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On the 90th birthday
of Professor Oleg Vladimirovich Besov

This issue of the Eurasian Mathematical Journal is dedicated to the 90th birthday of Oleg
Vladimirovich Besov, an outstanding mathematician, Doctor of Sciences in physics and mathematics,
corresponding member of the Russian Academy of Sciences, academician of the European Academy of
Sciences, leading researcher of the Department of the Theory of Functions of the V.A. Steklov Insti-
tute of Mathematics, honorary professor of the Department of Mathematics of the Moscow Institute
of Physics and Technology.

Oleg started scientific research while still a student of the Faculty of Mechanics and Mathematics
of the M.V. Lomonosov Moscow State University. His research interests were formed under the
influence of his scientific supervisor, the great Russian mathematician Sergei Mikhailovich Nikol’skii.

In the world mathematical community O.V. Besov is well known for introducing and studying
the spaces Br

pθ(Rn), 1 ≤ p, θ ≤ ∞, of differentiable functions of several real variables, which are now
named Besov spaces (or Nikol’skii–Besov spaces, because for θ = ∞ they coincide with Nikol’skii
spaces Hr

p(Rn)).
The parameter r may be either an arbitrary positive number or a vector r = (r1, ..., rn) with

positive components rj. These spaces consist of functions having common smoothness of order r in
the isotropic case (not necessarily integer) and smoothness of orders rj in variables xj, j = 1, ..., n, in
the anisotropic case, measured in Lp-metrics, and θ is an additional parameter allowing more refined
classification in the smoothness property.
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O.V. Besov published more than 150 papers in leading mathematical journals most of which are
dedicated to further development of the theory of the spaces Br

pθ(Rn). He considered the spaces
Br
pθ(Ω) on regular and irregular domains Ω ⊂ Rn and proved for them embedding, extension, trace,

approximation and interpolation theorems. He also studied integral representations of functions, den-
sity of smooth functions, coercivity, multiplicative inequalities, error estimates in cubature formulas,
spaces with variable smoothness, asymptotics of Kolmogorov widths, etc.

The theory of Besov spaces had a fundamental impact on the development of the theory of
differentiable functions of several variables, the interpolation of linear operators, approximation the-
ory, the theory of partial differential equations (especially boundary value problems), mathematical
physics (Navier–Stokes equations, in particular), the theory of cubature formulas, and other areas of
mathematics.

Without exaggeration, one can say that Besov spaces have become a recognized and extensively
applied tool in the world of mathematical analysis: they have been studied and used in thousands
of articles and dozens of books. This is an outstanding achievement.

The first expositions of the basics of the theory of the spaces Br
pθ(Rn) were given by O.V. Besov

in [2], [3].
Further developments of the theory of Besov spaces were discussed in a series of survey papers,

e.g. [18], [12], [15]. The most detailed exposition of the theory of Besov spaces was given in the
book by S.M. Nikol’skii [19] and in the book by O.V. Besov, V.P. Il’in, S.M. Nikol’skii [11], which in
1977 was awarded a State Prize of the USSR. Important further developments of the theory of Besov
spaces were given in a series of books by Professor H. Triebel [21], [22], [23]. Many books on real
analysis and the theory of partial differential equations contain chapters dedicated to various aspects
of the theory of Besov spaces, e.g. [16], [1], [13]. Recently, in 2011, Professor Y. Sawano published
the book “Theory of Besov spaces” [20] (in Japanese, in 2018 it was translated into English).

A survey of the main facts of the theory of Besov spaces was given in the dedication to the 80th
birthday of O.V. Besov [14].

We would that like to add that during the last 10 years Oleg continued active research and
published around 25 papers (all of them without co-authors) on various aspects of the theory of
function spaces, namely, on the following topics:

Kolmogorov widths of Sobolev classes on an irregular domain (see, for example, [4]),
embedding theorems for weighted Sobolev spaces (see, for example, [5]),
the Sobolev embedding theorem for the limiting exponent (see, for example, [7]),
multiplicative estimates for norms of derivatives on a domain (see, for example, [8]),
interpolation of spaces of functions of positive smoothness on a domain (see, for example, [9]),
embedding theorems for spaces of functions of positive smoothness on irregular domains (see, for

example, [10]).
In 1954 S.M. Nikol’skii organized the seminar “Differentiable functions of several variables and

applications”, which became the world recognized leading seminar on the theory of function spaces.
Oleg participated in this seminar from the very beginning, first as the secretary and later, for more
than 30 years, as the head of the seminar first jointly with S.M. Nikol’skii and L.D. Kudryavtsev,
then up to the present time on his own.

O.V. Besov participated in numerous research projects supported by grants of several countries,
led many of them, and currently is the head of one of them: “Contemporary problems of the theory
of function spaces and applications” (project 19-11-00087, Russian Science Foundation).

He takes active part in the international mathematical life, participates in and contributes to
organizing many international conferences. He has given more than 100 invited talks at conferences
and has been invited to universities in more than 20 countries.

For more than 50 years O.V. Besov has been a professor at the Department of Mathematics of
the Moscow Institute of Physics and Technology. He is a celebrated and sought-after lecturer who is
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able to develop the student’s independent thinking. On the basis of his lectures he wrote a popular
text-book on mathematical analysis [6].

He spends a lot of time on supervising post-graduate students. One of his former post-graduate
students H.G. Ghazaryan, now a distinguished professor, plays an active role in the mathematical
life of Armenia and has many post-graduate students of his own.

Professor Besov has close academic ties with Kazakhstan mathematicians. He has many times
visited Kazakhstan, is an honorary professor of the Shakarim Semipalatinsk State University and a
member of the editorial board of the Eurasian Mathematical Journal. He has been awarded a medal
for his meritorious role in the development of science of the Republic of Kazakhstan.

Oleg is in good physical and mental shape, leads an active life, and continues productive research
on the theory of function spaces and lecturing at the Moscow Institute of Physics and Technology.

The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate Oleg
Vladimirovich Besov on occasion of his 90th birthday, wishes him good health and further productive
work in mathematics and mathematical education.

On behalf of the Editorial Board
V.I. Burenkov, T.V. Tararykova
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Abstract. We present some Caffarelli-Kohn-Nirenberg-type inequalities for Herz-type Besov-Triebel-
Lizorkin spaces, Besov-Morrey and Triebel-Lizorkin-Morrey spaces. More precisely, we investigate
the inequalities

‖f‖k̇α1,r
v,σ
≤ c ‖f‖1−θ

K̇
α2,δ
u
‖f‖θ

K̇
α3,δ1
p Asβ

and
‖f‖Eσp,2,u ≤ c ‖f‖1−θ

Mδ
µ
‖f‖θN sq,β,v ,

with some appropriate assumptions on the parameters, where k̇α1,r
v,σ are the Herz-type Bessel potential

spaces, which are just the Sobolev spaces if α1 = 0, 1 < r = v < ∞ and σ ∈ N0, and K̇α3,δ1
p Asβ are

Besov or Triebel-Lizorkin spaces if α3 = 0 and δ1 = p. The usual Littlewood-Paley technique,
Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev
inequalities are given.

DOI: https://doi.org/10.32523/2077-9879-2023-14-2-24-57

1 Introduction

Major results in harmonic analysis and partial differential equations invoke some inequalities. Some
examples can be mentioned such as: Caffarelli, Kohn and Nirenberg in [7]. They proved the following
useful inequality:

‖|x|γf‖τ ≤ c
∥∥|x|βf∥∥θ

q
‖|x|α∇f‖1−θ

p , f ∈ C∞0 (Rn), (1.1)

where 1 ≤ p, q <∞, τ > 0, 0 ≤ θ ≤ 1, α, β, γ ∈ R satisfy some suitable conditions and c > 0 depends
only on these numerical parameters. This inequality plays an important role in theory of PDE’s. It
was extended to fractional Sobolev spaces in [32]. This estimate can be rewritten in the following
form:

‖f‖K̇γ,τ
τ
≤ c
∥∥f∥∥θ

K̇β,q
q

∥∥∇f∥∥1−θ
K̇α,p
p
, f ∈ C∞0 (Rn),

where K̇α,p
q is the Herz space, see Definition 1 below. These function spaces play an important role

in Harmonic Analysis. After they have been introduced in [21], the theory of these spaces had a
remarkable development, in particular, due to its usefulness in applications. For instance, they appear
in the characterization of multipliers on Hardy spaces [2], in the semilinear parabolic equations [13],
in the summability of Fourier transforms [16], and in the Cauchy problem for Navier-Stokes equations
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[45]. For important and latest results for Herz spaces, we refer the reader to the papers [34], [52] and
to the monograph [25].

Inequality (1.1) with α = β = γ = 0, takes the form∥∥f∥∥
Lτ
≤ c
∥∥f∥∥θ

Lq

∥∥∇f∥∥1−θ
Lp

, f ∈ C∞0 (Rn),

where Lp, 1 ≤ p ≤ ∞ is the Lebesgue space.
The main purpose of this paper is to present a more general version of such inequalities. More

precisely, we extend this estimate to Herz-type Besov-Triebel-Lizorkin spaces, called K̇α,p
q Bs

β and
K̇α,p
q F s

β , which generalize the usual Besov and Triebel-Lizorkin spaces. We mean that

K̇0,p
p Bs

β = Bs
p,β and K̇0,p

p F s
β = F s

p,β.

In addition K̇α,p
q F 0

2 are just the Herz spaces K̇α,p
q when 1 < p, q < ∞ and −n

q
< α < n(1 − 1

q
). In

the same manner, we extend these inequalities to Besov-Morrey and Triebel-Lizorkin-Morrey spaces.
Our approach based on the Littlewood-Paley technique of Triebel [44] and some results obtained by
the author in [9, 10, 11].

The structure of this paper needs some notation. As usual, Rn denotes the n-dimensional real
Euclidean space, N the set of all natural numbers and N0 = N∪ {0}. The letter Z stands for the set
of all integer numbers. For any u > 0, k ∈ Z we set C(u) = {x ∈ Rn : u

2
< |x| ≤ u} and Ck = C(2k).

χk, for k ∈ Z, denote the characteristic function of the set Ck. The expression f ≈ g means that
Cg ≤ f ≤ c g for some c, C > 0 independent of non-negative functions f and g.

For any measurable subset Ω ⊆ Rn the Lebesgue space Lp(Ω), 0 < p ≤ ∞ consists of all
measurable functions for which

∥∥f∥∥
Lp(Ω)

=

(∫
Ω

|f(x)|p dx
)1/p

<∞, 0 < p <∞

and ∥∥f∥∥
L∞(Ω)

= ess sup
x∈Ω

|f(x)| <∞.

If Ω = Rn, then we put Lp(Rn) = Lp and
∥∥f∥∥

Lp(Rn)
=
∥∥f∥∥

p
. The symbol S(Rn) is used to denote

the set of all Schwartz functions on Rn and we denote by S ′(Rn) the dual space of all tempered
distributions on Rn. We define the Fourier transform of a function f ∈ S(Rn) by

F(f)(ξ) = (2π)−n/2
∫
Rn
e−ix·ξf(x)dx, ξ ∈ Rn.

Its inverse is denoted by F−1f . Both F and F−1 are extended to the dual Schwartz space S ′(Rn) in
the usual way. The Hardy-Littlewood maximal operatorM is defined on L1

loc by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy, x ∈ Rn

andMτf = (M|f |τ )1/τ , 0 < τ <∞.
Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural embedding

of X in Y is continuous. We use c as a generic positive constant, i.e. a constant whose value may be
different in different inequalities.
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2 Function spaces

We start by recalling the definition and some of the properties of the homogenous Herz spaces K̇α,p
q .

Definition 1. Let α ∈ R, 0 < p, q ≤ ∞. The homogeneous Herz space K̇α,p
q is defined by

K̇α,p
q = {f ∈ Lqloc(R

n \ {0}) :
∥∥f∥∥

K̇α,p
q

<∞},

where ∥∥f∥∥
K̇α,p
q

=

(
∞∑

k=−∞

2kαp
∥∥fχk∥∥pq

)1/p

with the usual modifications made when p =∞ and/or q =∞.

The spaces K̇α,p
q are quasi-Banach spaces and if min(p, q) ≥ 1 then K̇α,p

q are Banach spaces. When
α = 0 and 0 < p = q ≤ ∞ the space K̇0,p

p coincides with the Lebesgue space Lp. In addition

K̇α,p
p = Lp(Rn, | · |αp), (Lebesgue space equipped with power weight),

where ∥∥f∥∥
Lp(Rn,|·|αp)

=

(∫
Rn
|f(x)|p |x|αpdx

)1/p

.

Note that
K̇α,p
q ⊂ S ′(Rn)

for any α < n(1− 1
q
), 1 ≤ p, q ≤ ∞ or α = n(1− 1

q
), p = 1 and 1 ≤ q ≤ ∞. We mean that,

Tf (ϕ) =

∫
Rn
f(x)ϕ(x)dx, ϕ ∈ S(Rn), f ∈ K̇α,p

q

generates a distribution Tf ∈ S ′(Rn). A detailed discussion of the properties of these spaces can be
found in [20, 24, 27], and references therein.

The following lemma is the K̇α,p
q -version of the Plancherel-Polya-Nikolskij inequality.

Lemma 2.1. Let α1, α2 ∈ R and 0 < s, τ, q, r ≤ ∞. We suppose that α1 + n
s
> 0, 0 < q ≤ s ≤ ∞

and α2 ≥ α1. Then there exists a positive constant c > 0 independent of R such that for all
f ∈ K̇α2,δ

q ∩ S ′(Rn) with supp Ff ⊂ {ξ : |ξ| ≤ R}, we have∥∥f∥∥
K̇
α1,r
s
≤ c R

n
q
−n
s

+α2−α1
∥∥f∥∥

K̇
α2,δ
q

,

where

δ =

{
r, if α2 = α1,
τ, if α2 > α1.

Remark 1. We would like to mention that Lemma 2.1 improves the classical Plancherel-Polya-
Nikolskij inequality if α1 = α2 = 0, r = s due to the continuous embedding `q ↪→ `s.

In the previous lemma we have not treated the case s < q. The next lemma gives a positive
answer.
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Lemma 2.2. Let α1, α2 ∈ R and 0 < s, τ, q, r ≤ ∞. We suppose that α1 + n
s
> 0, 0 < s ≤ q ≤ ∞

and α2 ≥ α1 + n
s
− n

q
. Then there exists a positive constant c independent of R such that for all

f ∈ K̇α2,δ
q ∩ S ′(Rn) with supp Ff ⊂ {ξ : |ξ| ≤ R}, we have∥∥f∥∥

K̇
α1,r
s
≤ c R

n
q
−n
s

+α2−α1
∥∥f∥∥

K̇
α2,δ
q

,

where

δ =

{
r, if α2 = α1 + n

s
− n

q
,

τ, if α2 > α1 + n
s
− n

q
.

The proof of these inequalities is given in [9], Lemmas 3.10 and 3.14. Let 1 < q < ∞ and
0 < p ≤ ∞. If f is a locally integrable function on Rn and −n

q
< α < n(1− 1

q
), then∥∥Mf

∥∥
K̇α,p
q
≤ c
∥∥f∥∥

K̇α,p
q
, (2.1)

see [24]. We need the following lemma, which is basically a consequence of Hardy’s inequality in the
sequence Lebesgue space `q.

Lemma 2.3. Let 0 < a < 1 and 0 < q ≤ ∞. Let {εk}k∈N0
be a sequence of positive real numbers,

such that ∥∥{εk}k∈N0

∥∥
`q

= I <∞.

Then the sequences
{
δk : δk =

∑
j≤k a

k−jεj

}
k∈N0

and
{
ηk : ηk =

∑
j≥k a

j−kεj

}
k∈N0

belong to `q, and

∥∥ {δk}k∈N0

∥∥
`q

+
∥∥ {ηk}k∈N0

∥∥
`q
≤ c I,

with c > 0 only depending on a and q.

Some of our results of this paper are based on the following result, see Tang and Yang [40].

Lemma 2.4. Let 1 < β < ∞, 1 < q < ∞ and 0 < p ≤ ∞. If {fj}∞j=0 is a sequence of locally
integrable functions on Rn and −n

q
< α < n(1− 1

q
), then

∥∥∥( ∞∑
j=0

(Mfj)
β

)1/β ∥∥∥
K̇α,p
q

.
∥∥∥( ∞∑

j=0

|fj|β
)1/β ∥∥∥

K̇α,p
q

.

Now, we present the Fourier analytic definition of Herz-type Besov and Triebel-Lizorkin spaces
and recall their basic properties. We first need the concept of a smooth dyadic partition of the unity.
Let ϕ0 be a function in S(Rn) satisfying ϕ0(x) = 1 for |x| ≤ 1 and ϕ0(x) = 0 for |x| ≥ 3

2
. We put

ϕj(x) = ϕ0(2−jx)−ϕ0(21−jx) for j = 1, 2, 3, .... Then {ϕj}j∈N0 is a partition of unity,
∑∞

j=0 ϕj(x) = 1
for all x ∈ Rn. Thus we obtain the Littlewood-Paley decomposition

f =
∞∑
j=0

F−1ϕj ∗ f

of all f ∈ S ′(Rn) (convergence in S ′(Rn)).
We are now in a position to state the definition of Herz-type Besov and Triebel-Lizorkin spaces.
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Definition 2. Let α, s ∈ R, 0 < p, q ≤ ∞ and 0 < β ≤ ∞.
(i) The Herz-type Besov space K̇α,p

q Bs
β is the set of all f ∈ S ′(Rn) such that

∥∥f∥∥
K̇α,p
q Bsβ

=

(
∞∑
j=0

2jsβ
∥∥F−1ϕj ∗ f

∥∥β
K̇α,p
q

)1/β

<∞,

with the obvious modification if β =∞.
(ii) Let 0 < p, q < ∞. The Herz-type Triebel-Lizorkin space K̇α,p

q F s
β is the set of all f ∈ S ′(Rn)

such that ∥∥f∥∥
K̇α,p
q F sβ

=
∥∥∥( ∞∑

j=0

2jsβ
∣∣F−1ϕj ∗ f

∣∣β)1/β ∥∥∥
K̇α,p
q

<∞,

with the obvious modification if β =∞.

Remark 2. Let s ∈ R, 0 < p, q ≤ ∞, 0 < β ≤ ∞ and α > −n
q
. The spaces K̇α,p

q Bs
β and K̇α,p

q F s
β

are independent of the particular choice of the smooth dyadic partition of the unity {ϕj}j∈N0 (in the
sense of equivalent quasi-norms). In particular K̇α,p

q Bs
β and K̇α,p

q F s
β are quasi-Banach spaces and if

p, q, β ≥ 1, then they are Banach spaces. Further results, concerning, for instance, lifting properties,
Fourier multiplier and local means characterizations can be found in [8, 9, 10, 11, 12, 48, 49, 47].

Now we give the definitions of the spaces Bs
p,β and F s

p,β.

Definition 3. (i) Let s ∈ R and 0 < p, β ≤ ∞. The Besov space Bs
p,β is the set of all f ∈ S ′(Rn)

such that ∥∥f∥∥
Bsp,β

=

(
∞∑
j=0

2jsβ
∥∥F−1ϕj ∗ f

∥∥β
p

)1/β

<∞,

with the obvious modification if β =∞.
(ii) Let s ∈ R, 0 < p < ∞ and 0 < β ≤ ∞. The Triebel-Lizorkin space F s

p,β is the set of all
f ∈ S ′(Rn) such that ∥∥f∥∥

F sp,β
=
∥∥∥( ∞∑

j=0

2jsβ
∣∣F−1ϕj ∗ f

∣∣β)1/β ∥∥∥
p
<∞,

with the obvious modification if β =∞.

The theory of the spaces Bs
p,β and F s

p,β has been developed in detail in [42, 43] but has a longer
history already including many contributors; we do not want to discuss this here. Clearly, for
s ∈ R, 0 < p <∞ and 0 < β ≤ ∞,

K̇0,p
p Bs

β = Bs
p,β and K̇0,p

p F s
β = F s

p,β.

Let w denote a positive, locally integrable function and 0 < p <∞. Then the weighted Lebesgue
space Lp(Rn, w) consists of all measurable functions such that∥∥f∥∥

Lp(Rn,w)
=

(∫
Rn
|f(x)|pw(x)dx

)1/p

<∞.

For % ∈ [1,∞) we denote by A% the Muckenhoupt class of weights, and A∞ = ∪%≥1A%. We refer to
[17] for the general properties of these classes. Let w ∈ A∞, s ∈ R, 0 < β ≤ ∞ and 0 < p <∞. We
define weighted Besov spaces Bs

p,β(Rn, w) to be the set of all distributions f ∈ S ′(Rn) such that

∥∥f∥∥
Bsp,β(Rn,w)

=

(
∞∑
j=0

2jsβ
∥∥F−1ϕj ∗ f

∥∥β
Lp(Rn,w)

)1/β
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is finite. In the limiting case β =∞ the usual modification is required.
Let w ∈ A∞, s ∈ R, 0 < β ≤ ∞ and 0 < p < ∞. We define weighted Triebel-Lizorkin spaces

F s
p,β(Rn, w) to be the set of all distributions f ∈ S ′(Rn) such that

∥∥f∥∥
F sp,β(Rn,w)

=
∥∥∥( ∞∑

j=0

2jsβ
∣∣F−1ϕj ∗ f

∣∣β)1/β ∥∥∥
Lp(Rn,w)

is finite. In the limiting case β =∞ the usual modification is required.
The spaces Bs

p,β(Rn, w) = Bs
p,β(w) and F s

p,β(Rn, w) = F s
p,β(w) are independent of the particular

choice of the smooth dyadic partition of the unity {ϕj}j∈N0 appearing in their definitions. They are
quasi-Banach spaces (Banach spaces for p, β ≥ 1). Moreover, for w ≡ 1 ∈ A∞ we obtain the usual
(unweighted) Besov and Triebel-Lizorkin spaces. We refer, in particular, to the papers [3, 4, 22]
for a comprehensive investigation consists of the weighted spaces. Let wγ be a power weight, i.e.,
wγ(x) = |x|γ with γ > −n. Then we have

Bs
p,β(wγ) = K̇

γ
p
,p

p Bs
β and F s

p,β(wγ) = K̇
γ
p
,p

p F s
β ,

in the sense of equivalent quasi-norms.

Definition 4. (i) Let 1 < q < ∞, 0 < p < ∞,−n
q
< α < n(1 − 1

q
) and s ∈ R. Then the Herz-type

Bessel potential space k̇α,pq,s is the set of all f ∈ S ′(Rn) such that∥∥f∥∥
k̇α,pq,s

=
∥∥(1 + |ξ|2)

s
2 ∗ f

∥∥
K̇α,p
q

<∞.

(ii) Let 1 < q < ∞, 0 < p < ∞,−n
q
< α < n(1 − 1

q
) and m ∈ N. The homogeneous Herz-type

Sobolev space Ẇα,p
q,m is the set of all f ∈ S ′(Rn) such that

∥∥f∥∥
Ẇα,p
q,m

=
∑
|β|≤m

∥∥∥∂βf
∂βx

∥∥∥
K̇α,p
q

<∞,

where the derivatives must be understood in the sense of distribution.

In the following, we will present the connection between the Herz-type Triebel-Lizorkin spaces
and the Herz-type Bessel potential spaces; see [26, 48]. Let 1 < q < ∞, 1 < p < ∞ and −n

q
< α <

n(1− 1
q
). If s ∈ R, then

K̇α,p
q F s

2 = k̇α,pq,s (2.2)

with equivalent norms. If s = m ∈ N, then

K̇α,p
q Fm

2 = Ẇα,p
q,m (2.3)

with equivalent norms. In particular

K̇0,p
p Fm

2 = W p
m (Sobolev spaces)

and
K̇α,p
q F 0

2 = K̇α,p
q (2.4)

with equivalent norms. Let 0 < θ < 1,

α = (1− θ)α0 + θα1,
1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

,
1

β
=

1− θ
β0

+
θ

β1



30 D. Drihem

and
s = (1− θ)s0 + θs1.

For simplicity, in what follows, we use K̇α,p
q Asβ to denote either K̇α,p

q Bs
β or K̇α,p

q F s
β . As an immediate

consequence of Hölder’s inequality we have the so-called interpolation inequalities:∥∥f∥∥
K̇α,p
q Asβ

≤
∥∥f∥∥1−θ

K̇
α0,p0
q0

A
s0
β0

∥∥f∥∥θ
K̇
α1,p1
q1

A
s1
β1

(2.5)

which hold for all f ∈ K̇α0,p0
q0

As0β0
∩ K̇α1,p1

q1
As1β1

.
We collect some embeddings on these function spaces as obtained in [9]-[10]. First we have

elementary embeddings within these spaces. Let s ∈ R, 0 < p, q < ∞, 0 < β ≤ ∞ and α > −n
q
.

Then
K̇α,p
q Bs

min(β,p,q) ↪→ K̇α,p
q F s

β ↪→ K̇α,p
q Bs

max(β,p,q). (2.6)

Theorem 2.1. Let α1, α2, s1, s2 ∈ R, 0 < s, p, q, r, β ≤ ∞, α1 > −n
s
and α2 > −n

q
. We suppose that

s1 −
n

s
− α1 = s2 −

n

q
− α2.

Let 0 < q ≤ s ≤ ∞ and α2 ≥ α1 or 0 < s ≤ q ≤ ∞ and

α2 +
n

q
≥ α1 +

n

s
. (2.7)

(i) We have the embedding
K̇α2,θ
q Bs2

β ↪→ K̇α1,r
s Bs1

β ,

where

θ =

{
r, if α2 + n

q
= α1 + n

s
, s ≤ q or α2 = α1, q ≤ s,

p, if α2 + n
q
> α1 + n

s
, s ≤ q or α2 > α1, q ≤ s.

(ii) Let 0 < q, s <∞. The embedding

K̇α2,r
q F s2

θ ↪→ K̇α1,p
s F s1

β

holds if 0 < r ≤ p <∞, where

θ =

{
β, if 0 < s ≤ q <∞ and α2 + n

q
= α1 + n

s
;

∞, otherwise.

We now present an immediate corollary of the Sobolev embeddings, which are called Hardy-
Sobolev inequalities.

Corollary 2.1. Let 1 < q ≤ s <∞, 1 < q < n and α = n
q
− n

s
− 1. There is a constant c > 0 such

that for all f ∈ Ẇ 1
q

∫
Rn

(
|f(x)|
|x|−α

)s
dx ≤ c

∑
|β|=1

∥∥∥∂βf
∂βx

∥∥∥
K̇0,s
q

s

≤ c

∑
|β|=1

∥∥∥∂βf
∂βx

∥∥∥
q

s

.

Now we recall the Franke embedding, see [12].
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Theorem 2.2. Let α1, α2, s1, s2 ∈ R, 0 < s, p, q < ∞, 0 < θ ≤ ∞, α1 > −n
s
and α2 > −n

q
. We

suppose that
s1 −

n

s
− α1 = s2 −

n

q
− α2.

Let
0 < q < s <∞ and α2 ≥ α1,

or
0 < s ≤ q <∞ and α2 +

n

q
> α1 +

n

s
.

Then
K̇α2,p
q Bs2

p ↪→ K̇α1,p
s F s1

θ .

Corollary 2.2. Let 1 < q ≤ s < ∞ with 1 < q < n. Let α = n
q
− n

s
− 1. There is a constant c > 0

such that for all f ∈ B1
q,s ∫

Rn

(
|f(x)|
|x|−α

)s
dx ≤ c

∥∥f∥∥s
K̇0,s
q B1

s
≤ c
∥∥f∥∥s

B1
q,s
.

Remark 3. We would like to mention that in Theorem 2.1 and Theorem 2.2 the assumptions
s1 − n

s
− α1 ≤ s2 − n

q
− α2, (2.7) and 0 < r ≤ p <∞ are necessary, see [9, 10, 12].

Let {ϕj}j∈N0 be a partition of unity. For any a > 0, f ∈ S ′(Rn) and x ∈ Rn, we denote, Peetre
maximal function,

(F−1ϕj)
∗,af(x) = sup

y∈Rn

|F−1ϕj ∗ f(y)|
(1 + 2j |x− y|)a

, j ∈ N0.

We now present a fundamental characterization of the above spaces, which plays an essential role in
this paper, see [46, Theorem 1].

Theorem 2.3. Let s ∈ R, 0 < p, q <∞, 0 < β ≤ ∞ and α > −n
q
. Let a > n

min

(
q, n
α+n

q

) . Then

∥∥f∥∥?
K̇α,p
q Bsβ

=

(
∞∑
j=0

2jsβ
∥∥(F−1ϕj)

∗,af
∥∥β
K̇α,p
q

)1/β

,

is an equivalent quasi-norm in K̇α,p
q Bs

β. Let a >
n

min

(
min(q,β), n

α+n
q

) . Then

∥∥f∥∥?
K̇α,p
q F sβ

=
∥∥∥( ∞∑

j=0

2jsβ(F−1ϕj)
∗,af)β

)1/β ∥∥∥
K̇α,p
q

,

is an equivalent quasi-norm in K̇α,p
q F s

β .

Let 0 < p, q ≤ ∞. For later use we introduce the following abbreviations:

σq = nmax(
1

q
− 1, 0) and σp,q = nmax(

1

p
− 1,

1

q
− 1, 0).

In the sequel we shall interpret L1
loc as the set of regular distributions.

Theorem 2.4. Let 0 < p, q, β ≤ ∞, α > −n
q
, α0 = n− n

q
and s > max(σq, α− α0). Then

K̇α,p
q Asβ ↪→ L1

loc,

where 0 < p, q <∞ in the case of Herz-type Triebel-Lizorkin spaces.
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Proof. Let {ϕj}j∈N0 be a smooth dyadic partition of unity. We set

%k =
k∑
j=0

F−1ϕj ∗ f, k ∈ N0.

For technical reasons, we split the proof into two steps.
Step 1. We consider the case 1 ≤ q ≤ ∞. In order to prove we additionally do it into the four

Substeps 1.1, 1.2, 1.3 and 1.4.
Substep 1.1. −n

q
< α < α0. Since s > 0 and K̇α,p

q ↪→ K̇
α,max(1,p)
q , we have

∞∑
j=0

∥∥F−1ϕj ∗ f
∥∥
K̇
α,max(1,p)
q

.
∥∥f∥∥

K̇α,p
q Asβ

.

Then, the sequence {%k}k∈N0 converges to g ∈ K̇α,max(1,p)
q . Let ϕ ∈ S(Rn). Then

〈f − g, ϕ〉 = 〈f − %N , ϕ〉+ 〈g − %N , ϕ〉, N ∈ N0.

Here 〈·, ·〉 denotes the duality bracket between S ′(Rn) and S(Rn). Clearly, the first term tends to
zero as N → ∞, while by Hölder’s inequality there exists a constant C > 0 independent of N such
that

|〈g − %N , ϕ〉| ≤ C
∥∥g − %N∥∥K̇α,max(1,p)

q
,

which tends to zero as N →∞. From this and K̇α,max(1,p)
q ↪→ L1

loc, because of α < α0, we deduce the
desired result. In addition, we have

K̇α,p
q Asβ ↪→ K̇α,max(1,p)

q .

Substep 1.2. α ≥ α0 and 1 < q ≤ ∞. Let 1 < q1 <∞ be such that

s > α +
n

q
− n

q1

.

We distinguish two cases:
• q1 = q. By Theorem 2.1/(i), we obtain

K̇α,p
q Bs

β ↪→ K̇0,q
q Bs−α

β = Bs−α
q,β ↪→ L1

loc.

where the last embedding follows by the fact that

Bs−α
q,β ↪→ Lq, (2.8)

because of s−α > 0. The Herz-type Triebel-Lizorkin case follows by the second embeddings of (2.6).
• 1 < q1 < q ≤ ∞ or 1 < q < q1 < ∞. If we assume the first possibility then Theorem 2.1/(i)

and Substep 1.1 yield
K̇α,p
q Bs

β ↪→ K̇0,p
q1
B
s−α−n

q
+ n
q1

β ↪→ L1
loc,

since α + n
q
> n

q1
. The latter possibility follows again by Theorem 2.1/(i). Indeed, we have

K̇α,p
q Bs

β ↪→ K̇α0,p
q Bs+α0−α

β ↪→ K̇0,q1
q1

B
s−α−n

q
+ n
q1

β = B
s−α−n

q
+ n
q1

q1,β
↪→ L1

loc,

where the last embedding follows by the fact that

B
s−α−n

q
+ n
q1

q1,β
↪→ Lq1 . (2.9)



Caffarelli-Kohn-Nirenberg-type inequalities 33

Therefore from (2.6) we obtain the desired embeddings.
Substep 1.3. q = 1 and α > 0. We have

K̇α,p
1 Bs

β ↪→ K̇0,1
1 Bs−α

β = Bs−α
1,β ↪→ L1,

since s > α.
Substep 1.4. q = 1 and α = 0. Let α3 be a real number such that max(−n,−s) < α3 < 0. From

Theorem 2.1, we get
K̇0,p

1 Asβ ↪→ K̇α3,p
1 As+α3

β .

We have
∞∑
k=0

∥∥F−1ϕk ∗ f
∥∥
K̇
α3,max(1,p)
1

.
∥∥f∥∥

K̇
α3,p
1 A

s+α3
β

.
∥∥f∥∥

K̇0,p
1 Asβ

,

since α3 + s > 0. Using the same type of arguments as in Substep 1.1 it is easy to see that

K̇α3,p
1 As+α3

β ↪→ K̇
α3,max(1,p)
1 ↪→ L1

loc.

Step 2. We consider the case 0 < q < 1.
Substep 2.1. −n

q
< α < 0. By Lemma 2.1, we obtain

∞∑
j=0

∥∥F−1ϕj ∗ f
∥∥
K̇
α,max(1,p)
1

.
∞∑
j=0

2j(
n
q
−n)
∥∥F−1ϕj ∗ f

∥∥
K̇α,p
q
.
∥∥f∥∥

K̇α,p
q Asβ

,

since s > n
q
−n. The desired embedding follows by the fact that K̇α,max(1,p)

1 ↪→ L1
loc and the arguments

in Substep 1.1. In addition
K̇α,p
q Asβ ↪→ K̇

α,max(1,p)
1 . (2.10)

Substep 2.2. α ≥ 0. Let α4 be a real number such that max(−n,−s + n
q
− n + α) < α4 < 0. By

Theorem 2.1, we get

K̇α,p
q Asβ ↪→ K̇0,p

1 A
s−n

q
+n−α

β ↪→ K̇α4,p
1 A

s−n
q

+n−α+α4

β ↪→ K̇
α4,max(1,p)
1 A

s−n
q

+n−α+α4

β .

As in Substep 1.4, we easily obtain that

K̇α,p
q Asβ ↪→↪→ L1

loc.

Therefore, under the hypothesis of this theorem, every f ∈ K̇α,p
q Asβ is a regular distribution.

Let f be an arbitrary function on Rn and x, h ∈ Rn. Then

∆hf(x) = f(x+ h)− f(x), ∆M+1
h f(x) = ∆h(∆

M
h f)(x), M ∈ N.

These are the well-known differences of functions which play an important role in the theory of
function spaces. Using mathematical induction one can show the explicit formula

∆M
h f(x) =

M∑
j=0

(−1)j Cj
Mf(x+ (M − j)h), x ∈ Rn,

where Cj
M are the binomial coefficients. By ball means of differences we mean the quantity

dMt f(x) = t−n
∫
|h|≤t

∣∣∆M
h f(x)

∣∣ dh =

∫
B

∣∣∆M
thf(x)

∣∣ dh, x ∈ Rn.



34 D. Drihem

Here B = {y ∈ Rn : |h| ≤ 1} is the unit ball of Rn and t > 0 is a real number. We set

∥∥f∥∥∗
K̇α,p
q Bsβ

=
∥∥f∥∥

K̇α,p
q

+

(∫ ∞
0

t−sβ
∥∥dMt f∥∥βK̇α,p

q

dt

t

)1/β

and ∥∥f∥∥∗
K̇α,p
q F sβ

=
∥∥f∥∥

K̇α,p
q

+
∥∥∥(∫ ∞

0

t−sβ(dMt f)β
dt

t

)1/β ∥∥∥
K̇α,p
q

.

The following theorem play a central role in our paper.

Theorem 2.5. Let 0 < p, q, β ≤ ∞, α > −n
q
, α0 = n− n

q
and M ∈ N\{0}.

(i) Assume that
max(σq, α− α0) < s < M.

Then ‖·‖∗K̇α,p
q Bsβ

is an equivalent quasi-norm on K̇α,p
q Bs

β.
(ii) Let 0 < p <∞ and 0 < q <∞. Assume that

max(σq,β, α− α0) < s < M.

Then ‖·‖∗K̇α,p
q F sβ

is an equivalent quasi-norm on K̇α,p
q F s

β .

Proof. We split the proof into three steps.
Step 1. We will prove that ∥∥f∥∥

K̇α,p
q
.
∥∥f∥∥

K̇α,p
q Asβ

for all f ∈ K̇α,p
q Asβ. We employ the same notations as in Theorem 2.4. Recall that

%k =
k∑
j=0

F−1ϕj ∗ f, k ∈ N0.

Obviously {%k}k∈N0 converges to f in S ′(Rn) and {%k}k∈N0 ⊂ K̇α,p
q for any 0 < p, q ≤ ∞ and any

α > −n
q
. Furthermore, {%k}k∈N0 is a Cauchy sequence in K̇α,p

q and hence it converges to a function
g ∈ K̇α,p

q , and ∥∥g∥∥
K̇α,p
q
.
∥∥f∥∥

K̇α,p
q Asβ

.

Let us prove that g = f almost everywhere. We will do this in four cases.
Case 1. −n

q
< α < α0 and 1 ≤ q ≤ ∞. Let ϕ ∈ D(Rn). We write

〈f − g, ϕ〉 = 〈f − %N , ϕ〉+ 〈g − %N , ϕ〉, N ∈ N0.

Here 〈·, ·〉 denotes the duality bracket between S ′(Rn) and S(Rn). Clearly, the first term tends to
zero as N → ∞, while by Hölder’s inequality there exists a constant C > 0 independent of N such
that

|〈g − %N , ϕ〉| ≤ C
∥∥g − %N∥∥K̇α,max(1,p)

q
,

which tends to zero as N →∞. Then, with the help of Substep 1.1 of the proof of Theorem 2.4, we
have g = f almost everywhere.

Case 2. α ≥ α0 and 1 < q ≤ ∞. Let 1 < q1 <∞ be as in Theorem 2.4. From (2.8) and (2.9), we
derive in this case, that every f ∈ K̇α,p

q Asβ is a regular distribution, {%k}k∈N0 converges to f in Lq1
and ∥∥f∥∥

q1
.
∥∥f∥∥

K̇α,p
q Asβ

.
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Indeed, from the embeddings (2.9) and since f ∈ B
n
q1
−α−n

q
+s

q1,β
, it follows that {%k}k∈N0 converges to a

function h ∈ Lq1 . Similarly as in Case 1, we conclude that f = h almost everywhere. It remains to
prove that g = f almost everywhere. We have∥∥f − g∥∥σ

K̇α,p
q
≤
∥∥f − %k∥∥σK̇α,p

q
+
∥∥g − %k∥∥σK̇α,p

q
, k ∈ N0

and ∥∥f − %k∥∥σK̇α,p
q
≤

∞∑
j=k+1

∥∥F−1ϕj ∗ f
∥∥σ
K̇α,p
q
≤
∥∥f∥∥σ

K̇α,p
q Asβ

∞∑
j=k+1

2−jsσ,

where σ = min(1, p, q). Letting k tends to infinity, we get g = f almost everywhere. For the latter
case 1 < q1 < q ≤ ∞, we have

K̇α,p
q Asβ ↪→ K̇0,max(1,p)

q1
A
s−α−n

q
+ n
q1

β .

As in Case 1, {%k}k∈N0 converges to a function h ∈ K̇0,max(1,p)
q1 . Then again, similarly to the arguments

in Case 1 it is easy to check that f = h almost everywhere. Therefore, we can conclude that g = f
almost everywhere.

Case 3. q = 1 and α ≥ 0.
Subcase 3.1. q = 1 and α > 0. We have

K̇α,p
1 Bs

β ↪→ L1,

since s > α, see Theorem 2.4, Substep 1.3. Now one can continue as in Case 2.
Subcase 3.2. q = 1 and α = 0. Let α3 be a real number such that max(−n,−s) < α3 < 0. By

Theorem 2.1, we get
K̇0,p

1 Asβ ↪→ K̇α3,p
1 As+α3

β .

We have
∞∑
k=0

∥∥F−1ϕk ∗ f
∥∥
K̇
α3,max(1,p)
1

.
∥∥f∥∥

K̇
α3,p
1 A

s+α3
β

.
∥∥f∥∥

K̇0,p
1 Asβ

,

since α3 + s > 0. Hence the sequence {%k}k∈N0 converges to f in K̇α3,max(1,p)
1 , see Case 1. As in Case

2, we obtain g = f almost everywhere.
Case 4. 0 < q < 1.
Subcase 4.1. −n

q
< α < 0. From the embedding (2.10) and the fact that s > n

q
− n, the sequence

{%k}k∈N0 converge to f in K̇α,max(1,p)
1 . As above we prove that g = f almost everywhere.

Subcase 4.2. α ≥ 0. Recall that

K̇α,p
q Asβ ↪→ K̇

α4,max(1,p)
1 A

s−n
q

+n−α+α4

β ,

see Substep 2.2 of the proof of Theorem 2.4. As in Subcase 3.2 the sequence {%k}k∈N0 converges to
f in K̇α4,max(1,p)

1 . By the same arguments as above one can conclude that: g = f almost everywhere.
Step 2. In this step we prove that

∥∥f∥∥∗∗
K̇α,p
q F sβ

=
∥∥∥(∫ ∞

0

t−sβ(dMt f)β
dt

t

)1/β ∥∥∥
K̇α,p
q

.
∥∥f∥∥

K̇α,p
q F sβ

, f ∈ K̇α,p
q F s

β .

Thus, we need to prove that ∥∥∥( ∞∑
k=−∞

2skβ|dM2−kf |
β

)1/β ∥∥∥
K̇α,p
q
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does not exceed c
∥∥f∥∥

K̇α,p
q F sβ

. In order to prove this we additionally consider two Substeps 2.1 and

2.2. The estimate for the space K̇α,p
q Bs

β is similar.
Substep 2.1. We will estimate

∥∥∥( ∞∑
k=0

2skβ|dM2−kf |
β

)1/β ∥∥∥
K̇α,p
q

.

Let {ϕj}j∈N0 be a smooth dyadic partition of unity. Obviously we need to estimate{
2ks

k∑
j=0

dM2−k(F
−1ϕj ∗ f)

}
k∈N0

(2.11)

and {
2ks

∞∑
j=k+1

dM2−k(F
−1ϕj ∗ f)

}
k∈N0

. (2.12)

Recall that
dM2−k(F

−1ϕj ∗ f) . 2(j−k)M(F−1ϕj)
∗,af (x)

if a > 0, 0 ≤ j ≤ k, k ∈ N0 and x ∈ Rn, see, e.g., [13], where the implicit constant is independent of
j, k and x. We choose a > n

min

(
min(q,β), n

α+n
q

) . Since s < M , (2.11) in `β-quasi-norm does not exceed

(
∞∑
j=0

2jsβ((F−1ϕj)
∗,af)β

)1/β

. (2.13)

By Theorem 2.3, the K̇α,p
q -quasi-norm of (2.13) is bounded by c

∥∥f∥∥
K̇α,p
q F sβ

.

Now, we estimate (2.12). We can distinguish two cases as follows:
• Case 1. min(q, β) ≤ 1. If −n

q
< α < n(1− 1

q
), then s > n

min(q,β)
− n. We choose

max

(
0, 1− smin(q, β)

n

)
< λ < min(q, β), (2.14)

which is possible because of

s >
n

min(q, β)
− n =

n

min(q, β)
(1−min(q, β)) .

Let n
min(q,β)

< a < s
1−λ . Then s > a(1− λ). Now, assume that α ≥ n(1− 1

q
). Therefore

s > max

(
n

min(q, β)
− n, n

q
+ α− n

)
.

If min(q, β) ≤ n
n
q

+α
, then we choose λ as in (2.14). If min(q, β) > n

n
q

+α
, then we choose

max

(
0, 1− s

n
q

+ α

)
< λ <

n
n
q

+ α
, (2.15)
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which is possible because of

s >
n

q
+ α− n =

(
n

q
+ α

)(
1− n

n
q

+ α

)
.

In this case, we choose n
q

+ α < a < s
1−λ . We set

J2,k(f) = 2ks
∞∑

j=k+1

dM2−k(F
−1φj ∗ f), k ∈ N0.

Recalling the definition of dM
2−k(φj ∗ f), we have

dM2−k(F
−1φj ∗ f) =

∫
B

∣∣∆M
2−kh(F

−1φj ∗ f)
∣∣dh

≤
∫
B

∣∣∆M
2−kh(F

−1φj ∗ f)
∣∣λdh sup

h∈B

∣∣∆M
2−kh(F

−1φj ∗ f)
∣∣1−λ. (2.16)

Observe that ∣∣F−1φj ∗ f(x+ (M − i)2−kh)
∣∣ ≤ c2(j−k)aφ∗,aj f (x) , |h| ≤ 1 (2.17)

and ∫
B

∣∣F−1φj ∗ f(x+ (M − i)2−kh)
∣∣λdh ≤ cM(|F−1φj ∗ f |λ)(x). (2.18)

if j > k, i ∈ {0, ...,M} and x ∈ Rn. Therefore

dM2−k(F
−1φj ∗ f) ≤ c2(j−k)a(1−λ)(φ∗,aj f)1−λM(|F−1φj ∗ f |λ)

for any j > k, where the positive constant c is independent of j and k. Hence

J2,k(f) ≤ c2ks
∞∑

j=k+1

2(j−k)a(1−λ)(φ∗,aj f)1−λM(|F−1φj ∗ f |λ).

Using Lemma 2.3, we obtain that (2.12) in `β-quasi-norm can be estimated from above by

c

(
∞∑
j=0

2jsβ(φ∗,aj f)(1−λ)β(M(|F−1φj ∗ f |λ))β
)1/β

.

(
∞∑
j=0

2jsβ(φ∗,aj f)β

)(1−λ)/β ( ∞∑
j=0

2jsβ(M(|F−1φj ∗ f |λ))β/λ
)λ/β

.

Applying the K̇α,p
q -quasi-norm and using Hölder’s inequality we obtain that

∥∥( ∞∑
j=0

(J2,k(f))β

)1/β ∥∥
K̇α,p
q
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is bounded by

c
∥∥∥( ∞∑

j=0

2jsβ(φ∗,aj f)β

)(1−λ)/β ∥∥∥
K̇
α(1−λ),

p
1−λ

q
1−λ

×
∥∥∥( ∞∑

j=0

2jsβ
(
M(|F−1φj ∗ f |λ)

)β/λ)λ/β ∥∥∥
K̇
αλ,

p
λ

q
λ

.
∥∥∥( ∞∑

j=0

2jsβ(φ∗,aj f)β

)1/β ∥∥∥1−λ

K̇α,p
q

∥∥∥( ∞∑
j=0

2jsβ|F−1φj ∗ f |β
)1/β ∥∥∥λ

K̇α,p
q

.
∥∥f∥∥

K̇α,p
q F sβ

,

where we have used Lemma 2.4 and Theorem 2.3.
• Case 2. min(q, β) > 1. Assume that α ≥ n(1 − 1

q
). Then we choose λ as in (2.15) and

n
q

+ α < a < s
1−λ . If −n

q
< α < n(1 − 1

q
), then we choose λ = 1. The desired estimate can be done

in the same manner as in Case 1.
Substep 2.2. We will estimate

∥∥∥( −1∑
k=−∞

2skβ|dM2−kf |
β

)1/β ∥∥∥
K̇α,p
q

.

We employ the same notations as in Subtep 1.1. Define

Hk,2(f)(x) =

∫
B

∣∣ ∞∑
j=0

∆M
z2−k(F

−1ϕj ∗ f)(x)
∣∣dz, k ≤ 0, x ∈ Rn.

As in the estimation of J2,k, we obtain that

H2,k(f) . 2−ka(1−λ) sup
j∈N0

((
2js(F−1ϕj)

∗,af
)1−λM

(
2js|F−1ϕj ∗ f |

)λ)
and this yields that(

−1∑
k=−∞

2skβ|H2,k|β
)1/β

. sup
j∈N0

((
2js(F−1ϕj)

∗,af
)1−λM

(
2js|F−1ϕj ∗ f |

)λ)
.

By the same arguments as used in Subtep 2.1 we obtain the desired estimate.
Step 3. Let f ∈ K̇α,p

q Asβ. We will prove that∥∥f∥∥
K̇α,p
q Asβ

.
∥∥f∥∥∗

K̇α,p
q Asβ

.

As the proof for K̇α,p
q Bs

β is similar, we only consider K̇α,p
q F s

β . Let Ψ be a function in S(Rn) satisfying
Ψ(x) = 1 for |x| ≤ 1 and Ψ(x) = 0 for |x| ≥ 3

2
, and in addition radially symmetric. We use an

observation made by Nikol’skij [33] (see also [37] and [42, Section 3.3.2]). We put

ψ(x) = (−1)M+1

M−1∑
i=0

(−1)iCM
i Ψ(x (M − i)).
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The function ψ satisfies ψ (x) = 1 for |x| ≤ 1
M

and ψ (x) = 0 for |x| ≥ 3
2
. Then, taking ϕ0(x) =

ψ(x), ϕ1(x) = ψ(x
2
) − ψ(x) and ϕj(x) = ϕ1(2−j+1x) for j = 2, 3, ..., we obtain that {ϕj}j∈N0 is a

smooth dyadic partition of unity. This yields that

∥∥∥( ∞∑
j=0

2jsβ|F−1ϕj ∗ f |β
)1/β ∥∥∥

K̇α,p
q

is a quasi-norm equivalent in K̇α,p
q F s

β . Let us prove that the last expression is bounded by

C
∥∥f∥∥∗

K̇α,p
q F sβ

. (2.19)

We observe that

F−1ϕ0 ∗ f(x) = (−1)M+1

∫
Rn
F−1Ψ (z) ∆M

−zf(x)dz + f(x)

∫
Rn
F−1Ψ (z) dz

Moreover, it holds for x ∈ Rn and j = 1, 2, ...

F−1ϕj ∗ f (x) = (−1)M+1

∫
Rn

∆M
2−jyf (x) Ψ̃ (y) dy,

with Ψ̃ = F−1Ψ− 2−nF−1Ψ(·/2). Now, for j ∈ N0 we have∫
Rn
|∆M

2−jyf(x)||Ψ̃(y)|dy

=

∫
|y|≤1

|∆M
2−jyf(x)||Ψ̃(y)|dy +

∫
|y|>1

|∆M
2−jyf(x)||Ψ̃(y)|dy. (2.20)

Thus, we need only to estimate the second term of (2.20). We write

2sj
∫
|y|>1

|∆M
2−jyf(x)||Ψ̃(y)|dy

= 2sj
∞∑
k=0

∫
2k<|y|≤2k+1

|∆M
2−jyf(x)||Ψ̃(y)|dv

≤ c2sj
∞∑
k=0

2nj−Nk
∫

2k−j<|h|≤2k−j+1

|∆M
h f(x)|dh (2.21)

where N > 0 is at our disposal and we have used the properties of the function Ψ̃, |Ψ̃(x)| ≤
c(1 + |x|)−N , for any x ∈ Rn and any N > 0. Without lost of generality, we may assume 1 ≤ β ≤ ∞.
Now, the right-hand side of (2.21) in `β-norm is bounded by

c

∞∑
k=0

2−Nk

(
∞∑
j=0

2(s+n)jβ

(∫
|h|≤2k−j+1

|∆M
h f(x)|dh

)β)1/β

. (2.22)

After a change of variable j − k − 1 = v, we estimate (2.22) by

c

∞∑
k=0

2(s+n−N)k

(
∞∑

v=−k−1

2svβ
(
dM2−vf(x)

)β)1/β

.

(
∞∑

v=−∞

2svβ
(
dM2−vf(x)

)β)1/β

,

where we choose N > n+ s. Taking the K̇α,p
q -quasi-norm we obtain the desired estimate (2.19).
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We would like to mention that

‖f(λ·)‖∗K̇α,p
q Bsβ

≈ λ−α−
n
q

∥∥f∥∥
K̇α,p
q

+ λs−α−
n
q

(∫ ∞
0

t−sβ
∥∥dMt f∥∥βK̇α,p

q

dt

t

) 1
β

(2.23)

and

‖f(λ·)‖∗K̇α,p
q F sβ

≈ λ−α−
n
q

∥∥f∥∥
K̇α,p
q

+ λs−α−
n
q

∥∥(∫ ∞
0

t−sβ(dMt f)β
dt

t

) 1
β ∥∥

K̇α,p
q

for any λ > 0, 0 < p ≤ ∞, 0 < q ≤ ∞, α > −n
q
,max(σq, α − α0) < s < M (0 < p, q < ∞ and

max(σq,β, α− α0) < s < M in the K̇F -case) and M ∈ N.

Let ϕj(x) = ϕ0(2−jx) − ϕ0(21−jx) for j ∈ Z and x ∈ Rn. In view of [48] we have the following
equivalent norm of K̇α,p

q . Let 1 < p, q <∞ and −n
q
< α < n− n

q
. Then

∥∥∥( ∞∑
j=−∞

∣∣F−1ϕj ∗ f
∣∣2)1/2 ∥∥∥

K̇α,p
q

≈
∥∥f∥∥

K̇α,p
q
, (2.24)

holds for all f ∈ K̇α,p
q .

Let s ∈ R, 0 < p, q <∞, 0 < β ≤ ∞ and α > −n
q
. We set

∥∥f∥∥
K̇α,p
q Ḃsβ

=

(
∞∑

j=−∞

2jsβ
∥∥F−1ϕj ∗ f

∥∥β
K̇α,p
q

)1/β

and ∥∥f∥∥
K̇α,p
q Ḟ sβ

=
∥∥∥( ∞∑

j=−∞

2jsβ
∣∣F−1ϕj ∗ f

∣∣β)1/β ∥∥∥
K̇α,p
q

.

Proposition 2.1. Let s > max(σq, α− n+ n
q
), 0 < p, q <∞, 0 < β ≤ ∞ and α > −n

q
.

(i) Let s > max(σq, α− n+ n
q
) and f ∈ K̇α,p

q Bs
β. Then∥∥f∥∥

K̇α,p
q Bsβ

≈
∥∥f∥∥

K̇α,p
q

+
∥∥f∥∥

K̇α,p
q Ḃsβ

,

(ii) Let s > max(σq,β, α− n+ n
q
) and f ∈ K̇α,p

q F s
β . Then∥∥f∥∥

K̇α,p
q F sβ

≈
∥∥f∥∥

K̇α,p
q

+
∥∥f∥∥

K̇α,p
q Ḟ sβ

.

Proof. As the proof for (i) is similar, we only consider (ii). We use the following Marschall’s inequality
which is given in [28, Proposition 1.5], see also [14]. Let A > 0, R ≥ 1. Let b ∈ D(Rn) and a function
g ∈ C∞(Rn) be such that

suppFg ⊆ {ξ ∈ Rn : |ξ| ≤ AR} and supp b ⊆ {ξ ∈ Rn : |ξ| ≤ A} .

Then ∣∣F−1b ∗ g(x)
∣∣ ≤ c(AR)

n
t
−n ‖b‖

Ḃ
n
t

1,t

Mt(g)(x)

for any 0 < t ≤ 1 and any x ∈ Rn, where c is independent of A, R, x, b, j and g. Here Ḃ
n
t

1,t denotes
the homogeneous Besov spaces. We have

F−1ϕj ∗ f = F−1ϕj ∗ F−1ϕ0 ∗ f, −j ∈ N.
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Therefore,∣∣F−1ϕj ∗ f(x)
∣∣ ≤ c

∥∥ϕj∥∥
Ḃ
n
t

1,t

Mt(F−1ϕ0 ∗ f)(x) ≤ c2j(n−
n
t

)Mt(F−1ϕ0 ∗ f)(x), x ∈ Rn,

where the positive constant c is independent of j and x. If we choose n
s+n

< t < min(1, q, β, n
α+n

q
)

then (
−1∑

j=−∞

2jsβ
∣∣F−1ϕj ∗ f

∣∣β)1/β

.Mt(F−1ϕ0 ∗ f).

Taking the K̇α,p
q -quasi-norm and using (2.1) we obtain∥∥∥( ∞∑

j=−∞

2jsβ
∣∣F−1ϕj ∗ f

∣∣β )1/β∥∥∥
K̇α,p
q

.
∥∥f∥∥

K̇α,p
q F sβ

.

Because of s > max(σq, α− n+ n
q
) the series

∞∑
j=0

F−1ϕj ∗ f converges not only in S ′(Rn) but almost

everywhere in Rn. Then∥∥f∥∥
K̇α,p
q
.
∥∥F−1ϕ0 ∗ f

∥∥
K̇α,p
q

+
( ∞∑
j=1

∥∥F−1ϕj ∗ f
∥∥min(1,p,q)

K̇α,p
q

)1/min(1,p,q)

.

Therefore
∥∥f∥∥

K̇α,p
q

+
∥∥f∥∥

K̇α,p
q Ḟ sβ

can be estimated from above by c
∥∥f∥∥

K̇α,p
q F sβ

. Obviously

F−1ϕ0 ∗ f =
N∑
j=0

F−1ϕj ∗ f −
N∑
j=1

F−1ϕj ∗ f = gN + hN , N ∈ N.

We have ∥∥hN∥∥K̇α,p
q
≤
( ∞∑
j=1

∥∥F−1ϕj ∗ f
∥∥min(1,p,q)

K̇α,p
q

)1/min(1,p,q)

, N ∈ N.

By Lebesgue’s dominated convergence theorem, it follows that
∥∥gN−f∥∥K̇α,p

q
tends to zero as N tends

to infinity. Therefore
∥∥F−1ϕ0 ∗ f

∥∥
K̇α,p
q

can be estimated from above by the quasi-norm

c
∥∥f∥∥

K̇α,p
q

+ c
∥∥f∥∥

K̇α,p
q Ḟ sβ

.

Proposition 2.2. Let s > 0, 1 < p, q <∞ and −n
q
< α < n− n

q
. Let

S0(Rn) =
{
f ∈ S(Rn) : suppFf ⊂ Rn\{0}

}
.

Then S0(Rn) is dense in k̇α,pq,s .

Proof. Let ϕ0 = ϕ be as above. As in [44] it suffices to approximate f ∈ S(Rn) in Ẇα,p
q,k , k ∈ N, by

functions belonging to S0(Rn). We have

|DαF−1(ϕ(2j·)Ff)| = 2−jn|ϕ̃j ∗Dαf | ≤ 2−jnM(ϕ̃j),

where ϕ̃j = F−1ϕ(2−j·), j ∈ N and α ∈ Nn. From (2.1) we obtain∥∥DαF−1(ϕ(2j·)Ff)
∥∥
K̇α,p
q
≤ c2−jn

∥∥ϕ̃j∥∥K̇α,p
q
≤ c2j(

n
q
−n+α),

where the positive constant c is independent of j. Since α < n− n
q
, we obtain that f−F−1(ϕ(2j·)Ff)

approximate f ∈ S(Rn) in Ẇα,p
q,k , k ∈ N.
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Proposition 2.3. Let s > 0, 1 < p, q <∞ and −n
q
< α < n− n

q
. Let f ∈ k̇α,pq,s . Then∥∥f∥∥

k̇α,pq,s
≈
∥∥f∥∥

K̇α,p
q

+
∥∥(−∆)

s
2f
∥∥
K̇α,p
q
,

where
(−∆)

s
2f = F−1(|ξ|sFf).

Proof. Let f ∈ S0(Rn). We apply Marschall’s inequality to gj = F−1(ϕj|x|sFf), j ∈ Z and bj(x) =
2js|x|−sψj(x), j ∈ Z, x ∈ Rn where

ϕj(x) = ϕ0(2−jx)− ϕ0(21−jx), ψj = ϕj−1 + ϕj + ϕj+1, j ∈ Z, x ∈ Rn.

Then ∣∣F−1bj ∗ gj(x)
∣∣ ≤ c ‖bj‖Bn1,1M(F−1(ϕj|ξ|sFf))(x) ≤ cM(F−1(ϕj|ξ|sFf))(x)

for any j ∈ Z and any x ∈ Rn, where c is independent of j. Let j ∈ Z. In view of the fact that

F−1ϕj ∗ f = F−1(ϕjFf) = 2−jsF−1(2js|ξ|−sψj|x|sϕjFf) = 2−jsF−1(bj|ξ|sϕjFf),

by Lemma 2.4 and (2.24) we obtain∥∥∥( ∞∑
j=−∞

22sj
∣∣F−1ϕj ∗ f

∣∣2 )1/2∥∥∥
K̇α,p
q

.
∥∥∥( ∞∑

j=−∞

∣∣F−1(ϕj|ξ|sFf)
∣∣2 )1/2∥∥∥

K̇α,p
q

.
∥∥F−1(|ξ|sFf)

∥∥
K̇α,p
q
.

The same arguments can be used to prove the opposite inequality in view of the fact that

F−1(ϕj|ξ|sFf) = F−1(2−jsψj|ξ|s2jsϕjFf) = F−1(bj2
jsϕjFf), j ∈ Z.

The rest follows by Propositions 2.1 and 2.2.

Definition 5. Let 0 < u ≤ p < ∞. The Morrey space Mp
u is defined to be the set of all u-locally

Lebesgue-integrable functions f on Rn such that

‖f‖Mp
u

= sup |B|
1
p
− 1
u

∥∥fχB∥∥u <∞,
where the supremum is taken over all balls B in Rn.

Remark 4. The Morrey spaces Mp
u which are quasi-Banach spaces, Banach spaces for u ≥ 1, were

introduced by Morrey to study the regularity of solutions to some PDE’s, see [31]. For the theory
of Morrey spaces, general Morrey-type spaces, and their applications see the book [1] and survey
papers [5, 6, 18, 23, 35, 38, 39].

One can easily see that Mp
p = Lp and that for 0 < u ≤ v ≤ p <∞,

Mp
v ↪→Mp

u .

The Sobolev-Morrey spaces are defined as follows.

Definition 6. Let 1 < u ≤ p < ∞ and m = 1, 2, .... The Sobolev-Morrey space Mm,p
u is defined to

be the set of all u-locally Lebesgue-integrable functions f on Rn such that

‖f‖Mm,p
u

= ‖f‖Mp
u

+
∑
|α|≤m

‖Dαf‖Mp
u
<∞.
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Let now recall the definition of Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Let {ϕj}j∈N0

be a partition of the unity, see Section 2.

Definition 7. Let s ∈ R, 0 < u ≤ p < ∞ and 0 < q ≤ ∞.The Besov-Morrey space N s
p,q,u is the set

of all f ∈ S ′(Rn) such that

‖f‖N sp,q,u =
( ∞∑
j=0

2jsq
∥∥F−1ϕj ∗ f

∥∥q
Mp
u

)1/q

<∞.

In the limiting case q =∞ the usual modification is required.
The Triebel-Lizorkin-Morrey space Esp,q,u is the set of all f ∈ S ′(Rn) such that

‖f‖Esp,q,u =
∥∥∥( ∞∑

j=0

2jsq
∣∣F−1ϕj ∗ f

∣∣q )1/q∥∥∥
Mp
u

<∞.

In the limiting case q =∞ the usual modification is required.

We have
Emp,2,u = Mm,p

u , m ∈ N, 1 < u ≤ p <∞

and the norms of these spaces are equivalent, see [38, Theorem 3.1]. In particular, we have that

E0
p,2,u = Mp

u , 1 < u ≤ p <∞, (2.25)

also in the sense of with equivalent norms, see [29, Proposition 4.1].

Theorem 2.6. Let si ∈ R, 0 < qi ≤ ∞, 0 < ui ≤ pi <∞, i = 1, 2. There is a continuous embedding

Es1p1,q1,u1
↪→ Es2p2,q2,u2

if, and only if,
p1 ≤ p2 and

u2

p2

≤ u1

p1

and
s1 −

n

p1

> s2 −
n

p2

or s1 −
n

p1

= s2 −
n

p2

and p1 6= p2.

For the proof of these Sobolev embeddings, see [19, Theorem 3.1].

Remark 5. A detailed study of Besov-Morrey and Triebel-Lizorkin-Morrey spaces including their
history and properties can be found in [19, 29, 30, 38, 51] and references therein.

3 Caffarelli-Kohn-Nirenberg inequalities

As mentioned in the introduction, Caffarelli-Kohn-Nirenberg inequalities play a crucial role to study
regularity and integrability for solutions of nonlinear partial differential equations, see [15, 50]. The
main aim of this section is to extend these inequalities to more general function spaces. Let {ϕj}j∈N0

be a partition of unity and

QJf =
J∑
j=0

F−1ϕj ∗ f, J ∈ N, f ∈ S ′(Rn).
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3.1 CKN inequalities in Herz-type Besov and Triebel-Lizorkin spaces

In this section, we investigate the Caffarelli, Kohn and Nirenberg inequalities in the spaces K̇α,p
q Asβ.

The main results of this section are based on the following proposition.

Proposition 3.1. Let α1, α2 ∈ R, σ ≥ 0, 1 < r, v <∞, 0 < τ, u ≤ ∞ and

−n
v
< α1 < n− n

v
.

(i) Assume that 1 < u ≤ v <∞ and α2 ≥ α1. Then for all f ∈ K̇α2,δ
u ∩ S ′(Rn) and all J ∈ N,∥∥QJf

∥∥
k̇
α1,r
v,σ
≤ c2J(n

u
−n
v

+α2−α1+σ)
∥∥f∥∥

K̇
α2,δ
u

, (3.1)

where
δ =

{
r, if α2 = α1,
τ, if α2 > α1

and the positive constant c is independent of J .
(ii) Assume that 1 < v ≤ u < ∞ and α2 ≥ α1 + n

v
− n

u
. Then for all f ∈ K̇α2,δ

u ∩ S ′(Rn) and all
J ∈ N, (3.1) holds where the positive constant c is independent of J and

δ =

{
r, if α2 = α1 + n

v
− n

u
,

τ, if α2 > α1 + n
v
− n

u
.

Proof. We only give the proof for (i), the case of (ii) being similar. Let σ = θm + (1− θ)0, α ∈ Nn
with 0 < θ < 1 and |α| ≤ m. From (2.5) we have∥∥QJf

∥∥
K̇
α1,r
v Aσ2

≤
∥∥QJf

∥∥1−θ
K̇
α1,r
v A0

2

∥∥QJf
∥∥θ
K̇
α1,r
v Am2

.

Observe that
K̇α1,r
v Aσ2 = k̇α1,r

v,σ , K̇α1,r
v Am2 = Ẇα1,r

v,m , and K̇α1,r
v A0

2 = K̇α1,r
v ,

see (2.2), (2.3) and (2.4). It follows that∥∥QJf
∥∥
k̇
α1,r
v,σ
≤
∥∥QJf

∥∥1−θ
K̇
α1,r
v

∥∥QJf
∥∥θ
Ẇ
α1,r
v,m

,

where the positive constant c is independent of J . Observe that

QJf = 2JnF−1ϕ0(2J ·) ∗ f.

Therefore,
Dα(QJf) = 2J(|α|+n)ωJ ∗ f = 2J |α|Q̃Jf, |α| ≤ m

with ωJ(x) = Dα(F−1ϕ0)(2Jx), x ∈ Rn. Recall that

|Q̃Jf | .M(f).

Applying Lemma 2.1 and estimate (2.1), we obtain∥∥Dα(QJf)
∥∥
K̇
α1,r
v
≤ c2J(n

u
−n
v

+α2−α1+|α|)∥∥Q̃Jf
∥∥
K̇
α2,δ
u

≤ c2J(n
u
−n
v

+α2−α1+m)
∥∥f∥∥

K̇
α2,δ
u

for any |α| ≤ m.
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Remark 6. With α1 = α2 = 0 and r = v estimate (3.1) can be rewritten as∥∥QJf
∥∥
Hσ
v
≤ c2J(n

u
−n
v

+σ)
∥∥f∥∥

K̇0,v
u

≤ c2J(n
u
−n
v

+σ)
∥∥f∥∥

u
,

where the second estimate follows by the embedding Lu ↪→K̇0,v
u , for 1 < u ≤ v <∞, which has been

proved by Triebel in [44, Proposition 4.5].

Now we are in position to state the main results of this section.

Theorem 3.1. Let 0 < p, τ, β, % <∞, 1 < r, v, u <∞, σ ≥ 0,

−n
v
< α1 < n− n

v
, −n

u
< α2 < n− n

u
, α3 > −

n

p
, v ≥ max(p, u), (3.2)

s− n

p
+
n

u
+ α2 − α3 > σ − n

v
+ α2 − α1 +

n

u
> 0 (3.3)

and
σ − n

v
= −(1− θ)n

u
+ θ
(
s− n

p

)
+ α1 −

(
(1− θ)α2 + θα3

)
, 0 < θ < 1. (3.4)

Assume that s > σp,β in the K̇F -case.
(i) Let α1 ≤ α2 ≤ α3. There is a constant c > 0 such that for all f ∈ K̇α2,δ

u ∩ K̇α3,δ1
p Bs

β,∥∥f∥∥
K̇
α1,r
v Ḟσ2

≤ c
∥∥f∥∥1−θ

K̇
α2,δ
u

∥∥f∥∥θ
K̇
α3,δ1
p Ḃsβ

(3.5)

with
δ =

{
r, if α2 = α1,
τ, if α2 > α1.

and δ1 =

{
r, if α3 = α1,
%, if α3 > α1.

(ii) Let 1
r
≤ (1− θ)n

u
+ θn

p
and

α1 = (1− θ)α2 + θα3.

There is a constant c > 0 such that for all f ∈ K̇α2,u
u F 0

∞ ∩ K̇α3,p
p As∞,∥∥f∥∥

k̇
α1,r
v,σ
≤ c
∥∥f∥∥1−θ

K̇
α2,u
u F 0

∞

∥∥f∥∥θ
K̇
α3,p
p As∞

.

Proof. Proof of (i). For technical reasons, we split the proof into two steps.
Step 1. We consider the case p ≤ u. Let

f =
∞∑
j=0

F−1ϕj ∗ f, f ∈ S ′(Rn).

Then it follows that

f =
J∑
j=0

F−1ϕj ∗ f +
∞∑

j=J+1

F−1ϕj ∗ f

= QJf +
∞∑

j=J+1

F−1ϕj ∗ f, J ∈ N.

Hence ∥∥f∥∥
k̇
α1,r
v,σ
≤
∥∥QJf

∥∥
k̇
α1,r
v,σ

+
∥∥∥ ∞∑
j=J+1

F−1ϕj ∗ f
∥∥∥
k̇
α1,r
v,σ

. (3.6)
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Using Proposition 3.1, it follows that∥∥QJf
∥∥
k̇
α1,r
v,σ
. 2J(n

u
−n
v

+α2−α1+σ)
∥∥f∥∥

K̇
α2,δ
u

. (3.7)

From the embedding
K̇α1,r
v Bσ

1 ↪→ k̇α1,r
v,σ , (3.8)

see (2.6), the last norm in (3.6) can be estimated by

c
∞∑

j=J+1

2jσ
∥∥F−1ϕj ∗ f

∥∥
K̇
α1,r
v
.

∞∑
j=J+1

2j(
n
p
−n
v

+α3−α1+σ)
∥∥F−1ϕj ∗ f

∥∥
K̇
α3,δ1
p

. 2J(n
p
−n
v

+α3−α1−s+σ)
∥∥f∥∥

K̇
α3,δ1
p Bsβ

, (3.9)

by Lemma 2.1, where the last estimate follows by (3.3). By substituting (3.7) and (3.9) into (3.6)
we obtain ∥∥f∥∥

k̇
α1,r
v,σ
. 2J(n

u
−n
v

+α2−α1+σ)
∥∥f∥∥

K̇
α2,δ
u

+ 2J(n
p
−n
v

+α3−α1−s+σ)
∥∥f∥∥

K̇
α3,δ1
p Bsβ

= c2J(n
u
−n
v

+α2−α1+σ)
(∥∥f∥∥

K̇
α2,δ
u

+ 2J(n
p
−n
u
−s−α2+α3)

∥∥f∥∥
K̇
α3,δ1
p Bsβ

)
,

with some positive constant c independent of J . Again from, Lemma 2.1, it follows that

K̇α3,δ1
p Bs

β ↪→ K̇α2,δ
u , (3.10)

since s− n
p

+ n
u

+ α2 − α3 > 0. We choose J ∈ N such that

2J(n
p
−n
u
−s−α2+α3) ≈

∥∥f∥∥
K̇
α2,δ
u

∥∥f∥∥−1

K̇
α3,δ1
p Bsβ

.

We obtain ∥∥f∥∥
k̇
α1,r
v,σ
.
∥∥f∥∥1−θ

K̇
α2,δ
u

∥∥f∥∥θ
K̇
α3,δ1
p Bsβ

.

By (3.3) one has s > max
(
σp, α3 − n+ n

p

)
and by the fact that −n

u
< α2 < n− n

u
,

σ > max
(

0, α1 +
n

v
− n

)
and Theorem 2.5, or Proposition 2.1, can be used. Therefore∥∥f∥∥

K̇
α1,r
v Ḟσ2

.
∥∥f∥∥

k̇
α1,r
v,σ

and ∥∥f∥∥
K̇
α1,r
v Ḟσ2

.
∥∥f∥∥1−θ

K̇
α2,δ
u

(∥∥f∥∥
K̇
α3,δ1
p

+
∥∥f∥∥

K̇
α3,δ1
p Ḃsβ

)θ
.

By replacing f(·) by f(λ·) we obtain∥∥f∥∥
K̇
α1,r
v Ḟσ2

.
∥∥f∥∥1−θ

K̇
α2,δ
u

(
λ−s
∥∥f∥∥

K̇
α3,δ1
p

+
∥∥f∥∥

K̇
α3,δ1
p Ḃsβ

)θ
.

Taking λ large enough we obtain (3.5) but with p ≤ u.
Step 2. We consider the case u < p. We choose λ > 0 large enough such that∥∥f(λ·)

∥∥
K̇
α2,δ
u∥∥f(λ·)

∥∥
K̇
α3,δ1
p Bsβ

≤ 1, (3.11)
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which is possible because of s− n
p

+ n
u

+ α2 − α3 > 0, see (2.23). As in Step 1, with f(λ·) in place of
f(·) and (3.11) in place of (3.10), we obtain the desired estimate. The proof of (i) is complete.

Proof of (ii). Observe that

n

v1

=
n

v
+ θs− σ = (1− θ)n

u
+ θ

n

p

and σ
s
≤ θ < 1. Therefore

K̇α1,r
v1

F θs
∞ ↪→ k̇α1,r

v,σ ,

see Theorems 2.1. From (2.2), (2.4) and (2.5), we obtain∥∥f∥∥
K̇
α1,r
v1

F θs∞
≤
∥∥f∥∥1−θ

K̇
α2,u
u F 0

∞

∥∥f∥∥θ
K̇
α3,p
p F θs∞

.

We have
K̇α3,p
p Asβ ↪→ K̇α3,p

p F θs
∞ .

This completes the proof of (ii).

Remark 7. (i) Taking α1 = α2 = α3 = 0 and r = v we obtain∥∥f∥∥
Ḣσ
v
≤ c
∥∥f∥∥1−θ

K̇0,v
u

∥∥f∥∥θ
K̇0,v
p Ḃsβ

≤ c
∥∥f∥∥1−θ

u

∥∥f∥∥θ
Ḃsp,β

for all f ∈ Lu ∩Bs
p,β, because of Lu ↪→ K̇0,v

u and Ḃs
p,β = K̇0,p

p Ḃs
p,β ↪→ K̇0,v

p Ḃs
β, which has been proved

by Triebel in [44, Theorem 4.6].
(ii) Under the hypothesis of Theorem 3.1/(ii), with 0 < p < n

s−σ
θ
and 1

r
≤ (1 − θ)n

u
+ θ(n

p
− s + σ

θ
),

we have ∥∥f∥∥
k̇
α1,r
v,σ
≤ c
∥∥f∥∥1−θ

K̇
α2,u
u F 0

2

∥∥f∥∥θ
K̇

α3,
1

n
p−s+

σ
θ

p Asκ

for all f ∈ K̇α2,u
u F 0

2 ∩ K̇
α3,

1
n
p−s+

σ
θ

p Asκ, where

κ =

{
1

n
p
−s+σ

θ
, if A = B,

∞, if A = F.

Indeed, observe that
n

v
= (1− θ)n

u
+ θ
(n
p
− s+

σ

θ

)
= (1− θ)n

u
+ θ

n

u1

and σ
θ
− s ≤ 0. Therefore, from (2.2), (2.4) and (2.5), we obtain∥∥f∥∥

k̇
α1,r
v,σ
≤
∥∥f∥∥1−θ

K̇
α2,u
u F 0

2

∥∥f∥∥θ
K̇

α3,
1

n
p−s+

σ
θ

u1
F
σ
θ

2

.

The result follows by the embedding

K̇
α3,

1
n
p−s+

σ
θ

p Asκ ↪→ K̇
α3,

1
n
p−s+

σ
θ

u1 F
σ
θ

2 ,

see Theorems 2.1 and 2.2.
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Theorem 3.2. Let α1, α2, α3 ∈ R, 0 < p, τ, β, % ≤ ∞, 1 < r, v, u <∞,

s− n

p
+
n

u
+ α2 − α3 > −

n

v
+ α2 − α1 +

n

u
> 0

and
n

v
= (1− θ)n

u
+ θ
(n
p
− s
)
− α1 + (1− θ)α2 + θα3, 0 < θ < 1.

Assume that 0 < p, τ <∞ and s > σp,β in the K̇F -case.
Let δ and δ1 be as in Theorem 3.1/(i). Let α1 ≤ α2 ≤ α3, v ≥ max(u, p), α1 > −n

v
, −n

u
< α2 <

n− n
u
and α3 > −n

p
. We have ∥∥f∥∥

K̇
α1,r
v
.
∥∥f∥∥1−θ

K̇
α2,δ
u

∥∥f∥∥θ
K̇
α3,δ1
p Asβ

,

for all f ∈ K̇α2,δ
u ∩ K̇α3,δ1

p Asβ.

Proof. We employ the same notation and conventions as in Theorem 3.1. As in Proposition 3.1∥∥QJf
∥∥
K̇
α1,r
v
. 2J(n

u
−n
v

+α2−α1)
∥∥f∥∥

K̇
α2,δ
u

, J ∈ N.

Therefore, ∥∥f∥∥
K̇
α1,r
v
. 2J(n

u
−n
v

+α2−α1)
∥∥f∥∥

K̇
α2,δ
u

+
∞∑

j=J+1

∥∥F−1ϕj ∗ f
∥∥
K̇
α1,r
v

, J ∈ N.

Repeating the same arguments of Theorem 3.1 we obtain the desired estimate.

Remark 8. Under the same hypothesis of Theorem 3.2, with 1 < p <∞,−n
p
< α3 < n− n

p
, r = v and

β = 2, we obtain ∥∥| · |α1f
∥∥
v
.
∥∥f∥∥1−θ

K̇
α2,v
u

∥∥f∥∥θ
K̇
α3,v
p F s2

.
∥∥| · |α2f

∥∥1−θ
u

∥∥f∥∥θ
k̇
α3,v
p,s

.
∥∥| · |α2f

∥∥1−θ
u

∥∥f∥∥θ
k̇
α3,p
p,s

for all f ∈ Lu(Rn, | · |α2u) ∩ k̇α3,p
p,s , because of

K̇α2,u
u ↪→ K̇α2,v

u and k̇α3,p
p,s ↪→ k̇α3,v

p,s .

In particular, if s = m ∈ N, we obtain

∥∥| · |α1f
∥∥
v
.
∥∥f∥∥1−θ

K̇
α2,v
u

( ∑
|β|≤m

∥∥∥∂βf
∂βx

∥∥∥
K̇
α3,v
p

)θ
(3.12)

.
∥∥| · |α2f

∥∥1−θ
u

( ∑
|β|≤m

∥∥∥| · |α3
∂βf

∂βx

∥∥∥
p

)θ
for all f ∈ Lu(Rn, | · |α2u)∩Wm

p (Rn, | · |α3u). As in [44, Theorem 4.6] replace f in (3.12) by f(λ·) with
λ > 0, the sum

∑
|β|≤m

· · · can be replaced by
∑

0<|β|≤m
· · ·.

By Proposition 2.3 and Theorem 3.1/(i) we obtain the following statement.
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Theorem 3.3. Let 1 < p, % < ∞, 0 < τ ≤ ∞, 1 < r, v, u < ∞, σ ≥ 0, (3.2), (3.3) and (3.4) with
α3 < n− n

p
. Let α1 ≤ α2 ≤ α3. There is a constant c > 0 such that for all f ∈ K̇α2,δ

u ∩ k̇α3,δ1
p,s ,∥∥(−∆

σ
2 )f
∥∥
K̇
α1,r
v
≤ c
∥∥f∥∥1−θ

K̇
α2,δ
u

∥∥(−∆
s
2 )f
∥∥θ
K̇
α3,δ1
p

with
δ =

{
r, if α2 = α1,
τ, if α2 > α1.

and δ1 =

{
r, if α3 = α1,
%, if α3 > α1.

Further we study the case when p ≤ v < u in Theorem 3.1.

Theorem 3.4. Let 0 < p, τ <∞, 0 < β, κ ≤ ∞, 1 < r, v <∞, σ ≥ 0, 1 < u <∞,

−n
v
< α1 < n− n

v
, −n

u
< α2 < n− n

u
, α3 > −

n

p
,

s− n

p
+
n

u
+ α2 − α3 > σ − n

v
+ α2 − α1 +

n

u
> 0

and
σ − n

v
= −(1− θ)n

u
+ θ
(
s− n

p

)
+ α1 − ((1− θ)α2 + θα3), 0 < θ < 1.

(i) Let p ≤ v < u, α2 − α1 >
n
v
− n

u
and α3 = α2. There is a constant c > 0 such that for all

f ∈ K̇α2,τ
u ∩ K̇α3,τ

p F s
β , ∥∥f∥∥

k̇
α1,r
v,σ
≤ c
∥∥f∥∥1−θ

K̇
α2,τ
u

∥∥f∥∥θ
K̇
α3,τ
p F sβ

. (3.13)

(ii) Let p ≤ v < u, α2−α1 >
n
v
− n

u
and α3 > α2. There is a constant c > 0 such that (3.13) holds

for all f ∈ K̇α2,τ
u ∩ K̇α3,κ

p F s
β with K̇α3,κ

p F s
β in place of K̇α3,τ

p F s
β .

Proof. Recall that, as in Theorem 3.1, one has the estimate

∥∥f∥∥
k̇
α1,r
v,σ
≤
∥∥QJf

∥∥
k̇
α1,r
v,σ

+
∥∥∥ ∞∑
j=J+1

F−1ϕj ∗ f
∥∥∥
k̇
α1,r
v,σ

, J ∈ N.

From Proposition 3.1/(ii), ∥∥QJf
∥∥
k̇
α1,r
v,σ
≤ c2J(n

u
−n
v

+α2−α1+σ)
∥∥f∥∥

K̇
α2,τ
u

,

which is possible since
n

v
+ α1 − α2 ≤

n

u
<
n

v
.

Using again embedding (3.8) and Lemma 2.1, we get∥∥∥ ∞∑
j=J+1

F−1ϕj ∗ f
∥∥∥
k̇
α1,r
v,σ

.
∞∑

j=J+1

2jσ
∥∥F−1ϕj ∗ f

∥∥
K̇
α1,r
v

.
∞∑

j=J+1

2j(
n
p
−n
v

+α3−α1+σ)
∥∥F−1ϕj ∗ f

∥∥
K̇
α3,ϑ
p

,

where
ϑ =

{
τ, if α3 = α2,
κ, if α3 > α2.
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Therefore,
∥∥f∥∥

k̇
α1,r
v,σ

can be estimated by

c2J(n
u
−n
v

+α2−α1+σ)
∥∥f∥∥

K̇
α2,τ
u

+ 2J(n
p
−n
v

+α3−α1−s+σ)
∥∥f∥∥

K̇
α3,ϑ
p F sβ

= c2J(n
u
−n
v

+α2−α1+σ)
(∥∥f∥∥

K̇
α2,τ
u

+ 2J(n
p
−n
u
−s−α2+α3)

∥∥f∥∥
K̇
α3,ϑ
p F sβ

)
,

where the positive constant c > 0 is independent of J . Observe that

K̇α3,ϑ
p F s

β ↪→ K̇α2,τ
u ,

since s− n
p

+ n
u

+ α2 − α3 > 0. We choose J ∈ N such that

2J(n
p
−n
u
−s−α2+α3) ≈

∥∥f∥∥
K̇
α2,τ
u

∥∥f∥∥−1

K̇
α3,ϑ
p F sβ

,

we obtain the desired estimate.

By combining Theorem 3.2 with Theorem 3.4 we obtain the following statement.

Theorem 3.5. Under the hypothesis of Theorem 3.4 with α1 > −n
v
and σ = 0, the estimates of

Theorem 3.4 hold with K̇α1,r
v replaced by k̇α1,r

v,σ .

Finally we study the case of v ≤ min(p, u).

Theorem 3.6. Let 1 < r < ∞, 0 < p, β, τ ≤ ∞, 1 < v ≤ min(p, u), α2 − α1 >
n
v
− n

max(p,u)
, α3 ≥

α2, σ ≥ 0,
−n
v
< α1 < n− n

v
, −n

u
< α2 < n− n

u
, α3 > −

n

p

and
s− n

p
+
n

u
+ α2 − α3 > σ − n

v
+ α2 − α1 +

n

u
> 0.

Assume that 0 < p, τ <∞ and s > σp,β in the K̇F -case. There is a constant c > 0 such that for all
f ∈ K̇α2,τ

u ∩ K̇α3,τ
p Asβ, ∥∥f∥∥

k̇
α1,r
v,σ
≤ c
∥∥f∥∥1−θ

K̇
α2,τ
u

∥∥f∥∥θ
K̇
α3,τ
p Asβ

with
σ − n

v
= −(1− θ)n

u
+ θ
(
s− n

p

)
+ α1 −

(
(1− θ)α2 + θα3

)
.

Proof. By similarity, we only consider the case of the spaces K̇α3,τ
p Bs

β. We split the proof into two
steps.

Step 1. We consider the case p ≤ u. We employ the same notation as in Theorem 3.1. In view of
Theorem 3.4 we need only to estimate∥∥∥ ∞∑

j=J+1

F−1ϕj ∗ f
∥∥∥
k̇
α1,r
v,σ

, J ∈ N.

Using embedding (3.8) and Lemma 2.2, we obtain∥∥∥ ∞∑
j=J+1

F−1ϕj ∗ f
∥∥∥
k̇
α1,r
v,σ

.
∞∑

j=J+1

2jσ
∥∥F−1ϕj ∗ f

∥∥
K̇
α1,r
v

.
∞∑

j=J+1

2j(
n
p
−n
v

+α2−α1+σ)
∥∥F−1ϕj ∗ f

∥∥
K̇
α3,τ
p

.
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which is possible since
n

v
+ α1 − α2 <

n

p
≤ n

v
.

Repeating the same arguments as in the proof of Theorem 3.1 we obtain the desired estimate.
Step 2. We consider the case u < p. Applying a combination of the arguments used in the

corresponding step of the proof of Theorem 3.1 and those used in the first step above, we arrive at
the desired estimate.

Similarly we obtain the following statement.

Theorem 3.7. Under the hypothesis of Theorem 3.6 with σ = 0, we have∥∥f∥∥
K̇
α1,r
v
.
∥∥f∥∥1−θ

K̇
α2,τ
u

∥∥f∥∥θ
K̇
α3,τ
p As%

for all f ∈ K̇α2,τ
u ∩ K̇α2,τ

p As%.

Remark 9. Under the same hypothesis of Theorems 3.5 and 3.7, with r = v, σ = 0, τ = max(u, p)
and β = 2, we, to a certain extent, improve Caffarelli-Kohn-Nirenberg inequality (1.1).

3.2 CKN inequalities in Besov-Morrey and Triebel-Lizorkin-Morrey
spaces

In this section, we investigate the Caffarelli, Kohn and Nirenberg inequalities in Esp,q,u and N s
p,q,u

spaces. The main results of this section are based on the following statement.

Lemma 3.1. Let 1 < u ≤ p <∞, 1 < s ≤ q <∞ and R > 0.
(i) Assume that 1 ≤ v ≤ u. There exists a constant c > 0 independent of R such that for all

f ∈M
v
u
p

v ∩M q
s with supp Ff ⊂ {ξ : |ξ| ≤ R}, we have∥∥f∥∥

Mp
u
≤ cR

n
q
− vn
qu

∥∥f∥∥1− v
u

Mq
s

∥∥f∥∥ vu
M

v
u p
v

.

(ii) Assume that u
p
≤ s

q
and q ≤ p. There exists a constant c > 0 independent of R such that for

all f ∈M q
s with supp Ff ⊂ {ξ : |ξ| ≤ R}, we have∥∥f∥∥

Mp
u
≤ cR

n
q
−n
p

∥∥f∥∥
Mq
s
.

Proof. We split the proof in two steps.
Step 1. We will prove (i). Let B be a ball in Rn. Then

∥∥ |B| 1p− 1
u fχB

∥∥u
u

= u

∫ ∞
0

tu−1|{x ∈ B : |f(x)| |B|
1
p
− 1
u > t}|dt <∞.

We have
|f(x)| ≤ cR

n
q

∥∥f∥∥
Mq
s
, x ∈ Rn,

see [36, Proposition 2.1] where c > 0 independent of R. Let p0 = v
u
. Clearly

|f(x)| = |f(x)|p0 |f(x)|1−p0

. |f(x)|p0
(
R

n
q

∥∥f∥∥
Mq
s

)1−p0

= c|f(x)|p0d1−p0 ,
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which yields that∥∥ |B| 1p− 1
u fχB

∥∥u
u
≤ u

∫ ∞
0

tu−1|{x ∈ B : |f(x)| |B|
1
pp0
− 1
v > cd

1− 1
p0 t

1
p0 }|dt

= cudu−v
∫ ∞

0

λv−1|{x ∈ B : |f(x)| |B|
u
pv
− 1
v > λ}|dλ,

after the change the variable λp0c−p0d1−p0 = t. The last expression is clearly bounded by

cdu−v
∥∥f∥∥v

M
pv
u
v
≤ cRnu−v

q

∥∥f∥∥v
M

pv
u
v

∥∥f∥∥u−v
Mq
s
.

Step 2. We will prove (ii). If p = q, then u ≤ s and the estimate follows by Hölder’s inequality.
Assume that q < p and we choose v > 0 such that max(1, qu

p
) < v ≤ u < pu

q
. By Step 1

R
n
q
− vn
qu

∥∥f∥∥ vu
M

v
u p
v

= R
n
q
−n
p

∥∥Rnu
pv
−n
q f
∥∥ vu
M

v
u p
v

.

Let {ϕj}j∈N0 be a partition of the unity. Observe that

F−1ϕj ∗ f = 0 if R < 2j−1, j ∈ N0.

This observation together with (2.25) yield

∥∥Rnu
pv
−n
q f
∥∥
M

v
u p
v
≈
∥∥∥( ∞∑

j∈N0,2j−1≤R

R
2nu
pv
− 2n

q

∣∣F−1ϕj ∗ f
∣∣2 )1/2∥∥∥

M
v
u p
v

.
∥∥f∥∥

E
nu
pv −

n
q

v
up,2,v

.
∥∥f∥∥

Mq
s
,

which follows by Sobolev embedding, see Theorem 2.6,

M q
s = E0

q,2,s ↪→ E
nu
pv
−n
q

v
u
p,2,v ,

since
−n
q

=
nu

pv
− n

q
− nu

pv
, q <

vp

u
and

u

p
≤ s

q
.

Proposition 3.2. Let 1 < u ≤ p <∞, 1 < q <∞ and s > 0.
(i) Let f ∈ N s

p,q,u. Then ∥∥f∥∥N sp,q,u ≈ ∥∥f∥∥Mp
u

+
∥∥f∥∥Ṅ sp,q,u , (3.14)

where ∥∥f∥∥Ṅ sp,q,u =
∥∥∥( ∞∑

j=−∞

2qjs
∣∣F−1ϕj ∗ f

∣∣q )1/q∥∥∥
Mp
u

.

(ii) Let f ∈ Esp,q,u. Then ∥∥f∥∥Esp,q,u ≈ ∥∥f∥∥Mp
u

+
∥∥f∥∥Ėsp,q,u (3.15)

where ∥∥f∥∥Ėsp,q,u =
∥∥∥( ∞∑

j=−∞

2qjs
∣∣F−1ϕj ∗ f

∣∣q )1/q∥∥∥
Mp
u

.
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Proof. By similarity, we prove only (ii). We have as in the proof of Proposition 2.1 that∥∥f∥∥Ėsp,q,u . ∥∥f∥∥Esp,q,u .
The only distinction of the proof of Proposition 2.1 is the fact that we use [41, Lemma 2.5]. Since
s > 0 we observe ∥∥f∥∥

Mp
u
≈
∥∥f∥∥E0

p,2,u
.
∥∥f∥∥Esp,q,u .

Now we prove the opposite inequality. Obviously
∥∥F−1ϕ0 ∗ f

∥∥
Mp
u
can be estimated from above by∥∥f∥∥

Mp
u
.

Theorem 3.8. Let 1 < u ≤ p < ∞ and 1 < v ≤ q < ∞. Assume that u
p
≤ v

q
, q ≤ p and σ ≥ 0.

Then for all f ∈M q
v and all J ∈ N,∥∥QJf

∥∥
Eσp,2,u

≤ c2Jn( 1
q
− 1
p

)+σ
∥∥f∥∥

Mq
v
,

where c is a positive constant independent of f and J .

Proof. Let σ = θm+ (1− θ)0, α ∈ Nn with 0 < θ < 1 and |α| ≤ m. We have∥∥QJf
∥∥
Eσp,2,u

≤
∥∥QJf

∥∥1−θ
E0
p,2,u

∥∥QJf
∥∥θ
Emp,2,u

.

Observe that
Emp,2,u = Mm,p

u and E0
p,2,u = Mp

u ,

which yield that ∥∥QJf
∥∥
Eσp,2,u

≤
∥∥QJf

∥∥1−θ
Mp
u

∥∥QJf
∥∥θ
Mm,p
u
,

where the positive constant c is independent of J . Lemma 3.1 yields that∥∥Dα(QJf)
∥∥
Mp
u
. 2Jn( 1

q
− 1
p

)+|α|∥∥f∥∥
Mq
v
.

Therefore, ∥∥QJf
∥∥
Eσp,2,u

. 2Jn( 1
q
− 1
p

)+σ
∥∥f∥∥

Mq
v
.

Now we are in position to state the main result of this section.

Theorem 3.9. Let 1 < u ≤ p < ∞, 1 < µ ≤ δ < ∞, 1 < β < ∞, σ ≥ 0 and 1 < v ≤ q < ∞.
Assume that

u

p
≤ µ

δ
≤ v

q
, s > 0 and p ≥ δ ≥ q.

Let
s− n

q
> σ − n

p
and σ − n

p
= −(1− θ)n

δ
+ θ
(
s− n

q

)
, 0 < θ < 1.

Then ∥∥f∥∥Ėσp,2,u . ∥∥f∥∥1−θ
Mδ
µ

∥∥f∥∥θṄ sq,β,v , σ > 0 (3.16)

and ∥∥f∥∥
Mp
u
.
∥∥f∥∥1−θ

Mδ
µ

∥∥f∥∥θṄ sq,β,v (3.17)

for all f ∈M δ
µ ∩N s

q,β,v.
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Proof. We have

f = QJf +
∞∑

j=J+1

F−1ϕj ∗ f, J ∈ N.

Hence ∥∥f∥∥Eσp,2,u ≤ ∥∥QJf
∥∥
Eσp,2,u

+
∥∥∥ ∞∑
j=J+1

F−1ϕj ∗ f
∥∥∥
Eσp,2,u

. (3.18)

By applying Theorem 3.8, it follows that∥∥QJf
∥∥
Eσp,2,u

. 2Jn( 1
δ
− 1
p

)+σJ
∥∥f∥∥

Mδ
µ
.

From the embedding N σ
p,1,u ↪→ N σ

p,min(2,u),u ↪→ Eσp,2,u and Lemma 3.1 the last term in (3.18) can be
estimated by

c
∞∑

j=J+1

2jσ
∥∥F−1ϕj ∗ f

∥∥
Mp
u
.

∞∑
j=J+1

2jn( 1
q
− 1
p

)+jσ
∥∥F−1ϕj ∗ f

∥∥
Mq
v

. 2J(n
q
−n
p

+σ−s)∥∥f∥∥N sq,∞,v ,
since s− n

q
> σ − n

p
. Therefore,∥∥f∥∥Eσp,2,u ≤ c2J(n

δ
−n
p

)+σJ
∥∥f∥∥

Mδ
µ

+ 2J(n
q
−n
p

+σ−s)∥∥f∥∥N sq,∞,v
= c2J(n

δ
−n
p

)+σJ
(∥∥f∥∥

Mδ
µ

+ 2J(n
q
−n
δ
−s)∥∥f∥∥N sq,∞,v) ,

where the positive constant c is independent of J . We wish to choose J ∈ N such that∥∥f∥∥
Mδ
µ
≈ 2J(n

q
−n
δ
−s)∥∥f∥∥N sq,∞,v ,

which is possible since N s
q,∞,v ↪→M δ

µ. Indeed, from Theorem 2.6 and (2.25), we get

N s
q,∞,v ↪→ Esq,∞,v ↪→ E0

δ,2,µ = M δ
µ,

becuase of s− n
q
> σ − n

p
≥ −n

δ
. Thus∥∥f∥∥Eσp,2,u . ∥∥f∥∥1−θ

Mδ
µ

∥∥f∥∥θN sq,∞,v .
Using (3.14) and (3.15) we arrive at the inequality∥∥f∥∥Ėσp,2,u . ∥∥f∥∥1−θ

Mδ
µ

(∥∥f∥∥
Mq
v

+
∥∥f∥∥Ṅ sq,∞,v)θ .

In this estimate replacing f(·) by f(λ·) and using (3.14) we obtain∥∥f∥∥Ėσp,2,u . ∥∥f∥∥1−θ
Mδ
µ

(
λ−s
∥∥f∥∥

Mq
v

+
∥∥f∥∥Ṅ sq,∞,v)θ .

Taking λ sufficiently large we obtain (3.16)-(3.17).
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