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On the 90th birthday
of Professor Oleg Vladimirovich Besov

This issue of the Eurasian Mathematical Journal is dedicated to the 90th birthday of Oleg
Vladimirovich Besov, an outstanding mathematician, Doctor of Sciences in physics and mathematics,
corresponding member of the Russian Academy of Sciences, academician of the European Academy of
Sciences, leading researcher of the Department of the Theory of Functions of the V.A. Steklov Insti-
tute of Mathematics, honorary professor of the Department of Mathematics of the Moscow Institute
of Physics and Technology.

Oleg started scientific research while still a student of the Faculty of Mechanics and Mathematics
of the M.V. Lomonosov Moscow State University. His research interests were formed under the
influence of his scientific supervisor, the great Russian mathematician Sergei Mikhailovich Nikol’skii.

In the world mathematical community O.V. Besov is well known for introducing and studying
the spaces Br

pθ(Rn), 1 ≤ p, θ ≤ ∞, of differentiable functions of several real variables, which are now
named Besov spaces (or Nikol’skii–Besov spaces, because for θ = ∞ they coincide with Nikol’skii
spaces Hr

p(Rn)).
The parameter r may be either an arbitrary positive number or a vector r = (r1, ..., rn) with

positive components rj. These spaces consist of functions having common smoothness of order r in
the isotropic case (not necessarily integer) and smoothness of orders rj in variables xj, j = 1, ..., n, in
the anisotropic case, measured in Lp-metrics, and θ is an additional parameter allowing more refined
classification in the smoothness property.
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O.V. Besov published more than 150 papers in leading mathematical journals most of which are
dedicated to further development of the theory of the spaces Br

pθ(Rn). He considered the spaces
Br
pθ(Ω) on regular and irregular domains Ω ⊂ Rn and proved for them embedding, extension, trace,

approximation and interpolation theorems. He also studied integral representations of functions, den-
sity of smooth functions, coercivity, multiplicative inequalities, error estimates in cubature formulas,
spaces with variable smoothness, asymptotics of Kolmogorov widths, etc.

The theory of Besov spaces had a fundamental impact on the development of the theory of
differentiable functions of several variables, the interpolation of linear operators, approximation the-
ory, the theory of partial differential equations (especially boundary value problems), mathematical
physics (Navier–Stokes equations, in particular), the theory of cubature formulas, and other areas of
mathematics.

Without exaggeration, one can say that Besov spaces have become a recognized and extensively
applied tool in the world of mathematical analysis: they have been studied and used in thousands
of articles and dozens of books. This is an outstanding achievement.

The first expositions of the basics of the theory of the spaces Br
pθ(Rn) were given by O.V. Besov

in [2], [3].
Further developments of the theory of Besov spaces were discussed in a series of survey papers,

e.g. [18], [12], [15]. The most detailed exposition of the theory of Besov spaces was given in the
book by S.M. Nikol’skii [19] and in the book by O.V. Besov, V.P. Il’in, S.M. Nikol’skii [11], which in
1977 was awarded a State Prize of the USSR. Important further developments of the theory of Besov
spaces were given in a series of books by Professor H. Triebel [21], [22], [23]. Many books on real
analysis and the theory of partial differential equations contain chapters dedicated to various aspects
of the theory of Besov spaces, e.g. [16], [1], [13]. Recently, in 2011, Professor Y. Sawano published
the book “Theory of Besov spaces” [20] (in Japanese, in 2018 it was translated into English).

A survey of the main facts of the theory of Besov spaces was given in the dedication to the 80th
birthday of O.V. Besov [14].

We would that like to add that during the last 10 years Oleg continued active research and
published around 25 papers (all of them without co-authors) on various aspects of the theory of
function spaces, namely, on the following topics:

Kolmogorov widths of Sobolev classes on an irregular domain (see, for example, [4]),
embedding theorems for weighted Sobolev spaces (see, for example, [5]),
the Sobolev embedding theorem for the limiting exponent (see, for example, [7]),
multiplicative estimates for norms of derivatives on a domain (see, for example, [8]),
interpolation of spaces of functions of positive smoothness on a domain (see, for example, [9]),
embedding theorems for spaces of functions of positive smoothness on irregular domains (see, for

example, [10]).
In 1954 S.M. Nikol’skii organized the seminar “Differentiable functions of several variables and

applications”, which became the world recognized leading seminar on the theory of function spaces.
Oleg participated in this seminar from the very beginning, first as the secretary and later, for more
than 30 years, as the head of the seminar first jointly with S.M. Nikol’skii and L.D. Kudryavtsev,
then up to the present time on his own.

O.V. Besov participated in numerous research projects supported by grants of several countries,
led many of them, and currently is the head of one of them: “Contemporary problems of the theory
of function spaces and applications” (project 19-11-00087, Russian Science Foundation).

He takes active part in the international mathematical life, participates in and contributes to
organizing many international conferences. He has given more than 100 invited talks at conferences
and has been invited to universities in more than 20 countries.

For more than 50 years O.V. Besov has been a professor at the Department of Mathematics of
the Moscow Institute of Physics and Technology. He is a celebrated and sought-after lecturer who is
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able to develop the student’s independent thinking. On the basis of his lectures he wrote a popular
text-book on mathematical analysis [6].

He spends a lot of time on supervising post-graduate students. One of his former post-graduate
students H.G. Ghazaryan, now a distinguished professor, plays an active role in the mathematical
life of Armenia and has many post-graduate students of his own.

Professor Besov has close academic ties with Kazakhstan mathematicians. He has many times
visited Kazakhstan, is an honorary professor of the Shakarim Semipalatinsk State University and a
member of the editorial board of the Eurasian Mathematical Journal. He has been awarded a medal
for his meritorious role in the development of science of the Republic of Kazakhstan.

Oleg is in good physical and mental shape, leads an active life, and continues productive research
on the theory of function spaces and lecturing at the Moscow Institute of Physics and Technology.

The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate Oleg
Vladimirovich Besov on occasion of his 90th birthday, wishes him good health and further productive
work in mathematics and mathematical education.

On behalf of the Editorial Board
V.I. Burenkov, T.V. Tararykova
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Abstract. In the present article, we introduce a new class of operators which will be called the class
of (M,k)-quasi-*-class Q operators. An operator A ∈ B(H) is said to be (M,k)-quasi-*-class Q for
certain integer k, if there exists M > 0 such that

A∗k(MA∗2A2 − 2AA∗ + I)Ak ≥ 0.

Some properties of this class of operators are shown. It is proved that the considered class contains
the class of k-quasi-*-class A operators. The decomposition of such operators, their restrictions on
invariant subspaces, the n-multicyclicity and some spectral properties are also presented. We also
show that if λ ∈ C, λ 6= 0 is an isolated point of the spectrum of A, then the Riesz idempotent E for
λ is self-adjoint, and verifies EH = ker(A− λ) = ker(A− λ)?.
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1 Introduction

Let H be an infinite dimensional complex separable Hilbert space, and let B(H) be the Banach
algebra of all bounded linear operators on H. Denote, respectively, by ker(A) and ran(A) the null
space and the range space of an operator A in B(H). As an easy extension of normal operators,
hyponormal operators have been studied by many mathematicians. Though there are many unsolved
interesting problems for hyponormal operators (e.g., the invariant subspace problem), one of recent
trends in operator theory is to study natural extensions of hyponormal operators. Below we introduce
some of these non-hyponormal operators. Recall ([3, 7]) that A ∈ B(H) is called hyponormal if
A∗A ≥ AA∗, paranormal if ‖A2x‖ ≥ ‖Ax‖2 and ∗-paranormal if ‖A2x‖ ≥ ‖A∗x‖2) for each unit
vector x ∈ H. Following [7] and [12], we say that A ∈ B(H) belongs to class A if |A2| ≥ |A|2 where
A∗A = |A|2. Recently, B.P. Duggal, I.H. Jeon and I.H. Kim [6] considered the following new class of
operators: an operator A ∈ B(H) is said to belong to the ∗-class A if |A2| ≥ |A∗|2. For brevity, we
shall denote classes of hyponormal operators, paranormal operators, ∗-paranormal operators, class
A operators, and ∗-class A operators by H, PN , PN ∗, A and A∗ respectively. From [3] and [7], it
is well known that

H ⊂ A ⊂ PN

and
H ⊂ A∗ ⊂ PN ∗.
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Recently, the authors of [23] have extended ∗-class A operators to quasi-∗-class A operators. An
operator A ∈ B(H) is said to be quasi-∗-class A if A∗|A2|A ≥ A∗|A∗|2A, and quasi-∗-paranormal if

‖A∗Ax‖2 ≤ ‖A3x‖‖Ax‖

for all x ∈ H. In [19], many results on quasi-∗-paranormal operators were proved. In particular,
quasi-∗-paranormal operators have Bishop’s property (β) [19]. If we denote the class of quasi-∗-class
A operators by QA∗ and of quasi-∗-paranormal operators by QPN ∗, we have

H ⊂ A∗ ⊂ QA∗ ⊂ QPN ∗.

As a further generalization, S.Mecheri in [16, 14] introduced the class of k-quasi-∗-class A operators
and the class of k-quasi-∗-paranormal operators [20]. An operator T is said to be a k-quasi-∗-class
A operator if

Ak(|A2| − |A∗|2)Ak ≥ 0

where k is a natural number and k-quasi-∗-paranormal if

‖A∗Akx‖2 ≤ ‖Ak+2x‖‖Akx‖

for all unit vector x ∈ H where k is a natural number. 1-quasi-∗-class A is quasi-∗-class A and
1-quasi-∗-paranormal is quasi-∗-paranormal. It is shown that a k-quasi-∗-class A operator is a k-
quasi-∗-paranormal operator [20].

An operator A in B(H) is said to be an M -*-class Q operator [5], if there exists M > 0 such that

MA∗2A2 − 2AA∗ + I ≥ 0.

A ∈ B(H) is said to be (M,k)-quasi-*-class Q operator [5], if

A∗k(MA∗2A2 − 2AA∗ + I)Ak ≥ 0.

For k = 1, A is an M -quasi-*-class Q operator. It is clear that

M -*-class Q ⊂M -quasi-*-class Q ⊂ (M,k) -quasi-*-class Q

and that
(M,k) -quasi-*-class Q ⊂ (M,k + 1) -quasi-*-class Q.

Example Consider on the Hilbert space l2, equipped with its standard orthonormal basis (en)n, the
weighted right shift defined by Sen = λnen+1, where (λn)n is a decreasing complex sequence. Then,
S is an (M,k)-quasi-*-class Q operator if and only if

M |λn+k|2 |λn+k+1|2 + 1 ≥ 2 |λn+k−1|2

for all n. Indeed, we have

〈
S∗k(MS∗2S2 − 2SS∗ + I)Sken, en

〉
≥ 0

⇔ (M |λn+k|2 |λn+k+1|2 − 2 |λn+k−1|2 + 1)λnλn+1...λn+k−1λn+k−1λn+k−2...λn ≥ 0

⇔ (M |λn+k|2 |λn+k+1|2 − 2 |λn+k−1|2 + 1) |λn|2 |λn+1|2 ... |λn+k−1|2 ≥ 0

⇔M |λn+k|2 |λn+k+1|2 − 2 |λn+k−1|2 + 1 ≥ 0.

In this paper, we are interested in the study of (M,k)-quasi-*-class Q operators. Some properties
of this class of operators are shown. It is proved that this class of operators contains the class of
k-quasi-*-class A operators. The decomposition of such operators, their restrictions on invariant
subspaces and other related results are also presented.
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2 Main results

We will start by the following useful theorem.

Theorem 2.1. An operator A ∈ B(H) is an (M,k)-quasi-*-class Q operator if and only if

2
∥∥A∗Akx∥∥2 ≤M

∥∥Ak+2x
∥∥2

+
∥∥Akx∥∥2

for all x in H.

Proof. There exists M > 0 such that〈
A∗k(MA∗2A2 − 2AA∗ + I)Akx, x

〉
≥ 0

for all x ∈ H. Hence,

M
〈
A∗k+2Ak+2x, x

〉
+
〈
A∗kAkx, x

〉
≥ 2

〈
A∗Akx,A∗Akx

〉
.

Thus,
2
∥∥A∗Akx∥∥2 ≤M

∥∥Ak+2x
∥∥2

+
∥∥Akx∥∥2

.

The converse can be proved in a similar way.

Remark 1. It is clear that the class of (M,k)-quasi-*-class Q operators is nested with respect to
M , i.e.,

(M1, k)-quasi-*-class Q ⊂ (M2, k)-quasi-*-class Q

whenever M1 ≤M2.

Remark 2. The class of (M,k)-quasi-*-class Q operators is not convex. For example, the operators

A=
(

1 0
1 1

)
and B=

(
1 0
1 0

)
are 4-quasi-*-class Q. However, the operator C = 1

3
A+ 2

3
B is not a

4-quasi-*-class Q operator since

2‖C∗C(0,−1)‖2 =
20

81
> 4‖C3(0,−1)‖2 + ‖C(0,−1)‖2 =

85

729
.

Remark 3. Also, the operator A − I is not a (4, k)-quasi-*-class Q operator. This shows that the
above class is not translation invariant.

Theorem 2.2. If A ∈ B(H) is an (M,k)-quasi-*-class Q operator with dense range, then A is an
M-*-class Q operator.

Proof. Let x ∈ H. Since A has dense range, there exists a sequence (xn)n inH for which lim
n→∞

Axn = x.

By the continuity of A, lim
n→∞

Akxn = Ak−1x. Hence, and by the continuity of the inner product,

∥∥A∗Ak−1x
∥∥2

=
∥∥∥ lim
n→∞

A∗Akxn

∥∥∥2

= lim
n→∞

∥∥A∗Akxn∥∥2

≤ lim
n→∞

1

2
(M

∥∥Ak+1xn
∥∥2

+
∥∥Akxn∥∥2

)

=
1

2
(M

∥∥∥ lim
n→∞

Ak+1xn

∥∥∥2

+
∥∥∥ lim
n→∞

Akxn

∥∥∥2

)

=
1

2
(M

∥∥Ak+1x
∥∥2

+
∥∥Ak−1x

∥∥2
).
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Thus, A is an (M,k − 1)-quasi-*-class Q operator. Since ran(A) is dense in H, A is an (M,k − 2)-
quasi-*-class Q operator. By iteration, A is an M -*-class Q operator.

Corollary 2.1. Let A be a nonzero (M,k)-quasi-*-class Q operator, but not anM-*-class Q operator.
Then A admits a non trivial closed invariant subspace.

Proof. Suppose that A has no non trivial closed invariant subspaces. Since A 6= 0, ker(A) 6= H and
ran(A) 6= {0} are closed invariant subspaces for A. Thus, necessarily, ker(A) = {0} and ran(A) = H.
By Theorem 2.2, A is an M -*-class Q operator. This contradicts the hypothesis.

Theorem 2.3. Let A ∈ B(H) be an (M,k)-quasi-*-class Q operator. If N ⊂ H is a closed A-
invariant subspace, then the restriction A |N is an (M,k)-quasi-*-class Q operator.

Proof. Let

A =

(
T S
0 R

)
on H = N ⊕N⊥.

Then, for all integer m, m ≥ 2, we get

Am =

(
Tm

∑m−1
p=0 T

m−1−pSRp

0 Rm

)
.

Since A is (M,k)-quasi-*-class Q, there exists M > 0 such that

A∗k(MA∗2A2 − 2AA∗ + I)Ak ≥ 0.

Then,

A∗k(MA∗2A2 − 2AA∗ + I)Ak =

(
X Y
Y ∗ Z

)
where, X = T ∗k(MT ∗2T 2− 2TT ∗− 2SS∗+ I)T k, Y is a bounded operator from N to N⊥ and Z is a

bounded operator on N⊥. According to [4, Theorem 6],
(

X Y
Y ∗ Z

)
≥ 0 if and only if X ≥ 0, Z ≥ 0

and Y = X
1
2CZ

1
2 for some contraction C on H. Therefore,

X = T ∗k(MT ∗2T 2 − 2TT ∗ − 2SS∗ + I)T k ≥ 0.

Since SS∗ ≥ 0,
T ∗k(MT ∗2T 2 − 2TT ∗ + I)T k ≥ 0

which completes the proof.

Theorem 2.4. If B ∈ B(H) is unitarily equivalent to an (M,k)-quasi-*-class Q operator A on H,
then B is also an (M,k)-quasi-*-class Q operator.

Proof. There exists a unitary operator V on H satisfying B = V AV ∗. Since A is an (M,k)-quasi-*-
class Q operator,

B∗k(MB∗2B2 − 2BB∗ + I)Bk

= (V AV ∗)∗k
[
M (V AV ∗)∗2 (V AV ∗)2 − 2V AV ∗ (V AV ∗)∗ + I

]
(V AV ∗)k

= V A∗kV ∗
[
MVA∗2V ∗V A2V ∗ − 2V A2V ∗ + I

]
V AkV ∗

= V A∗k(MA∗2A2 − 2AA∗ + I)AkV ∗ ≥ 0.

Thus, B is an (M,k)-quasi-*-class Q operator.
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Remark 4. Theorem 2.4 is in general false if the operator U is invertible and not unitary. Indeed,
the bilateral weighted shift S defined on the Hilbert space `2(Z) by

Sen =

{
en+1, n ≤ 1 or n ≥ 3√

2e3 n = 2

is in particuliar a (3, k)-quasi-*-class Q, and the operator

Uen =

{
en+1, n ≤ 1 or n ≥ 3

1
3
e3 n = 2

is invertible and not unitary. Nonetheless, the operator U−1SU is not a (3, k)-quasi-*-class Q oper-
ator.

Theorem 2.5. Let A ∈ B(H) be an (M,k)-quasi-*-class Q operator. If A commutes with an
isometric operator S ∈ B(H), then AS is an (M,k)-quasi-*-class Q operator.

Proof. We have AS = SA and S∗S = I. Since A is an (M,k)-quasi-*-class Q operator,

(AS)∗k(M(AS)∗2(AS)2 − 2AS(AS)∗ + I)(AS)k

= S∗kA∗k [MS∗A∗S∗A∗ASAS − 2ASS∗A∗ + I]SkAk

= A∗kS∗k
[
MA∗2A2 − 2ASS∗A∗ + I

]
SkAk

= A∗kS∗k−1
[
MS∗A∗2A2S − 2S∗ASS∗A∗S + S∗S

]
Sk−1Ak

= A∗kS∗k−1
[
MA∗2A2 − 2AA∗ + I

]
Sk−1Ak

= S∗k−1A∗k
[
MA∗2A2 − 2AA∗ + I

]
AkSk−1 ≥ 0.

Thus, AS is an (M,k)-quasi-*-class Q operator.

Theorem 2.6. Let A ∈ B(H) be an (M,k) -quasi-*-class Q operator. Assume that AkH 6= H, and
that

A =

(
A1 A2

0 A3

)
with respect to the decomposition H = ran(Ak) ⊕ ker(A∗k). Then, A1 is an M -*-class Q operator
and Ak3 = 0. Moreover, σ(A) = σ(A1) ∪ {0} , where σ(A) denotes the spectrum of A.

Proof. Since A is an (M,k)-quasi-*-class Q operator,〈
A∗k(MA∗2A2 − 2AA∗ + I)Aky, y

〉
≥ 0

for all y ∈ H. Hence, 〈
(MA∗2A2 − 2AA∗ + I)Aky, Aky

〉
≥ 0.

Thus, for all x ∈ ran(Ak),〈
(MA∗2A2 − 2AA∗ + I)x, x

〉
=
〈
(MA∗21 A

2
1 − 2A1A

∗
1 + I)x, x

〉
≥ 0.

Consequently, A1 is an M -*-class Q operator. Let now, P be the orthogonal projection on ran(Ak).
For all x = x1 + x2, y = y1 + y2 ∈ H, we have〈

Ak3x2, y2

〉
=
〈
Ak(I − P )x, (I − P )y

〉
=
〈
(I − P )x,A∗k(I − P )y

〉
= 0.
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Thus, Ak3 = 0. Furthermore,
σ(A1) ∪ σ(A3) = σ(A) ∪ Ω

where Ω is the union of the holes in σ(A) which happen to be subsets of σ(A1) ∩ σ(A3) using
[9, Corollary 7], and σ(A1) ∩ σ(A3) has no interior points and A3 is nilpotent. Thus, σ(A) =
σ(A1) ∪ {0} .

It is shown in [25] that for A,B,Q ∈ B(H), the equation BX−XA = Q admits a unique solution
whenever σ(A) and σ(B) are disjoint. For more details, reader can see [13, 18, 24] and [26].

Corollary 2.2. Let A ∈ B(H) be an (M,k)-quasi-*-class Q operator. If the restriction A1 =

A
∣∣∣ran(Ak) is invertible, then A is similar to the sum of an M-*-class Q operator and a nilpotent

operator.

Proof. Let

A =

(
A1 A2

0 A3

)
on H = ran(Ak)⊕ ker(A∗k).

Then, A1 is an M -*-class Q operator by the above Theorem. Since A1 is invertible, 0 /∈ σ(A).
Hence, σ(A1) ∩ σ(A3) = ∅. By Rosenblum’s result [18, 25, 27], there exists C ∈ B(H) for which
A1C − CA3 = A2. Thus,

A =

(
I −C
0 I

)(
A1 0
0 A3

)(
I C
0 I

)

=

(
I C
0 I

)−1(
A1 0
0 A3

)(
I C
0 I

)
.

Let A ∈ B(H). Denote byR(σ(A)) the set of all rational analytic functions on σ(A). The operator
A is said to be n-multicyclic [11], if there exist n (generating) vectors x1, x2, .., xn in H such that∨

{g(A)xi , 1 ≤ i ≤ n , g ∈ R(σ(A))} = H

where
∨

denotes the linear span, that is, the set of all finite linear combinations.

We have then

Theorem 2.7. If A is an n-multicyclic (M,k)-quasi-*-class Q operator, then its restriction on
ran(Ak) is also n-multicyclic.

Proof. Put

A =

(
A1 A2

0 A3

)
on the decomposition H = ran(Ak) ⊕ ker(A∗k). Since σ(A1) ⊂ σ(A) by Theorem 2.6, R(σ(A1)) ⊂
R(σ(A)). The operator A is n-multicyclic. Then, there exist n generating vectors x1, x2, .., xn ∈ H
for which ∨

{g(A)xi, 1 ≤ i ≤ n, g ∈ R(σ(A))} = H.

Put yi = Akxi, 1 ≤ i ≤ n. Hence,



On (M,k)-Quasi-*-Class Q Operators 85

∨
{g(A1)yi, 1 ≤ i ≤ n, g ∈ R(σ(A))} =

∨{
g(A1)Akxi, 1 ≤ i ≤ n, g ∈ R(σ(A))

}
=

∨{
g(A)Akxi, 1 ≤ i ≤ n, g ∈ R(σ(A))

}
=

∨{
Akg(A)xi, 1 ≤ i ≤ n, g ∈ R(σ(A))

}
= ran(Ak).

But ∨
{g(A1)yi, 1 ≤ i ≤ n, g ∈ R(σ(A))} ⊂

∨
{g(A1)yi, 1 ≤ i ≤ n, g ∈ R(σ(A1))} .

Thus,
ran(Ak) ⊂

∨
{g(A1)yi, 1 ≤ i ≤ n, g ∈ R(σ(A1))} .

Therefore, {yi}ni=1 are n-generating vectors of A1, and A1 is n-multicyclic.

Recall that an operator A ∈ B(H) is said to be a class A operator [8, 20, 23] if |A2|−|A|2 ≥ 0. This
class was introduced by Furuta-Ito-Yamazaki [8], and it is shown that it contains both p-hyponormal
operators and log-hyponormal operators. It is also proved in [8, 28] that the class A is a subclass
of paranormal operators. It is known that p-hyponormal operators are normaloid, i.e., ‖A‖ = r(A)
where r(A) denotes the spectral radius of A. However, a quasi-class A operator is not normaloid
[23], [28]. A ∈ B(H) is said to be in the -*-class A if |A|2 − |A∗|2 ≥ 0, and in the k-quasi-*-class A
if A∗k(|A|2 − |A∗|2)Ak ≥ 0 for a positive integer k. A 1-quasi-*-class A operator is quasi-*-class A.

In the sequel, we will show that the (M,k)-quasi-*-class Q operators contains the k-quasi-*-class
A. We need first the following result

Lemma 2.1. If A ∈ B(H) is a k-quais-*-class A operator, then

‖|A|2Akx‖ ≤ ‖Ak+2x‖

for all x ∈ H.

Proof. Let x be any vector in H. Since A is a k-quasi-*-class A, we have

‖|A|2Akx‖2 = ‖A∗AAkx‖2 = 〈A∗Ak+1x,A∗Ak+1x〉
= 〈x,A∗(A∗kAA∗Ak)Ax〉
= 〈Ax, (A∗kAA∗Ak)Ax〉
= 〈(A∗kAA∗Ak)Ax,Ax〉
≤ 〈A∗k+1Ak+1Ax,Ax〉
= ‖Ak+2x‖2.

Theorem 2.8. An operator belonging to the k-quasi-*-class A is an (M,k)-quasi-*-class Q operator.

Proof. Let A be a k-quasi-*-class A operator. Then,

A∗k(|A|2 − |A∗|2)Ak ≥ 0.

Hence, for M ≥ 1 we have
A∗k(
√
M |A|2 − |A∗|2)Ak ≥ 0.
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Thus, for all x ∈ H, 〈
A∗k |A∗|2Akx, x

〉
=

〈
A∗kAA∗Akx, x

〉
=

∥∥A∗Akx∥∥2

≤
〈√

MA∗k |A|2Akx, x
〉

=
〈√

M |A|2Akx,Akx
〉
.

Using the Cauchy-Schwarz inequality and Lemma 2.1,∥∥A∗Akx∥∥2 ≤
√
M
∥∥|A|2Akx∥∥∥∥Akx∥∥

≤
√
M
∥∥Ak+2x

∥∥∥∥Akx∥∥
≤ 1

2
(M

∥∥Ak+2x
∥∥2

+
∥∥Akx∥∥2

).

This shows that A is an (M,k)-quasi-*-class Q operator.

Theorem 2.9. If A ∈ B(H) with ‖A‖ ≤ 1√
2
, then A is an (M,k)-quasi-*-class Q operator.

Proof. Let x ∈ H. We have ‖A∗x‖ ≤ 1√
2
‖x‖ . Hence,〈

(MA∗2A2 − 2AA∗ + I)x, x
〉

= M
∥∥A2x

∥∥2 − 2 ‖A∗x‖2 + ‖x‖2

≥ M
∥∥A2x

∥∥2 − ‖x‖2 + ‖x‖2 ≥M
∥∥A2x

∥∥2

≥ 0.

Thus, 〈
A∗k(MA∗2A2 − 2AA∗ + I)Akx, x

〉
≥ 0.

Recall that an operator A in B(H) is said to have the Single Valued Extension Property, briefly
SVEP, at a complex number α, if for each open neighborhood V of α, the unique analytic function
f : V → H that satisfies

∀λ ∈ V : (A− λ)f(λ) = 0

is the function f ≡ 0. If furthermore, A has SVEP at every α ∈ C, we say that A has SVEP. For
more details see ([2, 17, 15, 21]).

Also, the local resolvent set of A at a vector x ∈ H, denoted by ρA(x), is defined to consist of all
complex elements z0 such that there exists an analytic function f(z) defined in a neighborhood of
z0, with values in H, for which (A− z)f(z) = x. [2]

The set σA(x) = C \ ρA(x) is called the local spectrum of A at x. We’ve then the following
important result.

Theorem 2.10. Let
A =

(
A1 A2

0 A3

)
be an (M,k)-quasi-*-class Q operator with respect to the decomposition H = ran(Ak) ⊕ ker(A?k).
Then, for all x = x1 + x2 ∈ H :
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i. σA3(x2) ⊂ σA(x1 + x2).

ii. σA1(x1) = σA(x1 + 0).

Proof. i. Let z0 ∈ ρA(x1 + x2). By the definition of the local resolvent set of A at x, there exists a
neighborhood U of z0 and an analytic function f(z) defined on U, with values in H, for which

(A− z)f(z) = x, z ∈ U. (2.1)

Let f = f1 + f2 where
f1 : U → ran(Ak)), f2 : U → ker(A∗k)

are in the Frechet spaces O(U, ran(Ak)), O(U, ker(A∗k)) respectively, consisting of analytic functions
on U with values in H, and equipped with the topology of uniform convergence, [2]. Equality (2.1)
can then be written (

A1 − z A2

0 A3 − z

)(
f1(z)
f2(z)

)
=

(
x1

x2

)
.

Then, for all z ∈ U,
(A3 − z)f2(z) = x2.

Hence,
z0 ∈ ρA3(x2).

Thus, (i) holds by passing to the complement.

ii. For z1 ∈ ρA(x1 + 0), there exists a neighborhood V1 of z1 and an analytic function g defined
on V1 with values in H verifying

(A− z)f(z) = x1 + 0, z ∈ V1. (2.2)

Let g = g1 + g2, where
g1 ∈ O(V1, ran(Ak)), g2 ∈ O(V1, ker(A

∗k))

be as in (i). From equation (2.2), we obtain

(A1 − z)g1(z) + A2g2(z) = x1

and
(A3 − z)g2(z) = 0, z ∈ V1

Since A3 is nilpotent by Theorem 2.6, A3 has SVEP by [2]. Thus,

g2(z) = 0

Consequently,
(A1 − z)g1(z) = x1

Therefore, z1 ∈ ρA1(x1), and then
ρT (x1 + 0) ⊂ ρA1(x1)

Thus,
σA1(x1) ⊂ σA(x1 + 0)

Now, if z2 ∈ ρA1(x1), then, there exists a neighborhood V2 of z2 and an analytic function h from V2

onto H, such that
(A1 − z)h(z) = x1, z ∈ V2
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Thus,
(A− z)(h(z) + 0) = (A1 − z)h(z) = x1 = x1 + 0

Hence,
z2 ∈ ρA(x1 + 0)

Definition 1. An operator A ∈ B(H) is said to be (M,k)-quasi-*-paranormal if there exists M and
a positive integer k such that

A∗k(MA∗2A2 − 2λAA∗ + λ2)Ak ≥ 0

for all λ > 0.

This definition is equivalent to

‖A?Akx‖2 ≤
√
M‖Ak+2x‖‖Akx‖

for all x ∈ H.

Theorem 2.11. Let A ∈ B(H) be an (M,k)-quasi-*-class Q operator such that A2 is an isometry
on H. Then A is (M,k)-quasi-*-paranormal.

Proof. Since A2 is an isometry, A?2A2 = I, and then ‖A2x‖ = ‖x‖, x ∈ H. By iteration, ‖Ak+2x‖ =
‖Akx‖, k ≥ 1. Since A is an (M,k)-quasi-*-class Q operator,

2‖A?Akx‖2 ≤ M‖Ak+2x‖2 + ‖Akx‖2

≤
(√

M‖Ak+2x‖ − ‖Akx‖
)2

+ 2
√
M‖Ak+2x‖‖Akx‖

≤ 2
√
M‖Ak+2x‖‖Akx‖

Definition 2. An operator A ∈ B(H) is said to be isoloid, if every isolated point of its spectrum is
an eigenvalue of A.

We have then the following result.

Theorem 2.12. Each (M,k)-quasi-*-class Q operator is isoloid.

Proof. Let A be an (M,k)-quasi-*-class Q operator. Suppose that A has a representation given in
Theorem 2.6. Let z be an isolated point in σ(A). Since σ(A) = σ(A1) ∪ {0}, z is an isolated point
in σ(A1) or z = 0.

If z is an isolated point in σ(A1), then z ∈ σp(A1). Assume that z = 0 and z /∈ σ(A1). Then, for
x ∈ kerA3, we get (−A−1

1 A2x⊕ x) ∈ kerA.

Theorem 2.13. Let A ∈ B(H) be an (M,k)-quasi-*-class Q operator, and let N ⊆ H be a closed
A-invariant subspace for which the restriction A |N is an injective and normal operator. Then N
reduces A, that is, N is invariant for A and A∗.
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Proof. Suppose that P is an orthogonal projection of H onto ranAk. Since A is an (M,k)-quasi-*-
class Q operator, we have

P (MA∗2A2 − AA∗)P ≥ 0.

By assumption, A|N is an injective normal operator. Then, E ≤ P for the orthogonal projection E
of H onto N, and ranAk|N = N because A|N has a dense range. Therefore, N ⊆ ranAk and hence

E(MA∗2A2 − AA∗)E ≥ 0.

Let
A =

(
A |N A2

0 A3

)
,

on N ⊕N⊥. Then,

AA∗ =

(
A |N A∗ |N + A2A

∗
2 A2A

∗
3

A3A
∗
2 A3A

∗
3

)
and

MA?2A2 =

(
MA∗2 |N A2 |N S

T R

)
for some bounded linear operators S, T and R. Thus,(

A |N A∗ |N + A2A
∗
2 0

0 0

)
= E(AA∗)E = E|A∗|2E ≤ E(A∗2A2)

1
2E

≤ (E(A∗2A2E))
1
2

=

(
A∗2 |N A2 |N 0

0 0

) 1
2

This implies that
A|NA∗|N + A2A

∗
2 ≤ A|NA∗|N .

Since A|N is normal and A1A
∗
1 is positive, it follows that A2 = 0. Hence N reduces A.

Remark 5. The previous result is in general false if the restriction A |N is not injective. In fact, if
A is a nilpotent operator of order k, such that Ak−1 6= 0, then A

∣∣∣ranAk−1 = 0 is a normal operator.

Assume that ranAk−1 reduces A. Then, A?Ak−1H ⊂ ranAk−1. Thus, A∗k−1Ak−1H ⊂ ranAk−1 and
kerA∗k−1 ⊂ kerA∗k−1Ak−1 = kerAk−1. Since A∗k = A∗k−1A∗ = 0, Ak−1A∗ = 0. Hence, Ak−1A∗k−1 =
0. Therefore, Ak−1 = 0. This contradicts the hypotheses on A.

Theorem 2.14. Let A be an (M,k)-quasi-*-class Q operator. Equation (A − λ)x = 0 implies
(A− λ)?x = 0 for all non-zero complex scalar λ.

Proof. Assume that x 6= 0. Let N = span{x} and

A =

(
λ T
0 S

)
on H = N ⊕N⊥.

Let P : H → N be the orthogonal projection. Then, A |N = λ is an injective normal operator.
Hence, N reduces A by Theorem 2.11. Thus, T = 0.

Theorem 2.15. Let A ∈ B(H) be an (M,k)-quasi-*-class Q operator, and let λ ∈ C, λ 6= 0 be an
isolated point of the spectrum of A. Then, the Riesz idempotent E for λ is self-adjoint, and satisfies
the following equality

EH = ker(A− λ) = ker(A− λ)?.
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Proof. By Theorem 2.12, λ is an eigenvalue of A, and EH = ker(A − λ). According to Theorem
2.14, it sufficies to show that ker(A − λ)? ⊂ ker(A − λ). The subspace ker(A − λ) reduces A by
Theorem 2.14, and the restriction of A on its reducing subspace is an (M,k)-quasi-*-class Q operator
by Theorem 2.3. It follows that

A = λ⊕B on H = ker(A− λ)⊕ (ker(A− λ))⊥

where B is (M,k)-quasi-*-class Q and ker(B − λ) = {0}. We’ve

λ ∈ σ(A) = {λ} ∪ σ(B)

and λ is isolated. Then, either λ 6∈ σ(B), or λ is an isolated point of σ(B), which contradicts the
fact that ker(A− λ) = {0}. Since B is invertible on (ker(A− λ))⊥,

ker(A− λ) = ker(A− λ)?.

Furthermore, since EH = ker(A− λ) = ker(A− λ)?,

((z − A)?)−1E = (z − λ)−1E.

Thus,

E? = − 1

2πi

∫
∂D

((z − A)?)−1E dz = − 1

2πi

∫
∂D

(z − λ)−1E dz

=
1

2πi

∫
∂D

(z − λ)−1 dzE = E.

So, E is self-adjoint.

3 Weyl’s Theorem

An operator A ∈ B(H) is called Fredholm if R(A) is closed, α(A) = dimN(A) < ∞ and β(A) −
dimH \R(A) <∞. Moreover if i(A) = α(A)−β(A) = 0, then A is called Weyl. The Weyl spectrum
w(A) of A is defined by

w(A) := {λ ∈ C : A− λI is not Weyl}.

According to [10], we say that Weyl’s theorem holds for A if

σ(A) \ w(A) = π00(A),

where
π00(A) = {λ ∈ isoσ(A) : 0 < dimN(A− λI <∞}.

In [22], Patel showed that Weyl’s theorem holds for 2-isometric operators, i.e., operators satisfying

A∗2A2 − 2A∗A+ I = 0

[1], which has been extended to many non normal operators [16, 19]. In this section, we prove that
Weyl’s theorem holds for (M,k)-quasi-∗-class Q operators without any additional conditions.

Theorem 3.1. Weyl’s theorem holds for any (M,k)-quasi-*-class Q operator.
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Proof. Suppose that A is a (M,k)-quasi-*-class Q operator. Then A has SVEP at zero. Either
σ(A1) ⊆ ∂D or σ(A1) = D, where D denotes the open unit disc, and ∂D is its boundary. If
σ(A1) ⊆ ∂D, then A has SVEP everywhere: else σ(A1) = D. The operator A has SVEP on
σ(A) \ w(A), then < 0 dim(A − λ) < ∞. We have λ ∈ σp(A) ⊆ ∂D ∪ {0}, An operator such that
its point spectrum has empty interior has SVEP [2, Remark 2.4(d)]. Hence A has SVEP. Also, if
σ(A1) = σ(A) = D, then isoσ(A) = ∅. If σ(A1) ⊂ ∂D, then A1 is polaroid, that is, the isolated
points of the spectrum of A1 are poles of the resolvent. Hence, A is polaroid. This proves Weyl’s
theorem for A.
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