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On the 90th birthday
of Professor Oleg Vladimirovich Besov

This issue of the Eurasian Mathematical Journal is dedicated to the 90th birthday of Oleg
Vladimirovich Besov, an outstanding mathematician, Doctor of Sciences in physics and mathematics,
corresponding member of the Russian Academy of Sciences, academician of the European Academy of
Sciences, leading researcher of the Department of the Theory of Functions of the V.A. Steklov Insti-
tute of Mathematics, honorary professor of the Department of Mathematics of the Moscow Institute
of Physics and Technology.

Oleg started scientific research while still a student of the Faculty of Mechanics and Mathematics
of the M.V. Lomonosov Moscow State University. His research interests were formed under the
influence of his scientific supervisor, the great Russian mathematician Sergei Mikhailovich Nikol’skii.

In the world mathematical community O.V. Besov is well known for introducing and studying
the spaces Br

pθ(Rn), 1 ≤ p, θ ≤ ∞, of differentiable functions of several real variables, which are now
named Besov spaces (or Nikol’skii–Besov spaces, because for θ = ∞ they coincide with Nikol’skii
spaces Hr

p(Rn)).
The parameter r may be either an arbitrary positive number or a vector r = (r1, ..., rn) with

positive components rj. These spaces consist of functions having common smoothness of order r in
the isotropic case (not necessarily integer) and smoothness of orders rj in variables xj, j = 1, ..., n, in
the anisotropic case, measured in Lp-metrics, and θ is an additional parameter allowing more refined
classification in the smoothness property.
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O.V. Besov published more than 150 papers in leading mathematical journals most of which are
dedicated to further development of the theory of the spaces Br

pθ(Rn). He considered the spaces
Br
pθ(Ω) on regular and irregular domains Ω ⊂ Rn and proved for them embedding, extension, trace,

approximation and interpolation theorems. He also studied integral representations of functions, den-
sity of smooth functions, coercivity, multiplicative inequalities, error estimates in cubature formulas,
spaces with variable smoothness, asymptotics of Kolmogorov widths, etc.

The theory of Besov spaces had a fundamental impact on the development of the theory of
differentiable functions of several variables, the interpolation of linear operators, approximation the-
ory, the theory of partial differential equations (especially boundary value problems), mathematical
physics (Navier–Stokes equations, in particular), the theory of cubature formulas, and other areas of
mathematics.

Without exaggeration, one can say that Besov spaces have become a recognized and extensively
applied tool in the world of mathematical analysis: they have been studied and used in thousands
of articles and dozens of books. This is an outstanding achievement.

The first expositions of the basics of the theory of the spaces Br
pθ(Rn) were given by O.V. Besov

in [2], [3].
Further developments of the theory of Besov spaces were discussed in a series of survey papers,

e.g. [18], [12], [15]. The most detailed exposition of the theory of Besov spaces was given in the
book by S.M. Nikol’skii [19] and in the book by O.V. Besov, V.P. Il’in, S.M. Nikol’skii [11], which in
1977 was awarded a State Prize of the USSR. Important further developments of the theory of Besov
spaces were given in a series of books by Professor H. Triebel [21], [22], [23]. Many books on real
analysis and the theory of partial differential equations contain chapters dedicated to various aspects
of the theory of Besov spaces, e.g. [16], [1], [13]. Recently, in 2011, Professor Y. Sawano published
the book “Theory of Besov spaces” [20] (in Japanese, in 2018 it was translated into English).

A survey of the main facts of the theory of Besov spaces was given in the dedication to the 80th
birthday of O.V. Besov [14].

We would that like to add that during the last 10 years Oleg continued active research and
published around 25 papers (all of them without co-authors) on various aspects of the theory of
function spaces, namely, on the following topics:

Kolmogorov widths of Sobolev classes on an irregular domain (see, for example, [4]),
embedding theorems for weighted Sobolev spaces (see, for example, [5]),
the Sobolev embedding theorem for the limiting exponent (see, for example, [7]),
multiplicative estimates for norms of derivatives on a domain (see, for example, [8]),
interpolation of spaces of functions of positive smoothness on a domain (see, for example, [9]),
embedding theorems for spaces of functions of positive smoothness on irregular domains (see, for

example, [10]).
In 1954 S.M. Nikol’skii organized the seminar “Differentiable functions of several variables and

applications”, which became the world recognized leading seminar on the theory of function spaces.
Oleg participated in this seminar from the very beginning, first as the secretary and later, for more
than 30 years, as the head of the seminar first jointly with S.M. Nikol’skii and L.D. Kudryavtsev,
then up to the present time on his own.

O.V. Besov participated in numerous research projects supported by grants of several countries,
led many of them, and currently is the head of one of them: “Contemporary problems of the theory
of function spaces and applications” (project 19-11-00087, Russian Science Foundation).

He takes active part in the international mathematical life, participates in and contributes to
organizing many international conferences. He has given more than 100 invited talks at conferences
and has been invited to universities in more than 20 countries.

For more than 50 years O.V. Besov has been a professor at the Department of Mathematics of
the Moscow Institute of Physics and Technology. He is a celebrated and sought-after lecturer who is
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able to develop the student’s independent thinking. On the basis of his lectures he wrote a popular
text-book on mathematical analysis [6].

He spends a lot of time on supervising post-graduate students. One of his former post-graduate
students H.G. Ghazaryan, now a distinguished professor, plays an active role in the mathematical
life of Armenia and has many post-graduate students of his own.

Professor Besov has close academic ties with Kazakhstan mathematicians. He has many times
visited Kazakhstan, is an honorary professor of the Shakarim Semipalatinsk State University and a
member of the editorial board of the Eurasian Mathematical Journal. He has been awarded a medal
for his meritorious role in the development of science of the Republic of Kazakhstan.

Oleg is in good physical and mental shape, leads an active life, and continues productive research
on the theory of function spaces and lecturing at the Moscow Institute of Physics and Technology.

The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate Oleg
Vladimirovich Besov on occasion of his 90th birthday, wishes him good health and further productive
work in mathematics and mathematical education.

On behalf of the Editorial Board
V.I. Burenkov, T.V. Tararykova
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Abstract. For the Hardy inequality to hold on a Hausdorff topological space, we obtain necessary
and sufficient conditions on the weights and measures. As in the recent paper by G. Sinnamon (2022),
we assume total orderedness of the family of sets that generate the Hardy operator. Sinnamon’s
method consists in the reduction of the problem to an equivalent one-dimensional problem. We
provide a different, direct proof which develops the approach suggested by D. Prokhorov (2006) in
the one-dimensional case.
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1 Introduction

Consider the inequality[∫
[a,b]

(∫
[a,x]

fudλ

)q
v(x)dµ(x)

]1/q

≤ C

(∫
[a,b]

fpwdν

)1/p

(1.1)

for all non-negative functions f. Here [a, b] is a finite or infinite segment on the extended real line, u, v
and w are non-negative measurable weight functions and λ, µ, ν are Borel measures. The problem is
to find a functional of the weights and measures Φ (u, v, w, λ, µ, ν) such that for the best constant C
one has

c1Φ ≤ C ≤ c2Φ, (1.2)

where the positive constants c1, c2 do not depend on the weights and measures. The characterizations
of weights and measures for which (1.1) holds are very different for the cases p ≤ q and q < p. In
particular, the proofs for the case p ≤ q are a lot simpler. The inequality has a long history described
in several books [6], [7], [8], [10].

In [3] and [21] spherical coordinates in Rn were used to obtain the first results for the Euclidean
space. Other multidimensional generalizations followed. Results for Banach function spaces and
mixed Lp spaces given in [4] and [1] covered only the case p ≤ q, when specified to usual Lp spaces.
The two-dimensional result by Sawyer [19] turned out to be difficult to generalize to higher dimen-
sions, unless under additional restrictions on the weights [23]. We believe this is caused by the fact
that his domains are not totally ordered, see the definition below.

In the last several years there was a wave of new generalizations. In [16], [17] and [18] the
results have been formulated in abstract settings (for homogeneous groups, hyperbolic spaces, Cartan-
Hadamard manifolds, and connected Lie groups). All of them are based on the assumption of
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the existence of a polar decomposition, which for calculational purposes is the same as spherical
coordinates. Thus, methodologically, the last three papers return to [3].

G. Sinnamon [22] made a significant contribution by providing a single framework for all Hardy
inequalities, regardless of the domain dimension and covering both continuous and discrete cases. His
method consists in reducing the general Hardy inequality to a special, one-dimensional one, called a
normal form. In addition to being universally applicable, this approach has other advantages. The
functional Φ for the normal form is relatively simple, because the weights are constant and only
the upper limit of integration changes. (Note that in general there exist many functionals satisfying
(1.1), see [8]). This simplicity allows Sinnamon to improve the best constants c1, c2 in (1.2) due to
Hardy and Bliss [2].

The reduction to the one-dimensional case in Sinnamon’s approach requires an additional calcu-
lation to obtain the functional in terms of the original weights and measures. The present paper is
different in that we give a direct proof leading to the required expressions. See Remark 1 below for
a more detailed comparison.

Now we mention the contributions that directly influenced the methods employed here. Every-
where we assume that 1 < p <∞, 0 < q <∞.

For the case q < p several functionals equivalent to (1.1) have been suggested. The one proposed
by Maz’ya and Rozin [10] and used here has the advantage that it works both for 0 < q < 1 and
1 ≤ q < p.

D. Prokhorov [12] investigated the Hardy inequality on the real line but the merits of his measure-
theoretical analysis go beyond the one-dimensional case. We follow his ideas and along the way
mention some of his innovations. One of them is that he allowed the weights to be infinite on sets of
positive measure and analyzed the implications.

The purpose of this paper is to obtain a criterion for the multidimensional inequality[∫
Ω

(∫
{y∈Ω:τ(y)≤τ(x)}

f (y)u (y) dλ (y)

)q
v(x)dµ(x)

]1/q

(1.3)

≤ C

(∫
Ω

fpwdν

)1/p

(the function τ is defined in Section 2), Ω is an open set in a Hausdorff topological space X. The
main restriction on the open subsets Ω(t) of Ω is that they are parameterized by real t and satisfy
the monotonicity (total orderedness) condition

Ω(t1) ⊂ Ω(t2) if t1 < t2. (1.4)

Alternatively, instead of expanding, Ω(t) may be contracting but the unidirectionality is required
for our method. As in Sinnamon’s paper, the results can be called dimension-agnostic, because in
X the dimension notion is generally not defined, and when X is a linear space, no convexity or
connectedness are imposed on Ω(t) or Ω. The existing results for Rn or measure metric spaces from
[1], [3], [16], [17], [18] are special cases of ours. Results of [19] (where rectangles do not satisfy the
monotonicity condition) are not covered by ours. In [4] domains of integration are more general than
ours and Banach function spaces are considered.

In the multidimensional case generalizations of our results in several directions are possible. For
Hardy type integrals with variable kernels extensions can be obtained under the Oinarov condition [9],
[11]. The generality of measures in our results may lead to their consequences for discrete problems
[24] in the spirit of Sinnamon. It would be interesting to cover the Riemann–Liouville operators [13],
although the lack of the derivative notion certainly makes unlikely generalizations of the results in
[5].
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2 Main assumptions and statements

Description of measures. The phrase "µ is a measure on Ω" means that there is a σ-algebra M
that contains the σ-algebra B of Borel subsets of Ω and such that µ is a σ-finite and σ-additive
(non-negative) function on M, with values in the extended real half-line [0,+∞] = {0 ≤ x ≤ +∞} .
Mµ denotes the domain of the measure µ. Everywhere λ, µ, ν are measures on Ω and λ, ν have a
common domain Mλ,ν .

Description of functions. The notation f ∈ {M}+ means that f is defined in Ω, takes values
in [0,+∞] and is M-measurable. The weights u, v, w satisfy u,w ∈ {Mλ,ν}+ , v ∈ {Mµ}+ .

Description of sets Ω(t). Ω is an open set in a Hausdorff topological space X and
{Ω(t) : t ∈ [a, b]} , −∞ ≤ a < b ≤ ∞, is a one-parameter family of open subsets of Ω that sat-
isfy monotonicity (1.4) for a ≤ t1 < t2 ≤ b, start at the empty set and eventually cover λ-almost all
Ω :

Ω(a) =
⋂
t>a

Ω(t) = ∅, λ

(
Ω\

⋃
a<t<b

Ω(t)

)
= 0.

Let ω(t) = Ω(t)∩(Ω\Ω(t)) be the boundary of Ω(t) in the relative topology. We require the boundaries
to be disjoint and cover λ-almost all Ω :

ω(t1) ∩ ω(t2) = ∅, t1 6= t2, t1, t2 ∈ (a, b); λ

(
Ω\

⋃
a<t<b

ω(t)

)
= 0.

The last condition implies that, up to a set of λ-measure zero, for each x ∈ Ω there exists a
unique τ(x) ∈ (a, b) such that x ∈ ω(τ(x)), which allows us to define a Hardy type operator

Tf(x) =

∫
{y∈Ω:τ(y)≤τ(x)}

f (y) dλ (y) .

More generally, for any E ⊂ [a, b] such that Ω (E) ≡ ∪t∈Eω(t) ∈Mλ we can consider the integral∫
Ω(E)

fdλ.

In particular, we denote Ω [c, d] = ∪c≤t≤dω(t), Ω[c, d) = ∪c≤t<dω(t), etc. for a ≤ c < d ≤ b.

Remark 1. 1) In comparison with [22], our setup is closer to the classical one, where the domains
Ω (t) = (0, t) are indexed by their boundaries ω (t) = t and can be represented as unions of boundaries
Ω (t) = {s : ω (s) < ω (t)}. 2) Let (S,Σ, λ) and (Y, µ) be σ-finite measure spaces and let B : Y → Σ
be a map such that the range of B is a totally ordered subset of Σ (these are assumptions from [22]).
Thus the family {B (y) : y ∈ Y } of subsets of Σ is indexed by y ∈ Y. Since the number t = λ (B (y))

is unique for each y ∈ Y, we can write B̃(t) = B (y) if t = λ (B (y)) . This re-indexing is one-to-one
if, as usual, we do not distinguish between two sets which differ by a set of measure zero. Hence the
family {B (y) : y ∈ Y } can be indexed by elements from [0,∞), the total order being preserved. 3)
As we mentioned in the Introduction, Sinnamon’s result covers more different cases. On the other
hand, our proofs are direct (they don’t rely on the one-dimensional case as an intermediate step) and
we have statements stemming from the assumption that weights may take values in the extended
half-axis [0,∞] (see Lemmas 2.7 and 2.8); Sinnamon does not have them. Our method generalizes
[12].

Conventions on improper numbers. 0+(+∞) = a+(+∞) = a·(+∞) = +∞ if 0 < a ≤ +∞;
0 · (+∞) = 0; (+∞)α = 0−α = +∞, (+∞)−α = 0α = 0, α ∈ (0,+∞).
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Lowercase c, with or without subscripts, denote constants that do not depend on weights and
measures.

The few results in dimensions higher than 1, reviewed in the Introduction, excluding [22], em-
ployed tools of one-dimensional analysis along the radial variable, of type∫ b

a

(∫ x

a

f

)γ
f(x)dx =

1

γ + 1

∫ b

a

d

dx

(∫ x

a

f

)γ+1

dx =
1

γ + 1

(∫ b

a

f

)γ+1

,

where dx is the Lebesgue measure. Further advancement has been held back by the lack of a truly
multidimensional replacement of such tools. The significance of the following Lemmas 2.1 and 2.2 is
that they are such a replacement. See [12] for the argument on the straight line.

Lemma 2.1. Denote Λf (t) =
∫

Ω[a,t]
fdλ, a ≤ t ≤ b, f ∈ {Mλ}+ .

a) If γ > 0, then

Λf (b)
γ+1

max {1, γ + 1}
≤
∫

Ω[a,b]

f(x)Λf (τ (x))γ dλ(x) ≤ Λf (b)
γ+1

min {1, γ + 1}
. (2.1)

b) In the case γ ∈ (−1, 0), (2.1) holds if Λf (b) <∞.

Proof. a) Let γ > 0. The second inequality in (2.1) follows from Λf (τ (x)) ≤ Λf (b) , x ∈ Ω. Let us
prove the first inequality. Without loss of generality we assume that∫

Ω

f(x)Λf (τ (x))γ dλ(x) <∞.

Then for any t ∈ [a, b](∫
ω(t)

fdλ

)γ+1

≤
∫
ω(t)

fdλ

(∫
Ω[a,t]

fdλ

)γ
≤
∫

Ω[t,b]

f(x)Λf (τ (x))γ dλ(x)

≤
∫

Ω

f(x)Λf (τ (x))γ dλ(x) <∞,

so ∫
ω(t)

fdλ <∞ for any t ∈ [a, b] . (2.2)

Suppose Λf (b) =∞. Denote

E = {t ∈ [a, b) : Λf (t) =∞} , e =

{
inf E, if E 6= ∅;
b, if E = ∅.

If there is ξ ∈ (e, b] such that
∫

Ω(ξ,b]
fdλ 6= 0, then

∞ >

∫
Ω

f(x)Λf (τ (x))γ dλ(x) ≥ Λf (ξ)γ
∫

Ω(ξ,b]

fdλ =∞,

which is impossible. Hence, for any ξ ∈ (e, b] one has
∫

Ω(ξ,b]
fdλ = 0. By the monotone covergence

theorem
∫

Ω(e,b]
fdλ = 0 and thus Λf (e) =∞. Recalling (2.2) we see that e > a and

∫
Ω[a,e)

fdλ =∞.
By the definition of e,

∞ =

∫
Ω[a,e)

fdλ =

∫
Ω[a,t]

fdλ+

∫
Ω(t,e)

fdλ
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for t ∈ [a, e), where Λf (t) ∈ (0,∞) . Then, again by the definition of e,

∞ >

∫
Ω

f(x)Λf (τ (x))γ dλ(x) ≥ Λf (t)
γ

∫
Ω(t,e)

fdλ =∞.

The contradiction arises from the assumption Λf (b) =∞, so without loss of generality we can suppose
that Λf (b) <∞.

Changing the integration order gives∫
Ω

f(x)Λf (τ (x))γ dλ(x) = γ

∫
Ω

f(x)

(∫ Λf (τ(x))

0

sγ−1ds

)
dλ(x)

= γ

∫ Λf (b)

0

sγ−1

(∫
Ω

f(x)χ[0,Λf (τ(x))] (s) dλ (x)

)
ds.

For s ≥ 0 put Es = {t ∈ [a, b] : Λf (t) < s} . If Es = ∅, then Λf (τ (x)) ≥ s for any x ∈ Ω and∫
Ω

f(x)χ[0,Λf (τ(x))] (s) dλ (x) = Λf (b) ≥ Λf (b)− s.

Suppose Es 6= ∅ and let es = supEs. Take a sequence
{
t
(s)
n

}
⊂ Es such that t(s)n ↑ es as n → ∞.

Then in the case es ∈ Es we have Λf (τ (x)) < s for τ (x) ≤ es, Λf (τ (x)) ≥ s for τ (x) > es and∫
Ω

f(x)χ[0,Λf (τ(x))] (s) dλ (x) =

∫
Ω(es,b]

fdλ = Λf (b)− Λf (es) ≥ Λf (b)− s,

while in the case es /∈ Es∫
Ω

f(x)χ[0,Λf (τ(x))] (s) dλ (x) =

∫
Ω[es,b]

fdλ = Λf (b)− lim
n→∞

Λf

(
t(s)n
)
≥ Λf (b)− s.

So, summarizing,∫
Ω

f(x)Λf (τ (x))γ dλ(x) ≥ γ

∫ Λf (b)

0

sγ−1 (Λf (b)− s) ds

= Λf (b)γ+1 − γ

γ + 1
Λf (b)γ+1 =

Λf (b)γ+1

γ + 1
,

which completes the argument for γ > 0.
b) Now let γ ∈ (−1, 0) and Λf (b) <∞. Then the first inequality in (2.1) follows from Λf (b)γ ≤

Λf (τ (x))γ , x ∈ Ω. Let us prove the second inequality. Start with∫
Ω

f(x)Λf (τ (x))γ dλ(x) = −γ
∫

Ω

f(x)

(∫ ∞
Λf (τ(x))

sγ−1ds

)
dλ(x)

= −γ
∫

Ω

f(x)

(∫ Λf (b)

0

sγ−1χ[Λf (τ(x)),Λf (b)] (s) ds+

∫ ∞
Λf (b)

sγ−1ds

)
dλ(x)

= −γ
∫ Λf (b)

0

sγ−1

(∫
Ω

f(x)χ[Λf (τ(x)),Λf (b)] (s) dλ (x)

)
ds+ Λf (b)γ+1 .

For s ≥ 0 define Es = {t ∈ [a, b] : Λf (t) ≤ s} . In case Es = ∅ we have Λf (τ (x)) > s for all x ∈ Ω
and ∫

Ω

f(x)χ[Λf (τ(x)),Λf (b)] (s) dλ (x) = 0 ≤ s.
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Suppose Es 6= ∅, let es = supEs and take a sequence
{
t
(s)
n

}
⊂ Es such that t(s)n ↑ es as n → ∞.

Then in case es ∈ Es we have es ≤ b, Λf (τ (x)) ≤ Λf (es) ≤ s for τ (x) ≤ es and Λf (τ(x)) > s for
τ (x) > es, so that ∫

Ω

f(x)χ[Λf (τ(x)),Λf (b)] (s) dλ (x) =

∫
Ω[a,es]

fdλ = Λf (es) ≤ s.

On the other hand, in the case es /∈ Es∫
Ω

f(x)χ[Λf (τ(x)),Λf (b)] (s) dλ (x) =

∫
Ω[a,es)

fdλ = lim
n→∞

Λf

(
t(s)n
)
≤ s.

As a result, ∫
Ω

f(x)Λf (τ (x))γ dλ(x) ≤ −γ
∫ Λf (b)

0

sγds+ Λf (b)γ+1 =
Λf (b)γ+1

γ + 1
.

A similar statement holds for the integral with a variable lower limit of integration.

Lemma 2.2. Let Λ̄f (t) =
∫

Ω[t,b]
fdλ. a) If γ > 0, then

Λ̄f (a)γ+1

max {1, γ + 1}
≤
∫

Ω[a,b]

f(x)Λ̄f (τ (x))γ dλ(x) ≤ Λ̄f (a)γ+1

min {1, γ + 1}
. (2.3)

b) For γ ∈ (−1, 0) (2.3) holds if Λ̄f (a) <∞.

The proof of the next lemma can be found in [15] (it is dimensionless).

Lemma 2.3. Let 1 < p <∞, u ∈ {Mλ}+ , E ∈Mλ. If
∫
E
up
′
dλ =∞, then there exists f ∈ {Mλ}+

such that
∫
E
fpdλ <∞ and

∫
E
fudλ =∞.

Lemma 2.4. a) Let E ⊂ [a, b] be such that Ω (E) ∈ Mλ. Define Et = E ∩ [a, t] , Ēt = E ∩ [t, b] ,
t ∈ E. If λ (Ω (Et)) = 0 for any t ∈ E or λ

(
Ω
(
Ēt
))

= 0 for any t ∈ E, then λ (Ω (E)) = 0.
b) Alternative formulation. Take a set E ⊂ Ω that belongs to Mλ and define Ey = E∩Ω [a, τ (y)] ,

Ēy = E ∩ Ω [τ (y) , b] . If λ (Ey) = 0 for any y ∈ E or λ
(
Ēy
)

= 0 for any y ∈ E, then λ (E) = 0.

Proof. If E is empty, the statement is obvious. Let E 6= ∅, put s = supE and take a sequence {sn}
such that sn ↑ s, sn ∈ E for all n. If s ∈ E, then E = E ∩ [a, s] = Es and λ (Ω (E)) = λ (Ω (Es)) = 0.
If s /∈ E, then E = ∪n (E ∩ [a, sn]) = ∪nEsn and λ (Ω (E)) = limλ (Ω (Esn)) = 0. This proves a).
The proof of b) is similar.

In the next lemma we look at the special case of (1.3) with ν = λ and w ≡ 1. The lemma is a
long way of saying that replacing g = fh is all it takes to pass from (2.4) to (2.5).

Lemma 2.5. Consider weights u, h ∈ {Mλ}+ and v ∈ {Mµ}+ . The inequalities[∫
Ω

(∫
Ω[a,τ(x)]

ufhdλ

)q
v(x)dµ (x)

]1/q

≤ C

(∫
Ω

fpdλ

)1/p

, f ∈ {Mλ}+ , (2.4)

and [∫
Ω

(∫
Ω[a,τ(x)]

ugdλ

)q
v(x)dµ (x)

]1/q

≤ C

(∫
Ω

gph−pdλ

)1/p

, (2.5)

g ∈ {Mλ}+ ,

are equivalent.
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Proof. Fix f ∈ {Mλ}+ and let (2.5) be true. Plugging g = fh in (2.5) we get[∫
Ω

(∫
Ω[a,τ(x)]

ufhdλ

)q
v(x)dµ (x)

]1/q

≤ C

(∫
Ω

(fh)p h−pdλ

)1/p

≤ C

(∫
Ω

fpdλ

)1/p

because hph−p ≤ 1, where in case h =∞ or h = 0 we have (∞)p (∞)−p =∞ · 0 = 0 < 1.
Conversely, let (2.4) hold. Put

Ft = {x ∈ Ω [a, t] : h (x) =∞, u (x) 6= 0} , E = {t ∈ [a, b] : λ (Ft) > 0} .

We want to show that ∫
Ω(E)

vdµ = 0. (2.6)

If t1 < t2, then Ft1 ⊂ Ft2 by monotonicity of {Ω (t)} and λ (Ft1) ≤ λ (Ft2) . Hence, Ω (E) is Borel
measurable. If E is empty, (2.6) is obvious. Let E 6= ∅ and fix t ∈ E. By Lemma 6.9 from [15] there
is a function f ∈Mλ such that

∫
Ω
fpdλ <∞ and 0 < f(x) < 1 on Ω. Then∫

Ft

ufhdλ =∞,

because u (x) f (x) > 0, h (x) = ∞ on Ft and λ (Ft) > 0. Plugging fχFt in (2.4) we obtain Ft ⊂
Ω [a, t] ⊂ Ω [a, τ (x)] for τ (x) ≥ t and(∫

Ω[t,b]

vdµ

)1/q ∫
Ft

ufhdλ ≤
[∫

Ω

(∫
Ω[a,τ(x)]

ufχFthdλ

)q
v(x)dµ (x)

]1/q

≤ C

(∫
Ω

fpdλ

)1/p

<∞.

This shows that ∫
E∩Ω[t,b]

vdµ ≤
∫

Ω[t,b]

vdµ = 0 for all t ∈ E

and by Lemma 2.4 (2.6) follows. Hence, to prove (2.5) it suffices to prove that[∫
Ω([a,b]\E)

(∫
Ω[a,τ(x)]

ugdλ

)q
v(x)dµ (x)

]1/q

≤ C

(∫
Ω

gph−pdλ

)1/p

, (2.7)

g ∈ {Mλ}+ .

Note that
λ
(
Fτ(x)

)
= 0 for any x ∈ Ω ([a, b] \E) (2.8)

by the definition of E.
Now take any g ∈ {Mλ}+ . If

∫
Ω
gph−pdλ = ∞, then (2.7) is trivial. Suppose∫

Ω
gph−pdλ < ∞. Then gph−p is finite λ-almost everywhere. In particular, for the set E1 =

{x ∈ Ω : g (x) 6= 0, h (x) = 0} , where gph−p =∞, we have

λ (E1) = 0. (2.9)
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Using (2.6) and f (y) = g (y)h (y)−1 , y ∈ Ω, in (2.4) we get[∫
Ω([a,b]\E)

(∫
Ω[a,τ(x)]

ugh−1hdλ

)q
v(x)dµ (x)

]1/q

(2.10)

≤ C

(∫
Ω

(
gh−1

)p
dλ

)1/p

.

If we show that

λ(
{
y ∈ Ω [a, τ (x)] : u (y) g (y) 6= u (y) g (y)h (y)−1 h (y)

}
) = 0 (2.11)

for any x ∈ Ω ([a, b] \E) ,

then (2.10) will imply (2.7). Using the definitions of Fτ(x) and E1 we see that{
y ∈ Ω [a, τ (x)] : u (y) g (y) 6= u (y) g (y)h (y)−1 h (y)

}
⊂

{
y ∈ Ω [a, τ (x)] : u (y) g (y) 6= 0, h (y)−1 h (y) 6= 1

}
= {y ∈ Ω [a, τ (x)] : u (y) g (y) 6= 0, h (y) = 0}
∪ {y ∈ Ω [a, τ (x)] : u (y) g (y) 6= 0, h (y) =∞}

⊂ {y ∈ Ω [a, τ (x)] : g (y) 6= 0, h (y) = 0}
∪ {y ∈ Ω [a, τ (x)] : u (y) 6= 0, h (y) =∞} ⊂ E1 ∪ Fτ(x).

We can use (2.8) and (2.9). This implies (2.11) and finishes the proof.

We give the proof of the next well-known fact [10] just because we consider a more general
situation.

Lemma 2.6. Let ν = νa + νs be the Lebesgue decomposition of ν with respect to λ, that is, νa is
absolutely continuous with respect to λ and νs is singular with respect to λ. Then the inequalities[∫

Ω

(∫
Ω[a,τ(x)]

fdλ

)q
dµ(x)

]1/q

≤ C

(∫
Ω

fpwdν

)1/p

, f ∈ {Mλ}+ , (2.12)

and [∫
Ω

(∫
Ω[a,τ(x)]

fdλ

)q
dµ(x)

]1/q

≤ C

(∫
Ω

fpwdνa

)1/p

, f ∈ {Mλ}+ , (2.13)

are equivalent.

Proof. Since ν = νa + νs, (2.13) obviously implies (2.12). Suppose (2.12) is true. Since νs and λ are
mutually singular, there exists a set As ∈ Mλ such that λ (As) = 0 and νs is concentrated on As,
implying

νs(Ω\As) = 0, λ (Ω [a, τ (x)] ∩ As) = 0. (2.14)

By absolute continuity of νa with respect to λ

νa(As) = 0. (2.15)

Defining f̃ = fχΩ\As we have by (2.14)∫
Ω[a,τ(x)]

fdλ =

∫
Ω[a,τ(x)]∩As

fdλ+

∫
Ω[a,τ(x)]\As

fdλ =

∫
Ω[a,τ(x)]

f̃dλ
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and by (2.14), (2.15) ∫
Ω

f̃pwdν =

∫
Ω\As

fpwdνa +

∫
Ω\As

fpwdνs

=

∫
Ω\As

fpwdνa +

∫
As

fpwdνa =

∫
Ω

fpwdνa.

(2.12) and the last two equations give the desired result:[∫
Ω

(∫
Ω[a,τ(x)]

fdλ

)q
dµ(x)

] 1
q

=

[∫
Ω

(∫
Ω[a,τ(x)]

f̃dλ

)q
dµ(x)

] 1
q

≤ C

(∫
Ω

f̃pwdν

) 1
p

= C

(∫
Ω

fpwdνa

) 1
p

.

Denote

I0 =

{
x ∈ Ω :

∫
Ω[a,τ(x)]

udλ = 0

}
, I∞ =

{
x ∈ Ω :

∫
Ω[a,τ(x)]

up
′
dλ =∞

}
.

By monotonicity I0 is adjacent to point a and I∞ is adjacent to point b. See Lemma 2.8 for more
information on the structure of these sets. Consider a version of inequality (1.3) with ν = λ and
w ≡ 1 : [∫

Ω

(∫
Ω[a,τ(x)]

fudλ

)q
v(x)dµ(x)

]1/q

≤ C

(∫
Ω

fpdλ

)1/p

, f ∈ {Mλ}+ . (2.16)

The next lemma tells us that I0, I∞ do not influence the validity of (2.16). The values of f on I0

should not matter because, as it will be shown,∫
I0

udλ = 0. (2.17)

By Hölder’s inequality for x ∈ I∞∫
Ω[a,τ(x)]

fudλ ≤
(∫

Ω[a,τ(x)]

fpdλ

)1/p(∫
Ω[a,τ(x)]

up
′
dλ

)1/p′

where the last integral on the right is infinite. Hence, by Lemma 2.3 the integral on the left may be
infinite. For (2.16) to hold, such values must be suppressed and for this it should be true that∫

I∞

vdµ = 0. (2.18)

That is why the values of the integral
∫

Ω[a,τ(x)]
fudλ on I∞ should not matter. (2.17) and (2.18) arise

from allowing weights and measures with improper values and have been discovered in [12].

Lemma 2.7. a) (2.17) is true. b) Put I = Ω\ [I0 ∪ I∞] . (2.16) holds with C < ∞ if and only if
(2.18) holds and[∫

I

(∫
Ω[a,τ(x)]

fudλ

)q
v(x)dµ(x)

]1/q

≤ C

(∫
Ω

fpdλ

)1/p

, f ∈ {Mλ}+ . (2.19)
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Proof. a) First note that I0, I∞, I ∈Mλ. Define the measure dλu = udλ and note that for any x ∈ I0

the set Ex = I0 ∩ Ω [a, τ (x)] ⊂ Ω [a, τ (x)] satisfies

λu (Ex) =

∫
Ex

dλu ≤
∫

Ω[a,τ(x)]

udλ = 0.

Hence, (2.17) follows by Lemma 2.4.
b) It is obvious that (2.16) implies (2.19) and that (2.18) holds in case of an empty I∞. Let us

derive (2.18) in case I∞ 6= ∅. Take any x ∈ I∞. By Lemma 2.3 there is a function f ∈ {Mλ}+ such
that ∫

Ω[a,τ(x)]

fpdλ <∞,
∫

Ω[a,τ(x)]

fudλ =∞.

Plugging fχΩ(τ(x)) in (2.16) we get(∫
Ω[τ(x),b]

vdµ

)1/q ∫
Ω[a,τ(x)]

fudλ

≤
[∫

Ω

(∫
Ω[a,τ(y)]

fχΩ[a,τ(x)]udλ

)q
v(y)dµ(y)

]1/q

≤ C

(∫
Ω[a,τ(x)]

fpdλ

)1/p

<∞.

Thus, we should have
∫

Ω[τ(x),b]
vdµ = 0 for any x ∈ I∞ and by Lemma 2.4 (2.18) follows.

Conversely, if (2.18) and (2.19) are true, then, taking into account also (2.17), we see that (2.19)
implies (2.16).

Denote

U (x) =

∫
Ω[a,τ(x)]

up
′
dλ, V (x) =

∫
Ω[τ(x),b]

vdµ,

A (x) = V (x)1/q U (x)1/p′ , x ∈ Ω, A = sup
x∈Ω

A(x),

A′ = sup
x∈I

A (x) if I 6= ∅, A′ = 0 if I = ∅.

Lemma 2.8. a) Define s = sup {τ (x) : x ∈ I0} , i = inf {τ (x) : x ∈ I∞} . Then I0 = Ω [a, s] , I∞ =
Ω [i, b]

b) The inequality A <∞ is equivalent to the combination of (2.18) and

A′ <∞. (2.20)

Besides, A = A′.

Proof. a) If x ∈ I0, then the monotonicity τ (y) < τ (x) implies∫
Ω[a,τ(y)]

udλ ≤
∫

Ω[a,τ(x)]

udλ = 0.

Hence, with any x ∈ I0, I0 contains Ω [a, τ (x)] and Ω [a, τ (x)] ∩ I0 = Ω [a, τ (x)] . Choose {sn} ⊂
{τ (x) : x ∈ I0} so that sn ↑ s. Then∫

Ω[a,s]

udλ = lim

∫
Ω[a,sn]

udλ = 0,
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so I0 = Ω [a, s] . Similarly, if τ (y) > τ (x) and x ∈ I∞ then by (2.21)∫
Ω[τ(y),b]

vdµ ≤
∫

Ω[τ(x),b]

vdµ = 0.

Hence, Ω [τ (x) , b] ∩ I∞ = Ω [τ (x) , b] . Choosing {in} ⊂ {τ (x) : x ∈ I∞} so that in ↓ i and using the
above equation we see that I∞ = Ω [i, b] .

a) Let A <∞. For any x ∈ I∞ we have U (x) =
∫

Ω[a,τ(x)]
up
′
dλ =∞, so for A <∞ it is necessary

that

V (x) =

∫
Ω[τ(x),b]

vdµ = 0, x ∈ I∞. (2.21)

In Lemma 2.4 put E = I∞, dµv = vdµ. Then Ēx = I∞ ∩ Ω [τ (x) , b] ⊂ Ω [τ (x) , b] and

µv
(
Ēx
)
≤
∫

Ω[τ(x),b]

vdµ = 0, x ∈ I∞.

By Lemma 2.4 (2.18) follows. Besides, from the definition of I0 we see that

U (x) =

∫
Ω[a,τ(x)]

up
′
dλ = 0, x ∈ I0. (2.22)

By (2.21) and (2.22) A (x) = 0 on I0 ∪ I∞, so A′ = A.

Conversely, let (2.18) and (2.20) hold. By (2.22) A (x) = 0 on I0. Besides, part a) and (2.18)
imply

V (x) =

∫
Ω[τ(x),b]

vdµ ≤
∫
I∞

vdµ = 0, x ∈ I∞.

Thus, A (x) = 0 on I∞ and A = A′ <∞.

Theorem 2.1. Let 1 < p ≤ q <∞. Inequality (2.16) holds if and only if A <∞, with the equivalence
c1A ≤ C ≤ c2A.

Proof. We want to show that A = C = 0 in case I = ∅. By monotinicity V (x) = 0 on I∞ and by
definition

∫
Ω[a,τ(x)]

udλ = 0 on I0. Hence A = A′ = 0. On the other hand, Ω = I0 ∪ I∞ implies

∫
Ω

(∫
Ω[a,τ(x)]

fudλ

)q
v(x)dµ(x) =

∫
I∞

(∫
Ω[a,τ(x)]\I0

fudλ

)q
v(x)dµ(x) = 0.

Thus, C = 0. In what follows we can safely assume that I 6= ∅.
Sufficiency. Let x ∈ I. Since Ω [a, τ (x)] ⊆ Ω\I∞ and u is λ-everywhere zero on I0, by Hölder’s

inequality ∫
Ω[a,τ(x)]

fudλ =

∫
Ω[a,τ(x)]∩I

fudλ

≤
(∫

Ω[a,τ(x)]∩I
fpU1/p′dλ

)1/p(∫
Ω[a,τ(x)]∩I

up
′
U−1/pdλ

)1/p′

.

By Lemma 2.1 with γ = −1/p and I ∩ Ω [a, τ (x)] in place of Ω and using the definition of I0
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∫
I∩Ω[a,τ(x)]

up
′
(y)

(∫
Ω[a,τ(y)]

up
′
dλ

)−1/p

dλ (y)

=

∫
I∩Ω[a,τ(x)]

up
′
(y)

(∫
I∩Ω[a,τ(y)]

up
′
dλ

)−1/p

dλ (y)

≤ c

(∫
I∩Ω[a,τ(x)]

up
′
dλ

)1−1/p

= cU (x)1/p′ ,

where U (x) <∞ because x /∈ I∞. Then for x ∈ I∫
Ω[a,τ(x)]

fudλ =

∫
I∩Ω[a,τ(x)]

fudλ ≤ c

(∫
I∩Ω[a,τ(x)]

fpU1/p′dλ

)1/p

U (x)1/(p′)2

≤ cA1/p′
(∫

I∩Ω[a,τ(x)]

fpU1/p′dλ

)1/p

V (x)−1/(qp′)

where V (x) > 0 by (2.18) and V (x) < ∞ because U (x) > 0, see (2.17). Using this inequality we
bound the left-hand side of (2.19) as follows:[∫

I

(∫
Ω[a,τ(x)]

fudλ

)q
v(x)dµ(x)

]1/q

(2.23)

≤ cA1/p′

[∫
I

(∫
I∩Ω[a,τ(x)]

fpU1/p′dλ

)q/p
V (x)−1/p′ v(x)dµ(x)

]1/q

= cA1/p′

[∫
I

(∫
I

fpU1/p′χΩ[a,τ(x)]dλ

)q/p
V (x)−1/p′ v(x)dµ(x)

]1/q

≤ cA1/p′

[∫
Ω

f (y)p U (y)1/p′
(∫

I∩Ω[τ(y),b]

V −1/p′vdµ

)p/q
dλ(y)

]1/p

.

The last transition is by Minkowsky’s inequality.
By Lemma 2.8 x ∈ I implies Ω [τ (x) , b] ⊆ Ω\I0. Using also (2.18) we see that V (x) =∫

I∩Ω[τ(x),b]
vdµ for x ∈ I. Now by Lemma 2.2 for y ∈ I∫

I∩Ω[τ(y),b]

vV −1/p′dµ

=

∫
I∩Ω[τ(y),b]

v (x)

(∫
I∩Ω[τ(x),b]

vdµ

)−1/p′

dµ(x)

≤ c

(∫
I∩Ω[τ(y),b]

vdµ

)1−1/p′

= cV (y)1/p ,

where V (y) <∞ because A <∞ and U (x) > 0 on I.
Continuing (2.23) and applying A <∞ together with the last bound we get[∫

I

(∫
Ω[a,τ(x)]

fudλ

)q
v(x)dµ(x)

]1/q

≤ c1A
1/p′
(∫

I

fpU1/p′V 1/qdλ

)1/p

≤ c1A

(∫
Ω

fpdλ

)1/p

.
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Necessity. Suppose (2.16) is true. By Lemma 2.8 we have Ω [a, τ (x)] ⊃ I0 for x ∈ I and

(Ω\I∞) ∩ Ω [τ (x) , b] ⊂ (Ω\I∞) ∩ (Ω\I0) ⊂ I.

By (2.18)

V (x) =

∫
Ω[τ(x),b]

vdµ =

∫
(Ω\I∞)∩Ω[τ(x),b]

vdµ ≤
∫
I

vdµ, x ∈ I.

For x ∈ I put f = up
′−1χΩ[a,τ(x)]. If y ∈ Ω [τ (x) , b] , then τ (y) ≥ τ (x) and

U (x) =

∫
Ω[a,τ(x)]

up
′
dλ ≤

∫
Ω[a,τ(y)]

(
fχΩ[a,τ(x)]

)
udλ.

Thus, applying also (2.19), we get for x ∈ I

V (x)1/q U (x) =

[∫
Ω[τ(x),b]

(∫
Ω[a,τ(x)]

up
′
dλ

)q
vdµ

]1/q

≤
[∫

Ω[τ(x),b]

(∫
Ω[a,τ(y)]

(
fχΩ[a,τ(x)]

)
udλ

)q
v (y) dµ (y)

]1/q

≤
[∫

I

(∫
Ω[a,τ(y)]

(
fχΩ[a,τ(x)]

)
dλ

)q
v(y)dµ(y)

]1/q

≤ C

(∫
Ω[a,τ(x)]

up
′
dλ

)1/p

= CU (x)1/p

which gives A′ ≤ C. By Lemma 2.7, (2.18) is true and Lemma 2.8 gives A = A′ ≤ C.

Next we consider the case q < p and define r from 1/r = 1/q − 1/p. Denote

B =

[∫
Ω

(∫
Ω[a,τ(x)]

up
′
dλ

)r/p′ (∫
Ω[τ(x),b]

vdµ

)r/p
v (x) dµ (x)

]1/r

=

(∫
Ω

U r/p′V r/pvdµ

)1/r

.

Lemma 2.9. a) (2.17) is true. b) B <∞ is equivalent to the combination of (2.18) and

B′ =

(∫
I

U r/p′V r/pvdµ

)1/r

<∞.

Besides, B = B′.

Proof. a) The proof of Lemma 2.7 a) does not rely on the inequality p ≤ q and is valid in the current
situation.

b) Let B <∞. Then the fact that U (x) =∞ on I∞ implies∫
I∞

(∫
Ω[τ(x),b]

vdµ

)r/p
vdµ = 0.

We represent

I∞ =

{
x ∈ I∞ :

∫
Ω[τ(x),b]

vdµ = 0, v (x) 6= 0

}
∪ {x ∈ I∞ : v (x) = 0} = F ∪G.
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Further, in Lemma 2.4 b) put E = F, dµv = vdµ. Then Ēx = E ∩ Ω [τ (x) , b] ⊂ Ω [τ (x) , b] ,

µv
(
L̄ (x)

)
=

∫
L̄(x)

vdµ ≤
∫

Ω[τ(x),b]

vdµ = 0, x ∈ F.

By Lemma 2.4
∫
F
vdµ = 0. Since also

∫
G
vdµ = 0, (2.18) holds. The definition of I0 and (2.18) give

B = B′.
Conversely, let B′ <∞ and (2.18) hold. Then in view of (2.17) and (2.18) B = B′ <∞.

Lemma 2.10. If B <∞, then A ≤ B and (2.18) is true.

Proof. By Lemma 2.2∫
Ω[τ(x),b]

(∫
Ω[τ(y),b]

vdµ

)r/p
v (y) dµ (y) ≥ c

(∫
Ω[τ(x),b]

vdµ

)r/q
.

Hence, for any τ (x) ∈ [a, b]

B ≥
(∫

Ω[τ(x),b]

U r/p′V r/pvdµ

)1/r

≥ U (x)1/p′

[∫
Ω[τ(x),b]

(∫
Ω[τ(y),b]

vdµ

)r/p
v (y) dµ (y)

]1/r

≥ c1/rU (x)1/p′ V (x)1/q = c1/rA (x) .

Hence, c1/rA ≤ B <∞ and (2.18) follows by Lemma 2.8.

Denote

h (x) = χI (x)

(∫
Ω[a,τ(x)]

U r/q′V r/pup
′
dλ

)q/r
and define a measure on Mµ by dµ̃ = χIvh

−p/qdµ. Assuming that B < ∞ we plan to derive the
bound (2.19) from [∫

I

(∫
Ω[a,τ(x)]

fudλ

)q
v (x) dµ(x)

]1/q

(2.24)

≤ c1B

[∫
Ω

(∫
Ω[a,τ(x)]

fudλ

)p
dµ̃(x)

]1/p

and [∫
Ω

(∫
Ω[a,τ(x)]

fudλ

)p
dµ̃(x)

]1/p

≤ c2

(∫
Ω

fpdλ

)1/p

. (2.25)

Lemma 2.11. If B <∞ and I 6= ∅, then∫
{x∈I:h(x)=0}

vdµ =

∫
{x∈I:h(x)=∞}

vdµ = 0 (2.26)

and (2.24) holds.
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Proof. h is Borel measurable. For x ∈ I by Lemma 2.1

h (x) ≥ V (x)q/p
[∫

Ω[a,τ(x)]

(∫
Ω[a,τ(y)]

up
′
dλ

)r/q′
u (y)p

′
dλ (y)

]q/r
≥ cV (x)q/p U (x)q/p

′
.

Here U (x) 6= 0, so h (x) = 0 implies
∫

Ω[τ(x),b]
vdµ = 0 and by Lemma 2.4 we get the first equation in

(2.26).
Changing the order of integration we see that∫

I

vhr/qdµ =

∫
Ω

vhr/qdµ (2.27)

≤
∫

Ω

(∫
Ω[a,τ(x)]

U r/q′V r/pup
′
χΩ[a,τ(x)]dλ

)
v (x) dµ (x)

=

∫
Ω

U (y)r/q
′
V (y)r/p u (y)p

′
(∫

Ω[τ(y),b]

vdµ

)
dλ (y)

=

∫
Ω

U r/q′V r/qup
′
dλ

(using the left inequality in (2.3) and changing integration order)

≤ c1

∫
Ω

U (y)r/q
′
u (y)p

′
(∫

Ω[τ(y),b]

vV r/pdµ

)
dλ (y)

= c1

∫
Ω

(∫
Ω[a,τ(x)]

U r/q′up
′
dλ

)
V (x)r/p v (x) dµ (x)

(by Lemma 2.1)

≤ c2

∫
Ω

U r/p′V r/pvdµ = c2B
r.

This bound implies, in particular, the second equality in (2.26).
Using (2.26), (2.27) and Hölder’s inequality with the exponents r/q and p/q we complete the

proof of (2.24): [∫
I

(∫
Ω[a,τ(x)]

fudλ

)q
v (x) dµ(x)

]1/q

=

[∫
I

h (x)h (x)−1

(∫
Ω[a,τ(x)]

fudλ

)q
v (x) dµ(x)

]1/q

≤
(∫

Ω

vhr/qdµ

)1/r [∫
I

h (x)−p/q
(∫

Ω[a,τ(x)]

fudλ

)p
v (x) dµ(x)

]1/p

≤ c
1/r
2 B

[∫
Ω

(∫
Ω[a,τ(x)]

fudλ

)p
dµ̃(x)

]1/p

.

Lemma 2.12. If B <∞ and I 6= ∅, then

sup
x∈I

µ̃ (Ω [τ (x) , b])1/p U (x)1/p′ ≤ c (2.28)

and (2.25) is true.



Hardy inequality on measure topological spaces 73

Proof. Let x ∈ I. By Lemma 2.10 we know that A < ∞. Therefore U (x) > 0 implies that the
integral

∫
Ω[τ(x),b]

vdµ is finite. If it is zero, then µ̃ (Ω [τ (x) , b]) = 0. Suppose that integral is not zero.
Using the inequalities h (y) ≥ h (x) for τ (y) ≥ τ (x) and V (z) ≥ V (x) for τ (z) ≤ τ (x) , we have for
x ∈ I

µ̃ (Ω [τ (x) , b]) =

∫
Ω[τ(x),b]

χIvh
−p/qdµ ≤

∫
Ω[τ(x),b]

vdµh (x)−p/q

≤ V (x)

(∫
Ω[a,τ(x)]

U r/q′V r/pup
′
dλ

)−p/r
(applying Lemma 2.1 with γ = r/q′)

≤ V (x)

(
V (x)r/p

∫
Ω[a,τ(x)]

U r/q′up
′
dλ

)−p/r
≤ cU (x)−p/p

′
<∞.

This proves (2.28).
Further, put i = inf {τ (x) : x ∈ I} . If the infimum is attained on I, then I ⊂ Ω [i, b] , U (i) > 0

and
µ̃ (Ω) =

∫
I

vh−p/qdµ =

∫
Ω[i,b]

χIvh
−p/qdµ = µ̃ (Ω [i, b]) <∞

by (2.28). If i /∈ I, then I ⊆ Ω(i, b] and µ̃ (Ω [a, i] ∩ I) = 0. Take any sequence {in} ⊂ I such that
in ↓ i and put En = Ω [a, i] ∪ Ω [in, b] . Then Ω = ∪En and µ̃ (En) <∞ for all n. Hence µ̃ is σ-finite
on Ω. Besides, (2.18) implies µ̃ (I∞) = 0. Therefore (2.28) and Theorem 2.1 give for any n[∫

En

(∫
Ω[a,τ(x)]

fudλ

)p
dµ̃(x)

]1/p

=

[∫
En∩I

(∫
Ω[a,τ(x)]

fudλ

)p
dµ̃(x)

]1/p

≤ c

(∫
Ω

fpdλ

)1/p

.

Here c does not depend on n. With fixed f, we can let n→∞ and finish the proof.

Theorem 2.2. Let 0 < q < p <∞, p > 1, 1/r = 1/q − 1/p. (2.16) holds if and only if B <∞, and
c1B ≤ C ≤ c2B.

Proof. Sufficiency. Let B < ∞. If I = ∅, by Lemma 2.9 we see that in fact B = B′ = 0. On the
other hand, the best constant in (2.16) in this case is also 0 because of (2.17) and (2.18). If I 6= ∅,
the sufficiency follows by Lemmas 2.11 and 2.12.

Necessity. Suppose (2.16) is true with C < ∞ and, hence, (2.17) and (2.18) hold. Since µ is
σ-finite, there is a sequence {En} of sets such that Ω = ∪En and µ (En) < ∞. We can assume that
En ⊂ En+1 and En ∩ I 6= ∅ for all n. Let {sn} ⊂ I be such that sn ↑ s = sup {τ (x) : x ∈ I} and for
n ∈ N define

Fn =

{
En ∩ I, if s ∈ τ (I)
En ∩ I ∩ Ω [a, sn] , if s /∈ τ (I) .

Then {Fn} satisfies ∪Fn = I, Fn ⊂ Fn+1, µ (Fn) <∞.
Put vn = min {v, n} , dµn = vnχFndµ,

Bn =

(∫
I

U (x)r/p
′
µn (Ω [τ (x) , b])r/p dµn (x)

)1/r

=

[∫
Fn

U (x)r/p
′
(∫

Ω[τ(x),b]

vnχFndµ

)r/p
vn (x) dµ (x)

]1/r

.
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If Fn = ∅, then Bn = 0. If Fn 6= ∅, then with αn = supFn ∈ I we have

Bn ≤
(∫

Ω(αn)

up
′
dλ

)1/p′
[∫

Fn

(∫
Ω[τ(x),b]

vnχFndµ

)r/p
vn (x) dµ (x)

]1/r

.

By Lemma 2.2 and the definition of vn

Bn ≤
(∫

Ω(αn)

up
′
dλ

)1/p′

µn (Fn)1/q ≤
(∫

Ω(αn)

up
′
dλ

)1/p′

(nµ (Fn))1/q <∞,

because I ∩ I∞ = ∅.
Put

f (y) = µn (Ω [τ (x) , b])r/(pq) U (y)r/(pq
′) u (y)p

′−1 χI (y) .

Then [∫
I

(∫
Ω[a,τ(x)]

fudλ

)q
dµn(x)

]1/q

(2.29)

=

[∫
I

(∫
Ω[a,τ(x)]∩I

µn (Ω [τ (y) , b])
r
pq U (y)

r
pq′ u (y)p

′
dλ (y)

)q
dµn(x)

] 1
q

≥
[∫

I

µn (Ω [τ (x) , b])r/p
(∫

Ω[a,τ(x)]∩I
U r/(pq′)up

′
dλ

)q
dµn(x)

]1/q

(applying (2.17) and Lemma 2.1)

=

[∫
I

µn (Ω [τ (x) , b])r/p
(∫

Ω[a,τ(x)]

U r/(pq′)up
′
dλ

)q
dµn(x)

]1/q

≥ c

(∫
I

µn (Ω [τ (x) , b])r/p U (x)r/p
′
dµn(x)

)1/q

= cBr/q
n .

On the other hand, by Lemma 2.2(∫
Ω

fpdλ

)1/p

=

[∫
I

µn (Ω [τ (y) , b])r/q U (y)r/q
′
u (y)p

′
dλ (y)

]1/q

(2.30)

≤ c2

[∫
Ω

(∫
Ω[τ(y),b]

µn (Ω [τ (x) , b])
r
p dµn(x)

)
U (y)

r
q′ u (y)p

′
χI (y) dλ (y)

] 1
p

(changing integration order)

= c2

[∫
Ω

µn (Ω [τ (x) , b])r/p
(∫

Ω[a,τ(x)]∩I
U r/q′up

′
dλ

)
dµn(x)

]1/p

(using suppµn ⊂ Fn ⊂ I)

≤ c2

[∫
I

µn (Ω [τ (x) , b])r/p
(∫

Ω[a,τ(x)]∩I
U r/q′up

′
dλ

)
dµn(x)

]1/p

(by Lemma 2.1)

≤ c3

(∫
I

µn (Ω [τ (x) , b])r/p U (x)r/p
′
dµn(x)

)1/p

= Br/p
n .
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Putting together (2.29), (2.19) and (2.30) we see that

Br/q
n ≤ c4

[∫
I

(∫
Ω[a,τ(x)]

fudλ

)q
dµn(x)

]1/q

≤ c5C

(∫
Ω

fpdλ

)1/p

≤ c5CB
r/p
n

or Bn ≤ c5C. Since ∪Fn = I, Fn ⊂ Fn+1, we have vnχFn ↑ v as n→∞, so the statement follows by
the monotone convergence theorem.

The general result is stated next.

Theorem 2.3. Suppose 1 < p < ∞, 0 < q < ∞, 1/r = 1/q − 1/p. Let ν = νa + νs be the Lebesgue
decomposition of ν with respect to λ, where νa is absolutely continuous with respect to λ and νs and
λ are mutually singular. Denote dνa

dλ
the Radon-Nikodym derivative of νa with respect to λ.

a) If p ≤ q, then the inequality[∫
Ω

(∫
Ω[a,τ(x)]

fudλ

)q
v (x) dµ(x)

]1/q

≤ C

(∫
Ω

fpwdν

)1/p

, (2.31)

f ∈ {Mλ}+ ,

holds if and only if A = supx∈ΩA (x) <∞, where

A (x) =

[∫
Ω[a,τ(x)]

up
′
(
w
dνa
dλ

)1−p′

dλ

]1/p′ (∫
Ω[τ(x),b]

vdµ

)1/q

.

Moreover, c1A ≤ C ≤ c2A.
b) If q < p, then (2.31) is true if and only if B <∞, where

B =


∫

Ω

[∫
Ω[a,τ(x)]

up
′
(
w
dνa
dλ

)1−p′

dλ

]r/p′ (∫
Ω[τ(x),b]

vdµ

)r/p
v (x) dµ (x)


1/r

.

Besides, c1B ≤ C ≤ c2B.

Proof. By Lemma 2.6, (2.31) is equivalent to[∫
Ω

(∫
Ω[a,τ(x)]

fudλ

)q
v (x) dµ(x)

]1/q

≤ C

(∫
Ω

fpw
dνa
dλ

dλ

)1/p

, f ∈ {Mλ}+ .

This inequality, in turn, by Lemma 2.5 is equivalent to{∫
Ω

[∫
Ω[a,τ(x)]

fu

(
w
dνa
dλ

)−1/p

dλ

]q
v (x) dµ(x)

}1/q

≤ C

(∫
Ω

fpdλ

)1/p

,

f ∈ {Mλ}+ .

Application of Theorems 2.1 and 2.2 completes the proof.
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3 Results for the dual operator

The dual operator is defined by

T ∗f(x) =

∫
{y∈Ω:τ(y)≥τ(x)}

f (y) dλ (y) , x ∈ Ω.

The analogues of Theorems 2.1 and 2.2 are in the next theorem.
Let

U∗ (x) =

∫
Ω[τ(x),b]

up
′
dλ, V ∗ (x) =

∫
Ω[a,τ(x)]

vdµ,

A∗ (x) = V ∗ (x)1/q U∗ (x)1/p′ , x ∈ Ω, A∗ = sup
x∈Ω

A∗(x),

B∗ =

[∫
Ω

(∫
Ω[τ(x),b]

up
′
dλ

)r/p′ (∫
Ω[a,τ(x)]

vdµ

)r/p
v (x) dµ (x)

]1/r

and consider the inequality[∫
Ω

(∫
Ω[τ(x),b]

fudλ

)q
v(x)dµ(x)

]1/q

≤ C

(∫
Ω

fpdλ

)1/p

, f ∈ {Mλ}+ . (3.1)

Theorem 3.1. Suppose 1 < p <∞, 0 < q <∞. a) If p ≤ q, then inequality (3.1) holds if and only
if A∗ <∞, with the equivalence c1A

∗ ≤ C ≤ c2A
∗.

b) If q < p, then (3.1) holds if and only if B∗ <∞, and c1B
∗ ≤ C ≤ c2B

∗.

The general result looks as follows.

Theorem 3.2. Suppose 1 < p < ∞, 0 < q < ∞, 1/r = 1/q − 1/p. Let ν = νa + νs be the Lebesgue
decomposition of ν with respect to λ, where νa is absolutely continuous with respect to λ and νs and
λ are mutually singular. Denote dνa

dλ
the Radon-Nikodym derivative of νa with respect to λ.

a) If p ≤ q, then the inequality[∫
Ω

(∫
Ω[τ(x),b]

fudλ

)q
v (x) dµ(x)

]1/q

≤ C

(∫
Ω

fpwdν

)1/p

, f ∈ {Mλ}+ , (3.2)

holds if and only if A∗ = supx∈ΩA∗ (x) <∞, where

A∗ (x) =

[∫
Ω[τ(x),b]

up
′
(
w
dνa
dλ

)1−p′

dλ

]1/p′ (∫
Ω[a,τ(x)]

vdµ

)1/q

.

Moreover, c1A∗ ≤ C ≤ c2A∗.
b) If q < p, then (3.2) is true if and only if B∗ <∞, where

B∗ =


∫

Ω

[∫
Ω[τ(x),b]

up
′
(
w
dνa
dλ

)1−p′

dλ

]r/p′ (∫
Ω[a,τ(x)]

vdµ

)r/p
v (x) dµ (x)


1/r

.

Besides, c1B∗ ≤ C ≤ c2B∗.
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