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Abstract. In this paper, the initial and boundary value problems for the Swift-Hohenberg equa-
tion as over the �nite spatial interval x ∈ [0, l] and �nite time interval t ∈ [0, t∗] are considered.
Approximate solutions for the initial and boundary value problems are obtained via the di�erential
transform method and reduced di�erential transform method. Finally, several numerical examples
are presented in order to demonstrate the e�ectivity of the methods and clarify the in�uence of the
parameters on the solution.
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1 Introduction

The Swift-Hohenberg equation is a model pattern-forming equation which was introduced by Jack
Swift and Pierre Hohenberg as a model for a �uid which is thermally convecting [24]. The Swift-
Hohenberg equation is one of important equations for describing localized structures in the modern
physics. This equation occurs in �uid dynamics, optical physics and other �elds [4, 11, 22]. The
Swift-Hohenberg equation with dispersion has the form [9]

ut + 2uxx − σuxxx + uxxxx = αu+ βu2 − γu3, (1.1)

where α, β, γ and σ are parameters of the equation. At σ = 0 equation (1.1) is reduced to the
standard Swift-Hohenberg equation. We consider the problem with the boundary conditions

u = 0, uxx = 0, at x = 0, l, ∀t, t > 0,

u(x, 0) = u0(x), ∀x, 0 < x < l,
(1.2)

so that solutions can be extended as periodic functions over the real line. For σ = β = 0 and
α = 1− a, a ∈ R, equation (1.1) and (1.2) were solved by the homotopy analysis method in [3] and
the di�erential transform method as time-fractional derivative in [19].

The aim of this paper is to �nd an approximate analytical solution of (1.1) and (1.2) with the
help of powerful analytic methods. We use the di�erential transform method (DTM) and reduced
di�erential transform method (RDTM) to obtain the solutions and compare them with each other.
We know that the DTM is based on the use of Taylor series in all variables, while RDTM does not
require Taylor series in all variables and therefore it reduces signi�cantly the numerical computation.
For the standard cases, comparing the methodology with some known techniques, shows that these
approaches are e�ective and powerful.
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2 Methods

In this section, the techniques are explained for the two-dimensional di�erential transform.

2.1 The DTM

The DTM was �rst proposed by Zhou [25], who solved linear and nonlinear initial value problems in
electric circuit analysis, then was widely used in the literature and was successfully applied to frac-
tional di�erential equations [5], integro-di�erential equations [6], higher-order initial value problems
[1], systems of di�erential equations [2, 7, 12], partial di�erential equation [10, 13, 21, 23], high index
di�erential-algebraic equations [20].

In [8, 14] the basic de�nitions and fundamental operations are introduced for the two-dimensional
di�erential transform as the following

U(k, h) =
1

k!h!

[
∂k+h

∂xk∂th
u(x, t)

]
(0,0)

, (2.1)

where u(x, t) is the original function and U(k, h) is the transformed function. The di�erential inverse
transform of U(k, h) is of the form

u(x, t) =
∞∑
k=0

∞∑
h=0

U(k, h)xkth, (2.2)

and from equations (2.1) and (2.2) can be concluded that

u(x, t) =
∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+h

∂xk∂th
u(x, t)

]
(0,0)

xkth. (2.3)

In Table 2.1 the fundamental mathematical operations of the two-dimensional di�erential transform
are listed. The proofs are available in [8].

Table 2.1. Two-dimensional di�erential transformation

Original Function Transformed Function
u(x, t)± v(x, t) U(k, h)± V (k, h)
cu(x, t) cU(k, h)
∂u(x,t)
∂x

(k + 1)U(k + 1, h)
∂u(x,t)
∂t

(h+ 1)U(k, h+ 1)
∂r+su(x,t)
∂xr∂ts

(k+r)!
k!

(h+s)!
h!

U(k + r, h+ s)

u(x, t)v(x, t)
∑k

r=0

∑h
s=0 U(r, h− s)V (k − r, s)

u(x, t)v(x, t)w(x, t)
∑k

r=0

∑k−r
s=0

∑h
q=0

∑h−q
p=0 U(r, h− q − p)V (s, q)W (k − r − s, p)

2.2 The RDTM

The basic de�nitions and operations of the RDTM [15, 16, 17, 18] are de�ned as follows.
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De�nition 1. If a function u(x, t) is analytic with respect to time t and space x in the domain of
interest, then let

Uk(x) =
1

k!

[
∂k

∂tk
u(x, t)

]
t=0

, (2.4)

where the t-dimensional spectrum function Uk(x) is the transformed function. In this paper, the
lowercase u(x, t) represent the original function while the uppercase Uk(x) stands for the transformed
function.

De�nition 2. The reduced di�erential transform of the sequence {Uk(x)}∞k=0 is introduced as follows:

u(x, t) =
∞∑
k=0

Uk(x)tk. (2.5)

By combining equation (2.4) and (2.5), we have

u(x, t) =
∞∑
k=0

1

k!

[
∂k

∂tk
u(x, t)

]
t=0

tk. (2.6)

Some basic properties of the reduced di�erential transformation obtained from de�nitions (2.4)
and (2.6) are summarized in Table 2.2. The proofs and the basic de�nitions of the RDTM are
available in [15].

Table 2.2. Basic operations of RDTM

Original Function Transformed Function
u(x, t) Uh(x)
u(x, t)± v(x, t) Uh(x)± Vh(x)
cu(x, t) cUh(x) c is a cons.
xmtn xmδ(h− n)
xmtnu(x, t) xmUh−n(x)
∂
∂x
u(x, t) U

′

h(x)
∂r

∂tr
u(x, t) (h+r)!

h!
Uh+r(x)

u(x, t)v(x, t)
∑h

r=0 Ur(x)Vh−r(x)

u(x, t)v(x, t)w(x, t)
∑h

r=0

∑h−r
s=0 Ur(x)Vs(x)Wh−r(x)

3 The Swift-Hohenberg equation

In this section, we consider two methodologies DTM and RDTM for the Swift-Hohenberg equa-
tion. To illustrate the capability, reliability and simplicity of the methods, several di�erent cases for
parameters of the equation will be discussed here.

3.1 Solution of the problem by the DTM

We apply the DTM to equation (1.1), the resulting transformed version of equation (1.1) is

(h+ 1)U(k, h+ 1) = −2 (k+2)!
k!

U(k + 2, h) + σ (k+3)!
k!

U(k + 3, h)− (k+4)!
k!

U(k + 4, h)

+αU(k, h) + β
∑k

r=0

∑h
s=0 U(r, h− s)U(k − r, s)

−γ
∑k

r=0

∑k−r
s=0

∑h
q=0

∑h−q
p=0 U(r, h− q − p)U(s, q)U(k − r − s, p).

(3.1)
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From the boundary conditions given by (1.2), we have

U(k, 0) = 1
k!
u

(k)
0 (0), k = 0, 1, 2, . . .

U(0, h) = 0, h = 0, 1, 2, . . .

U(2, h) = 0, h = 0, 1, 2, . . .∑∞
k=0 U(k, h)lk = 0, h = 0, 1, 2, . . .∑∞
k=0

(k+2)!
k!

U(k + 2, h)lk = 0, h = 0, 1, 2, . . . .

(3.2)

In real applications, the function u(x, t) is given by a �nite series of equations (3.1) and (3.2) can be
written as follows

u(x, t) ≈ ũ(x, t) =
n−2h∑
k=0

m∑
h=0

U(k, h)xkth,

where the value of the parameter m should not be greater than n
2
.

By using equations (3.1) and (3.2), the corresponding U(k, h) can be calculated for arbitrary
di�erent selections of n and m. In real applications, we seek obtain an excellent approximate solution
of the di�erential equation. Therefore the selection n andm i.e. iterations continue until the absolute
value of the error function de�ned as follows

EDTM(x, t) = |ũt + 2ũxx − σũxxx + ũxxxx − αũ− βũ2 + γũ3|, (3.3)

becomes very small for each x, t in the domain, in other words |EDTM(x, t)| < tolerance for all
x ∈ [0, l], t ∈ [0, t∗].

Then the corresponding U(k, h) can be obtained as follows

U(0, 0) = u0(0), U(1, 0) = u′0(0), . . . , U(n, 0) = 1
n!
u

(n)
0 (0), . . . ,

U(0, 0) = 0, U(0, 1) = 0, . . . , U(0,m) = 0, . . . ,

U(2, 0) = 0, U(2, 1) = 0, . . . , U(2,m) = 0, . . . .

If h = 0, then from (3.1) for k = 1 and k = 3, . . . , n− 4 we have

U(k, 1) = −2 (k+2)!
k!

U(k + 2, 0) + σ (k+3)!
k!

U(k + 3, 0)− (k+4)!
k!

U(k + 4, 0)

+αU(k, 0) + β
∑k

r=0 U(r, 0)U(k − r, 0)

−γ
∑k

r=0

∑k−r
s=0 U(r, 0)U(s, 0)U(k − r − s, 0),

and by the �nal two relations of (3.2) also can obtain

U(n− 3, 1) = 1
l(n−3)

∑n−4
k=0 l

kU(k, 1),

U(n− 2, 1) = 1
(n−3)(n−2)l(n−4)

∑n−5
k=0(k + 1)(k + 2)lkU(k + 2, 1).

If h = 1, then for k = 1 and k = 3, . . . , n− 6 we have

U(k, 2) = 1
2
(−2 (k+2)!

k!
U(k + 2, 1) + σ (k+3)!

k!
U(k + 3, 1)− (k+4)!

k!
U(k + 4, 1)

+αU(k, 1) + β
∑k

r=0

∑1
s=0 U(r, 1− s)U(k − r, s)

−γ
∑k

r=0

∑k−r
s=0

∑1
q=0

∑1−q
p=0 U(r, 1− q − p)U(s, q)U(k − r − s, p)),
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and

U(n− 5, 2) = 1
l(n−5)

∑n−6
k=0 l

kU(k, 2),

U(n− 4, 2) = 1
(n−5)(n−4)l(n−6)

∑n−7
k=0(k + 1)(k + 2)lkU(k + 2, 2).

If h = 2, then for k = 1 and k = 3, . . . , n− 8 we have

U(k, 3) = 1
3
(−2 (k+2)!

k!
U(k + 2, 2) + σ (k+3)!

k!
U(k + 3, 2)− (k+4)!

k!
U(k + 4, 2)

+αU(k, 2) + β
∑k

r=0

∑2
s=0 U(r, 2− s)U(k − r, s)

−γ
∑k

r=0

∑k−r
s=0

∑2
q=0

∑2−q
p=0 U(r, 2− q − p)U(s, q)U(k − r − s, p)),

and

U(n− 7, 3) = 1
l(n−7)

∑n−8
k=0 l

kU(k, 3),

U(n− 6, 3) = 1
(n−7)(n−6)l(n−8)

∑n−9
k=0(k + 1)(k + 2)lkU(k + 2, 3).

By using the recursive scheme of equation (3.1) and conditions (3.2), the rest values of U(k, h) can
be obtained.

3.2 Solution of the problem by the RDTM

To solve equation (1.1) by the RDTM, we consider di�erential transformation of Table 2 and have

(h+ 1)Uh+1(x) = −2U
′′

h (x) + σU
(3)
h (x)− U (4)

h (x) + αUh(x)+

β
∑h

r=0 Ur(x)Uh−r(x)− γ
∑h

r=0

∑h−r
s=0 Ur(x)Us(x)Uh−r(x).

(3.4)

We can obtain the initial and boundary conditions as follows

U0(x) = u0(x),

Uh(0) = 0, h = 0, 1, . . .

Uh(l) = 0, h = 0, 1, . . .

U
′′

h (0) = 0, h = 0, 1, . . .

U
′′

h (l) = 0, h = 0, 1, . . . .

(3.5)

By substituting (3.5) into (3.4) and by a straight forward iterative calculations, we obtain the all
required values of Uh(x). Therefore, the inverse transformation of the set of values {Uh(x)}mh=0 gives
the approximate solution as

u(x, t) ≈ û(x, t) =
m∑
h=0

Uh(x)th.

Similarly to the previous case, let us consider the error functional for approximate solution

ERDTM(x, t) = |ût + 2ûxx − σûxxx + ûxxxx − αû− βû2 + γû3|, (3.6)

and the iterations continue until |ERDTM(x, t)| < tolerance for all x ∈ [0, l], t ∈ [0, t∗].
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4 Numerical results and discussion

The convergence of the proposed methods will depend on α, β, γ, σ, l and on the number of terms
employed in a series approximation. These methods consist in building a sequence of numerical
approximations of u(x, t) via the generated sequence. To �nd the solution of equation (1.1), an error
analysis is performed. Here, EDTM(x, t) and ERDTM(x, t) show the error functions of the proposed
method for �xed n,m, α, β, γ, σ and l.

To see the e�ects of the parameters on the solutions, we �x u0(x) = 1
10
sin(πx

l
) and l = 10,

consider solutions u(x, t) for various values of parameters. To avoid a three-dimensional plot, we plot
two-dimensional cross sections. The qualitative properties of such solutions are displayed in �gures
1, 3 and 5. A comparison of the �gures allows one to see the in�uence of the parameters on the
solution pro�les.

A clear conclusion from the numerical results is that the DTM and RDTM provide highly accu-
rate numerical solutions without the need for spatial discretizations in solving the Swift-Hohenberg
equation.

Because of memory problem, we only increase the number of iterations until we achieve that the
modulus of the error function is less than 0.05 (tolerance). The results show that in the memory
problem and boundary conditions the DTM acts better than the RDTM, and in the number of
iterations and careful of solutions the RDTM is better than the DTM.

Here, we take di�erent values of the parameters to compare the results of DTM and RDTM in
the form of two dimensional �gures for each case, we would see that DTM and RDTM solutions are
in excellent agreement.
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Fig. 1: (a) Pro�les of u(x, t) versus x at α = −0.3, σ = −1, β = 0.1 and γ = 0.2

for t = 0 (Upper), 2 (Middle), 4 (Lower) with n = 15 and m = 4 by DTM.

(b) Pro�les of u(x, t) versus x at α = −0.95, σ = −1, β = 0.1 and γ = 0.2

for t = 0 (Upper), 2 (Middle), 4 (Lower) with n = 20 and m = 5 by DTM.

(c) Pro�les of u(x, t) versus x at α = −0.3, σ = −1, β = 0.1 and γ = 0.2

for t = 0 (Upper), 1 (Middle), 2 (Lower) with m = 4 by RDTM.

Fig. 2: (a) Pro�les of EDTM (x, t) for Fig. 1 (a). (b) Pro�les of EDTM (x, t)

for Fig. 1 (b). (c) Pro�les of ERDTM (x, t) for Fig. 1 (c).
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Fig. 3: (a) Pro�les of u(x, t) versus x at α = 0.25, σ = 0.2, β = −0.04 and γ = 1.1

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 14 and m = 6 by DTM.

(b) Pro�les of u(x, t) versus x at α = 0.25, σ = −0.15, β = −0.04 and γ = 1.1

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 15 and m = 6 by DTM.

(c) Pro�les of u(x, t) versus x at α = 0.25, σ = 0.2, β = −0.04 and γ = 1.1

for t = 0 (Lower), 1 (Middle), 2 (Upper) with m = 3 by RDTM.

Fig. 4: (a) Pro�les of EDTM (x, t) for Fig. 3 (a). (b) Pro�les of EDTM (x, t)

for Fig. 3 (b). (c) Pro�les of ERDTM (x, t) for Fig. 3 (c).
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Fig. 5: (a) Pro�les of u(x, t) versus x at α = 0.1, σ = 0.4, β = 0.1 and γ = −2.3

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 16 and m = 6 by DTM.

(b) Pro�les of u(x, t) versus x at α = 0.1, σ = 0.4, β = −0.16 and γ = −2.3

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 16 and m = 6 by DTM.

(c) Pro�les of u(x, t) versus x at α = 0.1, σ = 0.4, β = −0.16 and γ = −2.3

for t = 0 (Lower), 1 (Middle), 2 (Upper) with m = 3 by RDTM.

Fig. 6: (a) Pro�les of EDTM (x, t) for Fig. 5 (a). (b) Pro�les of EDTM (x, t)

for Fig. 5 (b). (c) Pro�les of ERDTM (x, t) for Fig. 5 (c).
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5 Conclusion

Application of the DTM and RDTM to the Swift-Hohenberg equation with dispersion have been
presented. The results show that the DTM and RDTM are powerful and e�cient methods for
�nding analytic approximate solutions to the Swift-Hohenberg equation. Also, not many iterations
are required to achieve fairly accurate solutions of the equation by the DTM and RDTM.
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