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On the 90th birthday
of Professor Oleg Vladimirovich Besov

This issue of the Eurasian Mathematical Journal is dedicated to the 90th birthday of Oleg
Vladimirovich Besov, an outstanding mathematician, Doctor of Sciences in physics and mathematics,
corresponding member of the Russian Academy of Sciences, academician of the European Academy of
Sciences, leading researcher of the Department of the Theory of Functions of the V.A. Steklov Insti-
tute of Mathematics, honorary professor of the Department of Mathematics of the Moscow Institute
of Physics and Technology.

Oleg started scientific research while still a student of the Faculty of Mechanics and Mathematics
of the M.V. Lomonosov Moscow State University. His research interests were formed under the
influence of his scientific supervisor, the great Russian mathematician Sergei Mikhailovich Nikol’skii.

In the world mathematical community O.V. Besov is well known for introducing and studying
the spaces Br

pθ(Rn), 1 ≤ p, θ ≤ ∞, of differentiable functions of several real variables, which are now
named Besov spaces (or Nikol’skii–Besov spaces, because for θ = ∞ they coincide with Nikol’skii
spaces Hr

p(Rn)).
The parameter r may be either an arbitrary positive number or a vector r = (r1, ..., rn) with

positive components rj. These spaces consist of functions having common smoothness of order r in
the isotropic case (not necessarily integer) and smoothness of orders rj in variables xj, j = 1, ..., n, in
the anisotropic case, measured in Lp-metrics, and θ is an additional parameter allowing more refined
classification in the smoothness property.
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O.V. Besov published more than 150 papers in leading mathematical journals most of which are
dedicated to further development of the theory of the spaces Br

pθ(Rn). He considered the spaces
Br
pθ(Ω) on regular and irregular domains Ω ⊂ Rn and proved for them embedding, extension, trace,

approximation and interpolation theorems. He also studied integral representations of functions, den-
sity of smooth functions, coercivity, multiplicative inequalities, error estimates in cubature formulas,
spaces with variable smoothness, asymptotics of Kolmogorov widths, etc.

The theory of Besov spaces had a fundamental impact on the development of the theory of
differentiable functions of several variables, the interpolation of linear operators, approximation the-
ory, the theory of partial differential equations (especially boundary value problems), mathematical
physics (Navier–Stokes equations, in particular), the theory of cubature formulas, and other areas of
mathematics.

Without exaggeration, one can say that Besov spaces have become a recognized and extensively
applied tool in the world of mathematical analysis: they have been studied and used in thousands
of articles and dozens of books. This is an outstanding achievement.

The first expositions of the basics of the theory of the spaces Br
pθ(Rn) were given by O.V. Besov

in [2], [3].
Further developments of the theory of Besov spaces were discussed in a series of survey papers,

e.g. [18], [12], [15]. The most detailed exposition of the theory of Besov spaces was given in the
book by S.M. Nikol’skii [19] and in the book by O.V. Besov, V.P. Il’in, S.M. Nikol’skii [11], which in
1977 was awarded a State Prize of the USSR. Important further developments of the theory of Besov
spaces were given in a series of books by Professor H. Triebel [21], [22], [23]. Many books on real
analysis and the theory of partial differential equations contain chapters dedicated to various aspects
of the theory of Besov spaces, e.g. [16], [1], [13]. Recently, in 2011, Professor Y. Sawano published
the book “Theory of Besov spaces” [20] (in Japanese, in 2018 it was translated into English).

A survey of the main facts of the theory of Besov spaces was given in the dedication to the 80th
birthday of O.V. Besov [14].

We would that like to add that during the last 10 years Oleg continued active research and
published around 25 papers (all of them without co-authors) on various aspects of the theory of
function spaces, namely, on the following topics:

Kolmogorov widths of Sobolev classes on an irregular domain (see, for example, [4]),
embedding theorems for weighted Sobolev spaces (see, for example, [5]),
the Sobolev embedding theorem for the limiting exponent (see, for example, [7]),
multiplicative estimates for norms of derivatives on a domain (see, for example, [8]),
interpolation of spaces of functions of positive smoothness on a domain (see, for example, [9]),
embedding theorems for spaces of functions of positive smoothness on irregular domains (see, for

example, [10]).
In 1954 S.M. Nikol’skii organized the seminar “Differentiable functions of several variables and

applications”, which became the world recognized leading seminar on the theory of function spaces.
Oleg participated in this seminar from the very beginning, first as the secretary and later, for more
than 30 years, as the head of the seminar first jointly with S.M. Nikol’skii and L.D. Kudryavtsev,
then up to the present time on his own.

O.V. Besov participated in numerous research projects supported by grants of several countries,
led many of them, and currently is the head of one of them: “Contemporary problems of the theory
of function spaces and applications” (project 19-11-00087, Russian Science Foundation).

He takes active part in the international mathematical life, participates in and contributes to
organizing many international conferences. He has given more than 100 invited talks at conferences
and has been invited to universities in more than 20 countries.

For more than 50 years O.V. Besov has been a professor at the Department of Mathematics of
the Moscow Institute of Physics and Technology. He is a celebrated and sought-after lecturer who is
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able to develop the student’s independent thinking. On the basis of his lectures he wrote a popular
text-book on mathematical analysis [6].

He spends a lot of time on supervising post-graduate students. One of his former post-graduate
students H.G. Ghazaryan, now a distinguished professor, plays an active role in the mathematical
life of Armenia and has many post-graduate students of his own.

Professor Besov has close academic ties with Kazakhstan mathematicians. He has many times
visited Kazakhstan, is an honorary professor of the Shakarim Semipalatinsk State University and a
member of the editorial board of the Eurasian Mathematical Journal. He has been awarded a medal
for his meritorious role in the development of science of the Republic of Kazakhstan.

Oleg is in good physical and mental shape, leads an active life, and continues productive research
on the theory of function spaces and lecturing at the Moscow Institute of Physics and Technology.

The Editorial Board of the Eurasian Mathematical Journal is happy to congratulate Oleg
Vladimirovich Besov on occasion of his 90th birthday, wishes him good health and further productive
work in mathematics and mathematical education.

On behalf of the Editorial Board
V.I. Burenkov, T.V. Tararykova
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Abstract. We give a sharp pointwise estimate of the non-increasing rearrangement of the generalized
fractional maximal function (MΦf)(x) via an expression involving the non-increasing rearrangement
of f . It is shown that the obtained estimate is more sharp than the inequality which follows from
the estimate for the generalized Riesz potential.
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1 Introduction

In this paper, we consider the generalized fractional maximal function

(MΦf)(x) = sup
r>0

Φ(r)

∫
B(x,r)

|f(y)|dy,

for locally integrable functions f under certain assumptions on the function Φ, where B(x, r) is the
ball with the center at the point x ∈ Rn and radius r > 0. When Φ(r) = rα−n, α ∈ (0;n), n ∈ N we
get the classical fractional maximal function (Mαf)(x). When α = 0 we get the Hardy-Littlewood
maximal function. Other types of generalized fractional maximal functions were considered in [6],
[11-13].

Let L0 = L0(Rn) be the set of all Lebesgue measurable functions f : Rn → C and µn be the
Lebesgue measure on Rn. By L+

0 we denote the subset of the set L0 consisting of all non-negative
functions:

L+
0 = {f ∈ L0 : f ≥ 0}.

By L+
0 (0,∞; ↓) we denote the set of all non-increasing functions belonging to L+

0 . The non-increasing
rearrangement f ∗ is defined by the equality:

f ∗(t) = inf{y ∈ [0,∞) : λf (y) ≤ t}, t ∈ R+ := (0,∞),

where
λf (y) = µn {x ∈ Rn : |f(x)| > y} , y ∈ [0,∞)

is the Lebesgue distribution function. It is known that f ∗ is a non-negative, non-increasing and
right-continuous function on R+; f ∗ is equimeasurable with |f |, i.e.

µ1 {t ∈ R+ : f ∗(t) > y} = µn {x ∈ Rn : |f(x)| > y} .



14 N.A. Bokayev, A. Gogatishvili, A.N. Abek

Let f# : Rn → Rn denote the symmetric rearrangement of f , i.e. a radially symmetric non-negative
non-increasing right-continuous function (as a function of r = |x|, x ∈ Rn) which is equimeasurable
with f . That is

f#(r) = f ∗(vnr
n); f ∗(t) = f#

(( t
vn

) 1
n

)
, r, t ∈ R+,

here vn is the volume of the n-dimensional unit ball.
The function f ∗∗ : (0,∞)→ [0,∞] is defined as

f ∗∗(t) =
1

t

t∫
0

f ∗(τ)dτ ; t ∈ R+.

It is known that f ∗∗ is a non-increasing function on R+. For the classical Hardy-Littlewood maximal
operator M the rearrangement inequality

cf ∗∗(t) ≤ (Mf)∗(t) ≤ Cf ∗∗(t), t ∈ (0,∞)

holds for some 0 < c ≤ C < ∞ [2, Chapter 3, Theorem 3.8]. For the classical fractional maximal
operator

(Mγf)(x) := sup
r>0
|B(x, r)|

γ
n
−1

∫
B(x,r)

|f(y)|dy, 0 < γ < n,

in [5] the following estimate was obtained for some C > 0

(Mγf)∗(t) ≤ C sup
t<τ<∞

τ γ/nf ∗∗(τ), t ∈ (0,∞)

for every f ∈ L1
loc(Rn). Moreover, this estimate is sharp on the class of all non-negative, radially

symmetric non-increasing functions.

Definition 1. A function f : R+ → R+ is called quasi-decreasing (quasi-increasing) if there exists
C > 1, such that

f(t2) ≤ Cf(t1) if t1 < t2(
f(t1) ≤ Cf(t2) if t1 < t2

)
.

Throughout this work we will denote by C, C1, C2 positive constants, generally speaking, different
in different places.

By the notation f(x) ∼= g(x) we mean that there are constants C1 > 0, C2 > 0 such that

C1f(t) ≤ g(t) ≤ C2f(t), t ∈ R+.

2 The generalized fractional maximal function and estimate of its non-
increasing rearrangement

We define the following classes of functions An(R), Bn(R), D(R).

Definition 2. Let n ∈ N and R ∈ (0;∞]. We say that a function Φ : (0;R) → R+ belongs to the
class An(R) if:

(1) Φ is non-increasing and continuous on (0;R);
(2) the function Φ(r)rn is quasi-increasing on (0, R).
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For example, Φ(t) = tα−n ∈ An(∞), 0 < α < n.

Definition 3. [8] Let n ∈ N and R ∈ (0;∞]. A function Φ : (0;R)→ R+ belongs to the class Bn(R)
if the following conditions hold:

(1) Φ is non-increasing and continuous on (0;R);
(2) there exists C = C(Φ, n) > 0 such that

r∫
0

Φ(ρ)ρn−1dρ ≤ CΦ(r)rn, r ∈ (0, R). (2.1)

For example,

Φ(ρ) = ρα−n ∈ Bn(∞) (0 < α < n); Φ(ρ) = ln
eR

ρ
∈ Bn(R).

For Φ ∈ Bn(R) the following estimate also holds
r∫

0

Φ(ρ)ρn−1dρ ≥ n−1Φ(r)rn, r ∈ (0, R).

Therefore
r∫

0

Φ(ρ)ρn−1dρ ∼= Φ(r)rn, r ∈ (0, R), (2.2)

Φ ∈ Bn(R)⇒ { Φ(r)rn is quasi-increasing, r ∈ (0, R)}. (2.3)

It follows from (2.3) that for any α ∈ [1;∞) there exists β = β(α,C, n) ∈ [1;∞) (where C is the
constant from (2.1)) such that [7]:{

ρ, r ∈ (0;R);α−1 ≤ ρ

r
≤ α

}
⇒ β−1 ≤ Φ(ρ)

Φ(r)
≤ β. (2.4)

Note the well-known equivalence result of N.K. Bari and S.B. Stechkin [1]:

(2.1)⇔ ∃γ ∈ (0;n) such that Φ(r)rγ is quasi-increasing on (0;R).

Definition 4. Let R ∈ (0;∞]. We say that Φ : (0;R) → R+ belongs to the class D(R) if for some
C = C(Φ) > 0

r∫
0

dt

Φ(t)t
≤ C

Φ(r)
r ∈ (0;R). (2.5)

Note that relation (2.5) is equivalent to the inequality:

rn∫
0

ds

Φ(s1/n)s
≤ nC

Φ(r)
, r ∈ (0;R). (2.6)

For example the function Φ(t) = tα−n ∈ D(∞) (0 < α < n). Indeed,
r∫

0

dt

Φ(t)t
=

r∫
0

dt

tα−n+1
=

1

n− α
rn−α =

1

n− α
1

Φ(r)
, r ∈ R+.
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Lemma 2.1. Let n ∈ N, R ∈ (0,∞]. Then Bn(R) & An(R).

Proof. Let Φ ∈ Bn(R) and r1 < r2. Then by (2.2) for some C1, C2 > 0, depending on Φ and n,

Φ(r1)rn1 ≤ C1

r1∫
0

Φ(t)tn−1dt ≤ C1

r2∫
0

Φ(t)tn−1dt ≤ C2Φ(r2)rn2 ,

so the function Φ(r)rn is quasi-increasing, hence Φ ∈ An(R).
The function Φ(t) = t−n ln(1 + t)α, with α > 0, belongs to An(R) and Φ 6∈ Bn(R). Indeed

sup
r>0

1

Φ(r)

r∫
0

Φ(t)tn−1dt = sup
r>0

1

ln(1 + r)α

r∫
0

ln(1 + t)αt−1dt

≥ sup
r>0

1

ln(1 + r)α

r∫
0

ln(1 + t)α(1 + t)−1dt

=
1

1 + α
sup
r>0

ln(1 + r) =∞.

Definition 5. Let Φ ∈ An(∞). The generalized fractional maximal function MΦf is defined for a
function f ∈ L1

loc(Rn) by

(MΦf)(x) = sup
r>0

Φ(r)

∫
B(x,r)

|f(y)|dy,

where B(x, r) is the open ball with the center at the point x ∈ Rn and radius r > 0.

In the case Φ(r) = rα−n, α ∈ (0;n) we obtain the classical fractional maximal function Mαf :

(Mαf)(x) = sup
r>0

1

rn−α

∫
B(x,r)

|f(y)|dy.

Let E ≡ E(Rn) be a rearrangement invariant space. We introduce the space of generalized fractional
maximal functionsMΦ

E = MΦ
E (Rn) as the set of all functions u, for which there is a function f ∈ E(Rn)

such that for almost all x ∈ Rn
u(x) = (MΦf)(x),

‖u‖MΦ
E

= inf{‖f‖E : f ∈ E(Rn); MΦf = u a.e.} <∞.
The generalized Riesz potential was considered in [3-4], [7-10] as the convolution operator

(IGf)(x) = (G ∗ f)(x) =

∫
Rn

G(x− y)f(y)dy, f ∈ E(Rn),

where the kernel G(x) satisfies the following condition: for some Φ ∈ Bn(∞)

G(x) ∼= Φ(|x|), x ∈ Rn, (2.7)

where the equivalence constants depend only on Φ and on n. The kernel of the classical Riesz
potential has the form

G(x) = |x|α−n, α ∈ (0;n).

In the following lemma, we prove that the generalized fractional maximal function MΦf(x) is esti-
mated by the generalized Riesz potential.
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Lemma 2.2. Let Φ ∈ Bn(0,∞) and G(x) = Φ(|x|), x ∈ Rn. Then

(MΦf)(x) ≤ (IG|f |)(x), x ∈ Rn

for all f ∈ E(Rn).

Proof. Indeed,

(IG|f |)(x) = (G ∗ |f |)(x) =

∫
Rn

Φ(|x− y|)|f(y)|dy = sup
r>0

∫
B(x,r)

Φ(|x− y|)|f(y)|dy

≥ sup
r>0

ess inf
y∈B(x,r)

Φ(|x− y|)
∫

B(x,r)

|f(y)|dy

= sup
r>0

ess inf
z∈B(0,r)

Φ(|z|)
∫

B(x,r)

|f(y)|dy = sup
r>0

Φ(r)

∫
B(x,r)

|f(y)|dy = (MΦf)(x).

Lemma 2.3. (Hardy-Littlewood inequality, [2]). If f and g belong to L0(Rn), then

∫
Rn

|fg|dµn ≤
∞∫

0

f ∗(s)g∗(s)ds.

Lemma 2.4. Let Φ ∈ Bn(∞), f ∈ L1
loc(Rn). Then for any x ∈ Rn

(MΦf)(x) ≤ C sup
r>0

rΦ(r1/n)f ∗∗(r),

where C > 0 depends only on Φ and n.

Proof. By using Lemma 2.3 and (2.4) we have

(MΦf)(x) = sup
r>0

Φ(r)

∫
B(x,r)

|f(y)|dy ≤ sup
r>0

Φ(r)

|B(x,r)|∫
0

f ∗(t)dt

= sup
r>0

Φ(r)

vnrn∫
0

f ∗(t)dt = sup
s>0

sΦ

(( s
vn

) 1
n

)
1

s

s∫
0

f ∗(t)dt

≤ C sup
s>0

sΦ(s1/n)f ∗∗(s),

where C > 0 depends only on Φ and n.

Theorem 2.1. Let Φ ∈ Bn(∞). Then there exists a positive constant C, depending only on Φ and
n, such that

(MΦf)∗(t) ≤ C sup
t<s<∞

sΦ(s1/n)f ∗∗(s), t ∈ (0,∞), (2.8)

for every f ∈ L1
loc(Rn).
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Theorem 2.2. Let Φ ∈ An(∞). Inequality (2.8) is sharp in the sense that for every ϕ ∈ L+
0 (0,∞; ↓)

there exists a function f ∈ L+(Rn) such that f ∗ = ϕ almost everywhere on (0,∞) and

(MΦf)∗(t) ≥ C1 sup
t<s<∞

sΦ(s1/n)f ∗∗(s), t ∈ (0,∞), (2.9)

where C1 is a positive constant which depends only on Φ and n.

Remark 1. For Φ(r) = rα−n, 0 < α < n, hence for the fractional maximal operator Mα, Theorems
2.1 and 2.2 were proved in [5].

Theorem 2.3. Let Φ ∈ Bn(∞). Then there exists a positive constant C, depending only on Φ and
n, such that

(MΦf)∗∗(t) ≤ C sup
t<s<∞

sΦ(s1/n)f ∗∗(s), t ∈ (0,∞) (2.10)

for every f ∈ L1
loc(Rn).

Remark 2. It is known that the generalized Riesz potential satisfies the O’Neil estimate for non-
increasing rearrangement of the convolution

(G ∗ f)∗∗(t) ≤ C0

1

t

t∫
0

G∗(s)ds

t∫
0

f ∗(τ)dτ +

∞∫
t

G∗(τ)f ∗(τ)dτ

 ,

where C0 > 0 depends only on Φ and n. [14, Lemma 1.5].

Then by Lemma 2.2 for some C > 0 depending only on Φ and n we get

(MΦf)∗∗(t) ≤ C

1

t

t∫
0

G∗(s)ds

t∫
0

f ∗(τ)dτ +

∞∫
t

G∗(τ)f ∗(τ)dτ

 . (2.11)

Assume that Φ ∈ Bn(∞)
⋂
D(∞) and a function f on Rn is such that

f ∗(t) ∼=
1

tΦ(t
1
n )
.

We show that for such function f the right-hand side of (2.10) is finite while the right-hand side
of (2.11) is not. Indeed, by (2.6) we have

sup
t<s<∞

sΦ(s
1
n )f ∗∗(s) ≤ C1 sup

t<s<∞
sΦ(s

1
n )

1

s

s∫
0

1

tΦ(t
1
n )
dt

≤ C2 sup
t<s<∞

sΦ(s
1
n )

1

s

1

Φ(s
1
n )

<∞,

where C1, C2 > 0 depends only on Φ and n.
For the second term on the right-hand side of inequality (2.11) we get

∞∫
t

G∗(τ)f ∗(τ)dτ ≥ C3

∞∫
t

Φ
(( τ
vn

) 1
n

) 1

τΦ
((

τ
vn

) 1
n

)dτ = C3

∞∫
t

1

τ
dτ =∞,

where C3 > 0 depends only on Φ and n.

Theorem 2.4. Let Φ ∈ Bn(∞)∩D(∞), then for every f ∈ L1
loc(Rn) there exists a positive constant

C, depending only on Φ and n, such that

(MΦf)∗(t) ≤ C

(
tΦ(t1/n)f ∗∗(t) + sup

t<τ<∞
τΦ(τ 1/n)f ∗(τ)

)
, t ∈ (0,∞). (2.12)
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3 Proofs of the results of Section 2

3.1 Proof of Theorem 2.1

Fix t ∈ (0;∞) and let f ∈ L1
loc(Rn). We may assume that

sup
t<s<∞

sΦ(s1/n)f ∗∗(s) <∞,

otherwise (2.8) holds trivially. Then by Lemma 2.3

∫
E

|f(x)|dx ≤
t∫

0

f ∗(y)dy <∞

for every set E ⊂ Rn of measure at most t. In particular, if we put

E = {x ∈ Rn : |f(x)| > f ∗(t)},

then |E| ≤ t since λf (f ∗(t)) ≤ t ([2], Chapter 2, (1.18)) and so f is integrable over E. We define the
functions:

gt(x) = max{|f(x)| − f ∗(t), 0} sgn f(x), x ∈ Rn,

ht(x) = min{|f(x)|, f ∗(t)} sgn f(x), x ∈ Rn.

Then f = gt + ht and
g∗t (τ) = χ(0,t)(τ)(f ∗(τ)− f ∗(t)), τ ∈ (0,∞),

h∗t (τ) = min {f ∗(τ), f ∗(t)}, τ ∈ (0,∞). (3.1)

Therefore

‖gt‖1 =

∞∫
0

g∗t (τ)dτ =

t∫
0

(
f ∗(τ)− f ∗(t)

)
dτ ≤

t∫
0

f ∗(τ)dτ. (3.2)

From inequality (3.2) it follows that

(MΦgt)
∗(τ) ≤ Φ(τ 1/n)‖gt‖1, τ ∈ (0;∞). (3.3)

By Lemma 2.4 and by (3.1), we have

(MΦht)
∗(τ) ≤ C sup

0<τ<∞
τ · Φ(τ 1/n)h∗∗t (τ)

= C max
{

sup
0<τ<t

τ · Φ(τ 1/n)f ∗∗(t), sup
t≤τ<∞

τ · Φ(τ 1/n)f ∗∗(τ)
}

= C max
{
t · Φ(t1/n)f ∗∗(t), sup

t≤τ<∞
τ · Φ(τ 1/n)f ∗∗(τ)

}
≤ C sup

t<τ<∞
τ · Φ(τ 1/n)f ∗∗(τ). (3.4)

Hence
sup

0<τ<∞
(MΦht)

∗(τ) ≤ C sup
t<τ<∞

τ · Φ(τ 1/n)f ∗∗(τ).

Using inequality ([2]) (
MΦf

)∗
(t) ≤

(
MΦgt

)∗( t
2

)
+
(
MΦht

)∗( t
2

)
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and by (3.4), based on (3.3), (3.2) and (2.3) we get

(
MΦf

)∗
(t) ≤ C

(
Φ
(

(
t

2
)1/n
)
‖gt‖1 + (MΦht)

∗(τ)

)

≤ C1

(
Φ(t1/n)

t∫
0

f ∗(u)du+ sup
t<τ<∞

τΦ(τ 1/n)f ∗∗(τ)

)

≤ C1

(
tΦ(t1/n)f ∗∗(t) + sup

t<τ<∞
τΦ(τ 1/n)f ∗∗(τ)

)
≤ C2 sup

t<τ<∞
τΦ(τ 1/n)f ∗∗(τ).

�

3.2 Proof of Theorem 2.2

Let ϕ ∈ L+
0 (0,∞; ↓), we put

f(x) = ϕ(vn|x|n), x ∈ Rn \ {0}.

Then f ∗ = ϕ almost everywhere on (0,∞). For given y ∈ Rn we denote

B(|y|) = B(0, |y|),

for every x, y ∈ Rn such that |y| > |x| we have

(MΦf)(x) = sup
r>0

Φ(t)

∫
B(x,t)

f(z)dz ≥ C1Φ(|y|)
∫

B(|y|)

f(z)dz. (3.5)

Since the definition of f and spherical coordinates give

∫
B(|y|)

f(z)dz =

|y|∫
0

∫
{|z|=r}

ϕ(vnr
n)dvdr =

|y|∫
0

ϕ(vnr
n)vnnr

n−1dr =

vn|y|n∫
0

ϕ(τ)dτ. (3.6)

From (3.5) and (3.6) we have

(MΦf)(x) ≥ C1Φ(|y|)
vn|y|n∫
0

f ∗(τ)dτ = C1H(vn|y|n),

where H(t) = Φ(|t|)
vn|t|n∫

0

f ∗(τ)dτ . Consequently,

(MΦf)∗(x) ≥ C1 sup
τ>vn|x|n

H(τ),

whence (2.9) follows on taking rearrangements. �
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3.3 Proof of Theorem 2.3

By using Theorem 2.1 and Lemma 2.1 we get

(MΦf)∗∗(t) =
1

t

t∫
0

(MΦf)∗(s)ds ≤ C

t

t∫
0

(
sup

s<τ<∞
τΦ(τ 1/n)f ∗∗(τ)

)
ds

≤ C

t

t∫
0

(
sup
s<τ<t

τΦ(τ 1/n)f ∗∗(τ) + sup
t<τ<∞

τΦ(τ 1/n)f ∗∗(τ)

)
ds

=
C

t

t∫
0

 sup
s<τ<t

Φ(τ 1/n)

τ∫
0

f ∗(u)du

 ds+ C sup
t<τ<∞

τΦ(τ 1/n)f ∗∗(τ)

≤ C

t

t∫
0

Φ(s1/n)ds

t∫
0

f ∗(u)du+ C sup
t<τ<∞

τΦ(τ 1/n)f ∗∗(τ)

= Cf ∗∗(t)

t1/n∫
0

Φ(s)sn−1ds+ C sup
t<τ<∞

τΦ(τ 1/n)f ∗∗(τ)

≤ CtΦ(t1/n)f ∗∗(t) + C sup
t<τ<∞

τΦ(τ 1/n)f ∗∗(τ) ≤ 2C sup
t<τ<∞

τΦ(τ 1/n)f ∗∗(τ).

�

3.4 Proof of Theorem 2.4

It is clear that

f ∗∗(s) =
1

s

s∫
0

f ∗(τ)dτ =
1

s

( t∫
0

f ∗(τ)dτ +

s∫
t

f ∗(τ)dτ
)

holds for t < s <∞. Then by Theorem 2.1 and taking into account that Φ is non-increasing we have

(MΦf)∗(t) ≤ C sup
t<s<∞

sΦ(s1/n)f ∗∗(s)

= C sup
t<s<∞

Φ(s1/n)

 t∫
0

f ∗(τ)dτ +

s∫
t

f ∗(τ)dτ


≤ C

Φ(t1/n)

t∫
0

f ∗(τ)dτ + sup
t<s<∞

Φ(s1/n)

s∫
t

f ∗(τ)dτ


≤ C

tΦ(t1/n)f ∗∗(t) + sup
t<s<∞

Φ(s1/n) sup
t<τ<∞

τΦ(τ 1/n)f ∗(τ)

s∫
t

dτ

τΦ(τ 1/n)


= C

tΦ(t1/n)f ∗∗(t) + sup
t<τ<∞

τΦ(τ 1/n)f ∗(τ) sup
t<s<∞

Φ(s1/n)

s∫
0

dτ

τΦ(τ 1/n)

 ,

therefore (2.12) follows from (2.6).

�
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