f‖(d)
p,α ≤ d−ε/p ‖f‖(d)

p,α+ε for ε > 0 and d > 0.

The proof of the "only if" part will be given in Section 3.

Theorem 2.3. Let d > 0. Let q > p ≤ 1, and β < −1. Let f ∈ WM(K,λ, p) on [d,∞] Then,

‖Fd‖(d)
p,β ≤ C ‖f‖(d)

q,α if and only if
α + 1

q
>
β + 1

p
+ 1.

Proof. Applying Theorem 2.1 to fχ[d,∞] we obtain

‖Fd‖(d)
p,β ≤ C ‖f‖(d)

p,β+p .

Finally, since q > p we can use Proposition 2.2 to obtain

‖f‖(d)
p,β+p ≤ C ‖f‖(d)

q,α

for α+1
q
> β+1+p

p
. The proof of the "only if" part will be given in Section 3.

Note that since F is non-decreasing, we have ‖F‖∞,β = supx∈[0,∞] F (x) =
∫∞

0
f(s)ds. Thus,

Theorem 2.4 (Case p =∞). Let q ≤ 1 and f ∈ WM(K,λ, q), then∫ ∞
0

f(s)ds ≤ C

(∫ ∞
0

f q(s)sαds

)1/q

if and only if α = q − 1.

Proof. The "if" part is a restatement of Lemma 2.1. The proof of the "only if" part will be given in
Section 3.

As an immediate corollary, we obtain

Theorem 2.5. Let d > 0. Let q ≤ 1 and f ∈ WM(K,λ, q) on [d,∞], then∫ ∞
d

f(s)ds ≤ C

(∫ ∞
d

f q(s)sαds

)1/q

if and only if α ≥ q − 1.

For 0 < D ≤ ∞, denote

G∗(x) =

∫ D

x

g(s)ds

and

‖g‖∗,(D)
p,α =

(∫ D

0

|g(s)|psαds
)1/p

.

The following result is well known, see for example, [24].

Theorem C. (see, e.g., [24]). Let 1 < q ≤ p, then there exists C such that

‖G∗‖∗,(∞)
p,β ≤ C ‖g‖∗,(∞)

q,α ⇐⇒ α + 1

q
=
β + 1

p
+ 1 and β > −1.
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We obtain the following counterparts of Theorems 2.5, 2.7, 2.8, 2.9 and 2.10.

Theorem 2.6. Let g ∈ WM(K,λ, q) on [0, D] for 0 < D ≤ ∞. Let also β > −1.

1. Let g ∈ WM(K,λ, q). If 1 ≥ q ≤ p ≤ ∞, then ‖G∗‖∗,(∞)
p,β ≤ C ‖g‖∗,(∞)

q,α ⇐⇒ α+1
q

= β+1
p

+ 1.
Furthermore, if ∞ > q > p > 0 there is no such C.

2. Let g ∈ WM(K,λ, q) on [0, D] for 0 < D < ∞. If 1 ≥ q ≤ p ≤ ∞, then ‖G∗‖∗,(D)
p,β ≤

C ‖g‖∗,(D)
q,α ⇐⇒ α+1

q
≤ β+1

p
+ 1.

3. Let g ∈ WM(K,λ, q) on [0, D] for 0 < D < ∞. If q > p ≤ 1, then ‖G∗‖∗,(D)
p,β ≤ C ‖g‖∗,(D)

q,α ⇐⇒
α+1
q
< β+1

p
+ 1.

Proof. Let d = 1/D. Denote
g(t) = f(t−1)t−2.

Note that g(t−1)t−2 = f(t). Using the properties of p-weakly monotone functions, we know that
g ∈ WM(K ′, λ, p) on [0, 1/d] if and only if f ∈ WM(K,λ, p) on [d,∞].
We have

G∗(x) =

∫ 1/d

x

g(s)ds.

Since ∫ 1/d

x

g(s)ds =

∫ 1/x

d

g(t−1)t−2dt =

∫ 1/x

d

f(t)dt,

we have
G∗(x) = F (x−1).

Similarly, we derive that

‖G∗‖∗,(1/d)
p,−β−2 = ‖F‖(d)

p,β and ‖g‖∗,(1/d)
q,2q−2−α = ‖f‖(d)

q,α .

Thus,
‖G∗‖∗,(1/d)

p,−β−2 ≤ C ‖g‖∗,(1/d)
q,2q−2−α if and only if ‖F‖(d)

p,β ≤ C ‖f‖(d)
q,α .

Finally, using Theorems 2.5, 2.7, 2.8, 2.9, 2.10, the result follows.

3 Optimality

Note that if we prove the sharpness of Theorems 2.1, 2.2, 2.3, 2.4, then the sharpness of Propositions
2.1 and 2.2 follows. Remark also that for γ > −1, g(x) = xγχ[0,1] is WM(K,λ, p) for every p and λ
since

xpγ ≤ K

∫ x

x/λ

spγ−1ds ≤ K

∫ λx

x/λ

g(s)p

s
ds.

Denote
∫ x

0
g(s)ds = G(x).

Now, ‖g‖q,α <∞ ⇐⇒ γ > −1−α
q

, and, for β < −1, ‖G‖p,β =∞ if and only if either γ ≤ −1 or
γ ≤ −1−β

p
− 1. So if −1−α

q
< γ < −1−β

p
− 1, ‖G‖p,β = ∞ and ‖g‖q,α < ∞. Thus, the inequality in

Theorem 2.1 cannot possibly hold for 1+α
q
> 1+β

p
+ 1.

For the p = ∞ case (Theorem 2.4), the same considerations for xγχ[0,1] suffice to obtain the
condition 1+α

q
≤ 1.
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Now for d ≥ 0. Let p 6=∞, define

g(x) = x−(β+1+p)/p ln(x+ b)−1/p

(
−β + 1

p
− 1

p

x

(x+ b) ln(x+ b)

)
.

Note that since β < −1, for large enough b, f(x) > 0 for x > 0, and

Dx−(β+1+p)/p ln(x+ b)−1/p > g(x) > Cx−(β+1+p)/p ln(x+ b)−1/p

for some C,D > 0. It is easy to see that

G(x) =

∫ x

0

g(s)ds = x−(β+1)/p ln(x+ b)−1/p.

Set
f(x) = x−(β+1+p)/p ln(x+ b)−1/p.

It is clear that f(x) and g(x) have the same behaviour at infinity and so do F (x) =
∫ x

0
f(s)ds and

G(x).
Now assume that there is a locally integrable function h and M > 0 such that

1. h(x) = 0 for x < d+ 1;

2. h(x) = f(x) for x > M ;

3.
∫ x
d
h(s)ds = H(x) = F (x) > D−1G(x) for x > M ;

4. h ∈ WM(K,λ, r) on [d,∞] for any r.

Then (
‖H‖(d)

p,β

)p
> D−1

∫ ∞
M

1

x ln(x+ b)
dx =∞

and (
‖h‖(d)

q,α

)q
=

∫ M

d+1

hq(x)xαdx+

∫ ∞
M

1

xq(β+1+p)/p−α ln(x+ b)q/p
dx,

which is finite provided either q(β+1+p)
p

− α > 1 or q(β+1+p)
p

− α = 1 and q > p.
So if q(β+1+p)

p
− α > 1 (or, equivalently, α+1

q
< β+1

p
+ 1) or if q(β+1+p)

p
− α = 1 (or, equivalently,

α+1
q

= β+1
p

+ 1) and q > p, the inequalities in Theorems 2.1, 2.2 and 2.3 cannot hold.
All that remains is to build h satisfying the former properties. Since f(x) = x−(β+1+p)/p ln(x +

b)−1/p, if (β + 1 + p)/p < 0, f will be eventually monotonically increasing, say for x > N . Now, let
n ∈ N be such that (d+ 1)λn ≥ N and n ≥ 4. For m ∈ R+, let

h(x,m) =


0, x < d+ 1

m, d+ 1 ≤ x ≤ (d+ 1)λ2,

0, (d+ 1)λ2 < x < λn(d+ 1),

f(x), x ≥ (d+ 1)λn.

(3.1)

Note that for any x > 0, h is monotonic on [x/λ, λx], thus h ∈ WM(K,λ, r) for any r > 0
and for some K. Furthermore, by construction h(x) = 0, for x < d + 1 and h(x) = f(x) for
x ≥M = (d+ 1)λn.

Finally, since
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∫ M

0

h(x, 0)dx ≤
∫ M

0

f(s)ds <

∫ M

0

h(x,∞)dx =∞,

by continuity there must be some m∗ such that∫ M

0

h(x,m∗)dx =

∫ M

0

f(s)ds.

So if h(x) = h(x,m∗), one has ∫ x

0

h(s,m∗)ds =

∫ x

0

f(s)ds

for x > M .
Obviously, if (β + 1 + p)/p ≥ 0, f(x) will be always decreasing. For m ∈ R+, let

h(x,m) =


0, x < d+ 1,

m, d+ 1 ≤ x ≤ (d+ 1)λ2,

f(x), x ≥ (d+ 1)λ2.

(3.2)

Note that if m ≥ f((d + 1)λ2), then for any x > 0, h is monotonic on [x/λ, λx], thus h ∈
WM(K,λ, r) for any r > 0 and for some K.

Let m = F (λ2(d+1))
λ2(d+1)−(d+1)

≥ F (λ2(d+1))
λ2(d+1)

≥ f(λ2(d + 1)), where the last inequality holds because f is
decreasing. Then h(x,m) is the desired counterexample.

The only case that remains is when p = ∞. To deal with it, it suffices to use the previously
described idea to build a locally monotonic function which agrees with xγ for large enough x.
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