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1 Introduction

Let 0 < q, p, θ < ∞ and 1
p

+ 1
p′

= 1. Let ϕ = {ϕi}∞i=1 be a sequence of non-negative numbers,

u = {ui}∞i=1 and w = {wi}∞i=1 be sequences of positive numbers, which will be called the weight
sequences. We consider the Hardy operator Hϕ de�ned for any f ∈ l1 by

(Hϕf)k := ϕk

k∑
i=1

fi,

where k ∈ N. Let us denote by lp,u the space of all sequences f = {fi}∞i=1 of real numbers such that

‖f‖p,u =

(
∞∑
i=1

|uifi|p
) 1

p

<∞, 1 ≤ p <∞.

For any f ∈ lp,u we characterize the following iterated discrete Hardy-type inequality with three
weights  ∞∑

n=1

wθn

(
n∑
k=1

∣∣∣∣∣ϕk
k∑
i=1

fi

∣∣∣∣∣
q) θ

q


1
θ

≤ C

(
∞∑
i=1

|uifi|p
) 1

p

, (1.1)

where C is a positive constant independent of f . The dual discrete version of inequality (1.1) has
the form  ∞∑

n=1

wθn

(
∞∑
k=n

∣∣∣∣∣ϕk
∞∑
i=k

fi

∣∣∣∣∣
q) θ

q


1
θ

≤ C

(
∞∑
i=1

|uifi|p
) 1

p

. (1.2)

The continuous analogue of inequality (1.1) can be written as follows ∞∫
0

wθ(x)

 x∫
0

∣∣∣∣∣∣ϕ(t)

t∫
0

f(s) ds

∣∣∣∣∣∣
q

dt


θ
q

dx


1
θ

≤ C

 ∞∫
0

|u(x)f(x)|p dx

 1
p

. (1.3)
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The boundedness of the Hardy-type operator in Morrey-type spaces, weighted Sobolev spaces
was studied in many papers (see, [6], [9], [15]). In paper [3], the problem of boundedness of the
Hardy operator from a Lebesgue space to a local Morrey-type space has been reduced to the validity
of inequality (1.3). The results of paper [3] have aroused the interest to study inequalities of form
(1.3). We believe that the relation between p and θ is more important than between p and q because
we have found out that inequalities of form (1.3) are easier to characterize for p ≤ θ rather than
for θ < p, as for the standard Hardy inequalities. Paper [14] has covered all possible relations
between p, θ and q for characterizations of inequalities of form (1.3), but the obtained results require
some auxiliary function and are not given explicitly. Paper [3], where inequality (1.3) was �rstly
considered and explicitly characterized, has completely covered the case p ≤ θ, in sense that q can
be any positive number, and partially covered the case θ < p only for 0 < q < θ. In paper [12],
discrete Hardy-type inequality (1.1) have been characterized for the same relations between p, θ and
q, namely, for the cases p ≤ θ < ∞, 0 < q and θ < p < ∞, 0 < q < θ. Here we consider the most
di�cult case θ < p < ∞ and 0 < θ < q or, equivalently, 0 < θ < min{p, q} < ∞, which has no
explicit characterizations even in the continuous case.

In the relations between p, θ and q listed above, for the continuous case it is assumed that
p > 1, since for the interval 0 < p < 1 inequalities of form (1.3) hold only in the trivial cases.
For the discrete case the interval 0 < p < 1 is not excluded, so in this paper we consider the case
0 < θ < min{p, q} <∞ for both p > 1 and 0 < p ≤ 1. Paper [11] also contains results for inequality
(1.2) for the case 0 < p ≤ 1, but when p ≤ min{q, θ} <∞. In order to complete the relation p ≤ θ,
we include the case 0 < q < p ≤ θ <∞, 0 < p ≤ 1, as an auxiliary result.

The iterated operator K+f(x) =

(
x∫
0

∣∣∣∣ϕ(t)
t∫

0

f(s) ds

∣∣∣∣q dt)
1
q

in inequality (1.3) has the same types

of integrals as well as the operator K−f(x) =

(∞∫
x

∣∣∣∣ϕ(t)
∞∫
t

f(s) ds

∣∣∣∣q dt) 1
q

in the continuous analogue

of dual inequality (1.2). We can also write two inequalities with the iterated operators T+f(x) =(
x∫
0

∣∣∣∣ϕ(t)
∞∫
t

f(s) ds

∣∣∣∣q dt) 1
q

and T−f(x) =

(∞∫
x

∣∣∣∣ϕ(t)
t∫

0

f(s) ds

∣∣∣∣q dt)
1
q

, which have di�erent types of

integrals. In paper [8], the problems of boundedness of the conjugate Hardy operator from a Lebesgue
space to a Morrey-type space and boundedness of the Hardy operator from a Lebesgue space to a
complementary Morrey-type space have been reduced to the validity of the inequalities with the
operators T+f and T−f , respectively. The inequalities with the operators T+f and T−f have been
studied more fully than the inequalities with the operators K+f and K−f (see, [2], [4], [5], [10],
[13] and [16]). On the contrary, the study of (1.1) and (1.2), which are discrete analogues of the
inequalities for the operatorsK+f andK−f , is almost completed in this paper, while the investigation
of inequalities for the discrete versions of the operators T+f and T−f has only started.

Note that the interest in inequalities with iterated operators has been caused not only by their
applicability to Morrey-type spaces shown in [3] and [8], but also by the fact that their character-
izations can be applied to obtain characterizations for the bilinear Hardy inequalities (see, [2] and
[7]).

The work is organized as follows. Section 2 contains all statements and de�nitions, which are
needed to characterize inequalities (1.1) and (1.2). The main results for 0 < θ < min{p, q} < ∞,
p > 1, are presented in section 3. The main results for 0 < θ < min{p, q} <∞, 0 < p ≤ 1, are given
in section 4. Section 5 contains the auxiliary result for 0 < q < p ≤ θ <∞, 0 < p ≤ 1.



Iterated discrete Hardy-type inequalities 83

2 Preliminaries

In the proofs of our main results for the case 0 < q < p ≤ θ <∞, 0 < p ≤ 1, we need the following
theorem. This theorem proved in [1, Theorem 1 (iv)] presents characterizations of the following
weighted discrete Hardy-type inequality.

Theorem 2.1. Let 0 < p ≤ 1, p ≤ q <∞. The inequality(
∞∑
k=1

vqk

∣∣∣ k∑
i=1

fi

∣∣∣q)
1
q

≤ C

(
∞∑
i=1

|uifi|p
) 1

p

, ∀f ∈ lp,u, (2.1)

holds for some C > 0 if and only if A <∞, where

A = sup
j≥1

(
∞∑
i=j

vqi

) 1
q

u−1
j .

Moreover, C ≈ A, where C is the best constant in (2.1).

For the proofs we also need the following lemma.

Lemma 2.1. Let r > 0, 1 ≤ n < N ≤ ∞. Then

N∑
k=n

ak

(
N∑
j=k

aj

)r−1

≈

(
N∑
i=n

ai

)r

≈
N∑
k=n

ak

(
k∑
j=n

aj

)r−1

. (2.2)

Convention: The symbol N �M means N ≤ CM with some positive constant C, depending on
the parameters p, θ and q. Moreover, the notation N ≈M means N �M � N .

For the estimations we use various classical inequalities such as the Minkowski inequality, the
H�older inequality and the following elementary inequalities.

If ai > 0, i = 1, 2, ..., k, then (
k∑
i=1

ai

)α

≤
k∑
i=1

aαi , 0 < α ≤ 1, (2.3)

and (
k∑
i=1

ai

)α

≥
k∑
i=1

aαi , α ≥ 1. (2.4)

3 Main results for 0 < θ < min{p, q} <∞, p > 1

Theorem 3.1. Let 0 < θ < min{p, q} < ∞, p > 1. Then inequality (1.2) holds if and only if
B1 <∞, where

B1 =

 ∞∑
i=1

u−p
′

i

(
∞∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=1

wθn

(
i∑

k=n

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B1, where C is the best constant in (1.2).
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Proof. Necessity. Suppose that inequality (1.2) holds with the best constant C > 0. Let us show

that B1 <∞. For an arbitrary 1 ≤ r < N <∞ we take a test sequence f̃r = {f̃r,i}∞i=1 such that

f̃r,i =


0, 1 ≤ i < r, i > N,

u−p
′

i

(
N∑
j=i

u−p
′

j

) θ−1
p−θ
(

i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q

) 1
p−θ

, r ≤ i ≤ N <∞.

Then

‖f̃r‖p,u =

(
∞∑
i=1

|f̃r · ui|p
) 1

p

=

 N∑
i=r

u−p
′

i

(
N∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


1
p

=: B̃
1
p <∞. (3.1)

Substituting f̃r in the left-hand side I = I(f) of inequality (1.2), we derive that

I(f̃) =

 ∞∑
n=1

wθn

(
∞∑
k=n

∣∣∣∣∣ϕk
∞∑
i=k

f̃i

∣∣∣∣∣
q) θ

q


1
θ

≥

 N∑
n=r

wθn

(
N∑
k=n

ϕqk

(
N∑
i=k

f̃i

)q) θ
q


1
θ

.

By applying Lemma 2.1, we obtain

I(f̃)�

 N∑
n=r

wθn

 N∑
k=n

ϕqk

N∑
i=k

f̃i

(
N∑
j=i

f̃j

)(q−1)
 θ

q


1
θ

.

Next, changing the orders of sums and using Lemma 2.1, we get

I(f̃)�

 N∑
n=r

wθn

N∑
i=n

f̃i

(
N∑
j=i

f̃j

)(q−1)

×
i∑

k=n

ϕqk

 N∑
m=i

f̃m

(
N∑
s=m

f̃s

)(q−1) m∑
z=n

ϕqz


θ−q
q


1
θ

=

 N∑
i=r

f̃i

(
N∑
j=i

f̃j

)(q−1)
 N∑
m=i

f̃m

(
N∑
s=m

f̃s

)(q−1)


θ−q
q i∑

n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
θ

�

 N∑
i=r

f̃i

(
N∑
j=i

f̃j

)(θ−1) i∑
n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
θ

. (3.2)

First we estimate

N∑
j=i

f̃j =
N∑
j=i

u−p
′

j

(
N∑
s=j

u−p
′

s

) θ−1
p−θ
 j∑

n=r

wθn

(
j∑

k=n

ϕqk

) θ
q


1
p−θ
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�

(
N∑
j=i

u−p
′

j

) p−1
p−θ
 i∑

n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
p−θ

. (3.3)

Now, we put (3.3) into (3.2), then substitute f̃r and �nd

I(f̃)�

 N∑
i=r

u−p
′

i

(
N∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


p
p−θ


1
θ

= B̃
1
θ . (3.4)

From (3.1), (3.4) and (1.2) it follows that

B̃
p−θ
pθ � C, for all 1 ≤ r < N <∞. (3.5)

Since r ≥ 1 is arbitrary, taking the supremum on both sides of inequality (3.5) with respect to r (C
is independent of r) and passing to the limit N →∞, we get that

B1 � C <∞. (3.6)

Su�ciency. Suppose that B1 < ∞. Now, we prove that inequality (1.2) holds. Let 0 ≤ f ∈ lp,u
be such that

∞∑
i=1

fi <∞.

Let

k1 := sup{k ∈ Z :
∞∑
i=1

fi ≤ 2−k},

then

2−k1−1 <
∞∑
i=1

fi ≤ 2−k1 .

We consider the sequence {jk}, where jk are de�ned by

jk := min{j ≥ 1 :
∞∑
i=j

fi ≤ 2−k1−k+1}.

We note that

j1 := min{j ≥ 1 :
∞∑
i=j

fi ≤ 2−k1} = 1.

For all k ≥ 1 it yields that
∞∑
i=jk

fi ≤ 2−k1−k+1 <

∞∑
i=jk−1

fi. (3.7)

Therefore, the set of natural numbers N can be written

N =
⋃
k≥1

[jk, jk+1 − 1] .

Furthermore,

2−k1−m+1 <

∞∑
i=jm−1

fi =

jm+1−1∑
i=jm−1

fi +
∞∑

i=jm+1

fi
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<

jm+1−1∑
i=jm−1

fi + 2−k1−(m+1)+1, m ≥ 2.

2−k1−m <

jm+1−1∑
i=jm−1

fi, m ≥ 2.

2−k1−m+2 < 4

jm+1−1∑
i=jm−1

fi, m ≥ 2.

Substituting m by m+ 1, we obtain

2−k1−m+1 < 4

jm+2−1∑
i=jm+1−1

fi, m ≥ 1. (3.8)

Hence, taking into account (3.7), we get

Iθ(f) :=
∞∑
n=1

wθn

(
∞∑
s=n

∣∣∣∣∣ϕs
∞∑
i=s

fi

∣∣∣∣∣
q) θ

q

≤
∞∑
k=1

jk+1−1∑
n=jk

wθn

 ∞∑
m=k

jm+1−1∑
s=max{n,jm}

ϕqs

(
∞∑

i=jm

fi

)q
 θ

q

.

Therefore, using (3.7) and (3.8), we have

Iθ(f) ≤ 4θ
∞∑
k=1

jk+1−1∑
n=jk

wθn

 ∞∑
m=k

jm+1−1∑
s=max{n,jm}

ϕqs

 jm+2−1∑
i=jm+1−1

fi

q
θ
q

.

Using inequality (2.3), we get

Iθ(f) ≤ 4θ
∞∑
k=1

jk+1−1∑
n=jk

wθn

∞∑
m=k

 jm+1−1∑
s=max{n,jm}

ϕqs

 θ
q
 jm+2−1∑
i=jm+1−1

fi

θ

.

Next, changing the orders of sums, we have

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θ
m∑
k=1

jk+1−1∑
n=jk

wθn

 jm+1−1∑
s=max{n,jm}

ϕqs

 θ
q

= 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θm−1∑
k=1

jk+1−1∑
n=jk

wθn

(
jm+1−1∑
s=jm

ϕqs

) θ
q

+

jm+1−1∑
n=jm

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


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≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θ
m∑
k=1

jk+1−1∑
n=jk

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

.

Hence,

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θ
jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

. (3.9)

Using the H�older inequality with powers p and p′ in (3.9), we have

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

|fiui|p
 θ

p
 jm+2−1∑
i=jm+1−1

u−p
′

i

 θ
p′

×
jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

. (3.10)

For the outer sum in (3.10) again using the H�older inequality with the parameters p
θ
and p

p−θ , we get

Iθ(f) ≤ 4θ

 ∞∑
m=1

jm+2−1∑
i=jm+1−1

|fiui|p
 θ

p

 ∞∑
m=1

 jm+2−1∑
i=jm+1−1

u−p
′

i


θ(p−1)
(p−θ)

×

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

. (3.11)

Now, applying Lemma 2.1 to (3.11), we �nd that

Iθ(f)� 2θ(2+ 1
p

)

(
∞∑
i=1

|fiui|p
) θ

p

 ∞∑
m=1

jm+2−1∑
i=jm+1−1

u−p
′

i

(
jm+2−1∑
j=i

u−p
′

j

) p(θ−1)
p−θ

×

 i∑
n=1

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

= 2θ(2+ 1
p

)

(
∞∑
m=1

(
u−p

′

jm+1−1

×

 jm+2−1∑
j=jm+1−1

u−p
′

i


p(θ−1)
p−θ

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


p
p−θ

+

jm+2−1∑
i=jm+1

u−p
′

i

(
jm+2−1∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=1

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ



p−θ
p

‖f‖θp,u

≤ 2θ(2+ 1
θ

)


 ∞∑

i=1

u−p
′

i

(
∞∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=1

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


p−θ
pθ


θ
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×‖f‖θp,u ≤ 2θ(2+ 1
θ

)Bθ
1‖f‖θp,u.

Hence,

I(f)� B1‖f‖p,u (3.12)

and C � B1, where C is the best constant in (1.2). Inequalities (3.6) and (3.12) give that C ≈ B1.

Theorem 3.2. Let 0 < θ < min{p, q} < ∞, p > 1. Then inequality (1.1) holds if and only if
B2 <∞, where

B2 =

 ∞∑
i=1

u−p
′

i

(
i∑

j=1

u−p
′

j

) p(θ−1)
p−θ

 ∞∑
n=i

wθn

(
n∑
k=i

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B2, where C is the best constant in (1.1).

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1.

4 Main results for 0 < θ < min{p, q} <∞, 0 < p ≤ 1

Theorem 4.1. Let 0 < θ < min{p, q} < ∞, 0 < p ≤ 1. Then inequality (1.2) holds if and only if
B3 <∞, where

B3 =

 ∞∑
i=1

u
− θp
p−θ

i

 i∑
n=1

wθn

(
i∑

k=n

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B3, where C is the best constant in (1.2).

Proof. Necessity. Suppose that inequality (1.2) holds with the best constant C > 0. Let

1 ≤ r < N <∞. We take a test sequence f̃r = {f̃r,i}∞i=1 such that f̃r,i = 0 for 1 ≤ i < r, i > N and

f̃r,i = u
− p
p−θ

i

(
i∑

n=r

wθn

(
i∑

s=n

ϕqs

) θ
q

) 1
p−θ

for r ≤ i ≤ N <∞ .

Then

‖f̃r‖p,u =

(
∞∑
i=1

|f̃r · ui|p
) 1

p

=

 N∑
i=r

u
− pθ
p−θ

i

 i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


1
p

=: B
1
p <∞. (4.1)

In the same way as in the proof of Theorem 3.1, we substitute f̃r in the left-hand side of inequality
(1.2) and obtain inequality (3.2). Now, let us estimate

N∑
j=i

f̃j ≥ u
− p
p−θ

i

 i∑
n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
p−θ

. (4.2)
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We put (4.2) into (3.2), then we have

I(f̃)�

 N∑
i=r

u
− pθ
p−θ

i

 i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


1
θ

= B
1
θ . (4.3)

From (4.1), (4.3) and (1.2), as a result we get

B
p−θ
pθ � C, for all 1 ≤ r < N <∞.

Since r ≥ 1 is arbitrary, passing to the limit N →∞, we have

B3 � C <∞. (4.4)

Su�ciency. We start to prove the su�cient part of Theorem 4.1 in the same way as the su�cient
part of Theorem 3.1. Since in this case 0 < p ≤ 1, we can not use the H�older inequality in (3.9).
Therefore, we continue the proof in the following way

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fiuiu
−1
i

p θ
p jm+1−1∑

n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

.

Applying (2.3) with 0 < p ≤ 1, we obtain that

Iθ(f) ≤ 4θ
∞∑
m=1

(
jm+2−1∑
i=jm+1−1

|fiui|p
) θ

p

× sup
jm+1−1≤k≤jm+2−1

u−θk

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

.

Using the H�older inequality for the outer sum, we get

Iθ(f) ≤ 2θ(2+ 1
p

)

(
∞∑
i=1

|fiui|p
) θ

p

×

 ∞∑
m=1

jm+2−1∑
k=jm+1−1

u
− pθ
p−θ

k

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

≤ 2θ(2+ 1
θ

)

 ∞∑
k=1

u
− pθ
p−θ

k

 k∑
n=1

wθn

(
k∑
s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

‖f‖θp,u.

Hence,
Iθ(f) ≤ 2θ(2+ 1

θ
)Bθ

3‖f‖θp,u,
so that

I(f)� B3‖f‖p,u. (4.5)

Therefore, from inequalities (4.4) and (4.5), we get C ≈ B3, where C is the best constant in (1.2).
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Theorem 4.2. Let 0 < θ < min{p, q} < ∞, 0 < p ≤ 1. Then inequality (1.1) holds if and only if
B4 <∞, where

B4 =

 ∞∑
i=1

u
− θp
p−θ

i

 ∞∑
n=i

wθn

(
n∑
k=i

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B4, where C is the best constant in (1.1).

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1.

Remark 1. Theorems 3.1 and 4.1 mean that inequality (1.2) holds for both cases 0 < θ < q < p <∞
and 0 < θ < p < q <∞.

5 Auxiliary result for 0 < q < p ≤ θ <∞, 0 < p ≤ 1

Theorem 5.1. Let 0 < q < p ≤ θ < ∞, 0 < p ≤ 1. Then inequality (1.1) holds if and only if
B = max{B5, B6} <∞, where

B5 = sup
i≥1

 ∞∑
n=i

wθn

(
n∑
k=i

ϕqk

) θ
q


1
θ

u−1
i ,

B6 = sup
i≥1

(
∞∑
n=i

wθn

) 1
θ
(

i∑
k=1

ϕqk

) 1
q

sup
j≤i

u−1
j .

Moreover, C ≈ B, where C is the best constant in (1.1).

Proof. Necessity. Assume that inequality (1.1) holds with the best constant C > 0. First, we prove

that B5 < ∞. Let j ≥ 1. We take a test sequence f̃j = {f̃j,i}∞i=1 such that f̃j,i = u−1
i for i = j and

f̃j,i = 0 for i 6= j. Then

‖f̃j‖p,u =

(
∞∑
i=1

|f̃j · ui|p
) 1

p

= 1. (5.1)

Substituting f̃j in left-hand side of inequality (1.1), we deduce that

I(f̃) :=

 ∞∑
n=1

wθn

(
n∑
k=1

∣∣∣∣∣ϕk
k∑
i=1

f̃j,i

∣∣∣∣∣
q) θ

q


1
θ

≥

 ∞∑
n=j

wθn

(
n∑
k=j

∣∣∣∣∣ϕk
k∑
i=1

f̃j,i

∣∣∣∣∣
q) θ

q


1
θ

≥

 ∞∑
n=j

wθn

(
n∑
k=j

ϕqk

) θ
q


1
θ

u−1
j . (5.2)

From (5.1), (5.2) and (1.1) it follows that ∞∑
n=j

wθn

(
n∑
k=j

ϕqk

) θ
q


1
θ

u−1
j ≤ C, ∀j ≥ 1.
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Since j ≥ 1 is arbitrary, we have

B5 = sup
j≥1

 ∞∑
n=j

wθn

(
n∑
k=j

ϕqk

) θ
q


1
θ

u−1
j ≤ C <∞. (5.3)

Now, let us show that B6 < ∞. For 1 < r ≤ j < ∞, we take a test sequence ṽk = {ṽk,r}∞r=1 such
that ṽk,r = u−1

r for r = k and ṽk,r = 0 for r 6= k. Then

‖ṽr‖p,u = 1. (5.4)

Substituting ṽk in the left-hand side of inequality (1.1), we �nd that

I(ṽ) ≥

 ∞∑
n=j

wθn

(
n∑
k=1

∣∣∣∣∣ϕk
k∑
i=1

ṽi,r

∣∣∣∣∣
q) θ

q


1
θ

≥

 ∞∑
n=j

wθn

(
j∑

k=1

∣∣∣∣∣ϕk
k∑
i=1

ṽi,r

∣∣∣∣∣
q) θ

q


1
θ

≥

(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

u−1
r , ∀r ≤ j. (5.5)

From (5.4), (5.5) and (1.1), we obtain(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

u−1
r ≤ C, ∀r ≤ j.

(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

sup
r≤j

u−1
r ≤ C, ∀j ≥ 1.

Therefore,

B6 = sup
j≥1

(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

sup
r≤j

u−1
r ≤ C <∞. (5.6)

Su�ciency. Let B <∞. Without loss of generality, we assume that 0 ≤ f ∈ lp,u.
Let inf ∅ =∞ and

k∞ = inf
{
k ∈ Z :

∞∑
s=1

(
ϕs

s∑
i=1

fi

)q
< 2q(k+1)

}
.

Assume that k ≤ k∞ if k∞ <∞ and

jk = inf
{
j ≥ 1 :

j∑
s=1

(
ϕs

s∑
i=1

fi

)q
≥ 2qk

}
.

Then
jk−1∑
s=1

(
ϕs

s∑
i=1

fi

)q
< 2qk ≤

jk∑
s=1

(
ϕs

s∑
i=1

fi

)q
.

Therefore, the set of natural numbers N can be written

N =
⋃
k≥1

[jk, jk+1 − 1] .
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Since in this case 0 < q < 1, we have

2q(k−1) =
2qk − 2q(k−1)

2q − 1
≤ 1

2q − 1

(
jk∑
s=1

(
ϕs

s∑
i=1

fi

)q

−
jk−1−1∑
s=1

(
ϕs

s∑
i=1

fi

)q)
≤ 1

2q − 1

 jk∑
s=jk−1

(
ϕs

s∑
i=1

fi

)q


≤ 1

2q − 1

 jk∑
s=jk−1

(
ϕs

jk−1∑
i=1

fi

)q

+

jk∑
s=jk−1

ϕs s∑
i=jk−1

fi

q .

Hence,

2(k−1) ≤ 2
1
q
−1

(2q − 1)q


 jk∑
s=jk−1

(
ϕs

jk−1∑
i=1

fi

)q
 1

q

+

 jk∑
s=jk−1

ϕs s∑
i=jk−1

fi

q
1
q

 . (5.7)

For the left-hand side I(f) of inequality (1.1) we have

I(f) =

∑
k

jk+1−1∑
n=jk

wθn

(
n∑
s=1

(
ϕs

s∑
i=1

fi

)q) θ
q


1
θ

≤ 4

(∑
k

2θ(k−1)

jk+1−1∑
n=jk

wθn

) 1
θ

. (5.8)

Combining (5.7) with (5.8), we have

I(f)�

∑
k

jk+1−1∑
n=jk

wθn


 jk∑
s=jk−1

(
ϕs

jk−1∑
i=1

fi

)q
 1

q

+

 jk∑
s=jk−1

ϕs s∑
i=jk−1

fi

q
1
q


θ


1
θ

.

In both cases θ > 1 and 0 < θ ≤ 1, we get that

I(f)�

∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q (jk−1∑

i=1

fi

)θ


1
θ

+

∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 s∑
i=jk−1

fi

q
θ
q


1
θ

= I1 + I2. (5.9)

Let us estimate I1

I1 =

 ∞∑
j=1

(
j∑
i=1

fi

)θ

µ(j)

 1
θ

, (5.10)
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where

µ(j) =
∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q

δ(j − jk−1)

and δ(·) is the Dirac delta-function. By Theorem A from (5.10) we have

I1 ≤

sup
r≥1

(
∞∑
j=r

µ(j)

) 1
θ

u−1
r

 ‖f‖p,u. (5.11)

Since
∞∑
j=r

µ(j) =
∑
jk−1≥r

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q

≤
∞∑
n=r

wθn

(
n∑
s=r

ϕqs

) θ
q

,

we have

sup
r≥1

 ∞∑
n=r

wθn

(
n∑
s=r

ϕqs

) θ
q


1
θ

u−1
r � B5. (5.12)

From (5.11) and (5.12) we obtain
I1 ≤ B5‖f‖p,u. (5.13)

Let us estimate I2:

I2 ≤

∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q
 jk∑
i=jk−1

fi

θ


1
θ

≤

∑
k

 jk∑
i=jk−1

fiuiu
−1
i

p θ
p ∞∑
n=jk

wθn

(
jk∑
s=1

ϕqs

) θ
q


1
θ

.

Using the condition (2.3), we get

I2 �

∑
k

 jk∑
i=jk−1

|fiui|p
 θ

p

sup
i≤jk

u−θi

∞∑
n=jk

wθn

(
jk∑
s=1

ϕqs

) θ
q


1
θ

≤

∑
k

 jk∑
i=jk−1

|fiui|p
 θ

p


1
θ

sup
k

(
∞∑

n=jk

wθn

) 1
θ
(

jk∑
s=1

ϕqs

) 1
q

sup
i≤jk

u−1
i .

Therefore, by applying (2.4) with α = θ
p
, we obtain that

I2 �

(
∞∑
i=1

|fiui|p
) 1

p

sup
r≥1

(
∞∑
n=r

wθn

) 1
θ
(

r∑
s=1

ϕqs

) 1
q

sup
i≤r

u−1
i ,

so that
I2 ≤ B6‖f‖p,u. (5.14)
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From (5.9), (5.13) and (5.14) we have

I(f)� max{B5, B6}‖f‖p,u. (5.15)

Therefore, from inequality (5.15), we get C � B. The latter together with (5.6) gives that C ≈ B,
where C is the best constant in (1.1).
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