
ISSN (Print): 2077-9879

ISSN (Online): 2617-2658

Eurasian

Mathematical

Journal

2023, Volume 14, Number 1

Founded in 2010 by

the L.N. Gumilyov Eurasian National University

in cooperation with

the M.V. Lomonosov Moscow State University

the Peoples' Friendship University of Russia (RUDN University)

the University of Padua

Starting with 2018 co-funded

by the L.N. Gumilyov Eurasian National University

and

the Peoples' Friendship University of Russia (RUDN University)

Supported by the ISAAC

(International Society for Analysis, its Applications and Computation)

and

by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University

Astana, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors�in�Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice�Editors�in�Chief

K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (Kazakhstan), O.V. Besov (Russia),
N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud
(France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov
(Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia),
M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany),
A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan),
B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin
(Great Britain), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan),
P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), F. Lanzara (Italy), V.G. Maz'ya (Sweden),
K.T. Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Para-
sidis (Greece), J. Pe�cari�c (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman
(Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky
(Great Britain), M.A. Sadybekov (Kazakhstan), S. Sagitov (Sweden), T.O. Shaposhnikova (Swe-
den), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kaza-
khstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), D. Suragan (Kazakhstan), I.A. Taimanov
(Russia), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan),
N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

c© The L.N. Gumilyov Eurasian National University



Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers
in all areas of mathematics written by mathematicians, principally from Europe and Asia. However
papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.
The EMJ publishes 4 issues in a year.
The language of the paper must be English only.
The contents of the EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews,

MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal � Matematika, Math-Net.Ru.
The EMJ is included in the list of journals recommended by the Committee for Control of

Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in
the list of journals recommended by the Higher Attestation Commission (Ministry of Education and
Science of the Russian Federation).

Information for the Authors

Submission. Manuscripts should be written in LaTeX and should be submitted electronically in
DVI, PostScript or PDF format to the EMJ Editorial O�ce through the provided web interface
(www.enu.kz).

When the paper is accepted, the authors will be asked to send the tex-�le of the paper to the
Editorial O�ce.

The author who submitted an article for publication will be considered as a corresponding author.
Authors may nominate a member of the Editorial Board whom they consider appropriate for the
article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ.
Manuscripts are accepted for review on the understanding that the same work has not been already
published (except in the form of an abstract), that it is not under consideration for publication
elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors' names (no degrees).
It should contain the Keywords (no more than 10), the Subject Classi�cation (AMS Mathematics
Subject Classi�cation (2010) with primary (and secondary) subject classi�cation codes), and the
Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.
References. Bibliographical references should be listed alphabetically at the end of the article.

The authors should consult the Mathematical Reviews for the standard abbreviations of journals'
names.

Authors' data. The authors' a�liations, addresses and e-mail addresses should be placed after
the References.

Proofs. The authors will receive proofs only once. The late return of proofs may result in the
paper being published in a later issue.

O�prints. The authors will receive o�prints in electronic form.



Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see
http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published
previously (except in the form of an abstract or as part of a published lecture or academic thesis or as
an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration
for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by
the responsible authorities where the work was carried out, and that, if accepted, it will not be
published elsewhere in the same form, in English or in any other language, including electronically
without the written consent of the copyright-holder. In particular, translations into English of papers
already published in another language are not accepted.

No other forms of scienti�c misconduct are allowed, such as plagiarism, falsi�cation, fraudulent
data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code
of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts
for Resolving Cases of Suspected Misconduct (http://publicationethics.org/�les/u2/NewCode.pdf).
To verify originality, your article may be checked by the originality detection service CrossCheck
http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections,
clari�cations, retractions and apologies when needed. All authors of a paper should have signi�cantly
contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works
which are not yet cited. Reviewed articles should be treated con�dentially. The reviewers will be
chosen in such a way that there is no con�ict of interests with respect to the research, the authors
and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will
only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote
publication of corrections, clari�cations, retractions and apologies when needed. The acceptance of
a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.



The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to

mandatory reviewing.
1.2. The Managing Editor of the journal determines whether a paper �ts to the scope of the EMJ

and satis�es the rules of writing papers for the EMJ, and directs it for a preliminary review to one
of the Editors-in-chief who checks the scienti�c content of the manuscript and assigns a specialist for
reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly quali�ed scientists and specialists of the
L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of
the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating
conditions for the most rapid publication of the paper.

1.5. Reviewing is con�dential. Information about a reviewer is anonymous to the authors and
is available only for the Editorial Board and the Control Committee in the Field of Education and
Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The
author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.
1.7. A positive review is not a su�cient basis for publication of the paper.
1.8. If a reviewer overall approves the paper, but has observations, the review is con�dentially

sent to the author. A revised version of the paper in which the comments of the reviewer are taken
into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is con�dentially sent to the author.
1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper

should be considered by a commission, consisting of three members of the Editorial Board.
1.11. The �nal decision on publication of the paper is made by the Editorial Board and is recorded

in the minutes of the meeting of the Editorial Board.
1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor

informs the author about this and about the date of publication.
1.13. Originals reviews are stored in the Editorial O�ce for three years from the date of publica-

tion and are provided on request of the CCFES.
1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review
2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
2.2. A review should include a quali�ed analysis of the material of a paper, objective assessment

and reasoned recommendations.
2.3. A review should cover the following topics:
- compliance of the paper with the scope of the EMJ;
- compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and

phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of

the topic, importance and actuality of the obtained results, possible applications);
- content of the paper (the originality of the material, survey of previously published studies on

the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);



- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of biblio-
graphic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and understanding
of the presented scienti�c results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for
corrections and complements to the text.

2.4. The �nal part of the review should contain an overall opinion of a reviewer on the paper
and a clear recommendation on whether the paper can be published in the Eurasian Mathematical
Journal, should be sent back to the author for revision or cannot be published.



Web-page

The web-page of the EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian
Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page
contains all papers published in the EMJ (free access).

Subscription

Subscription index of the EMJ 76090 via KAZPOST.

E-mail

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Astana Editorial O�ce
The L.N. Gumilyov Eurasian National University
Building no. 3
Room 306a
Tel.: +7-7172-709500 extension 33312
13 Kazhymukan St
010008 Astana, Kazakhstan

The Moscow Editorial O�ce
The Peoples' Friendship University of Russia
(RUDN University)
Room 473
3 Ordzonikidze St
117198 Moscow, Russia



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 14, Number 1 (2023), 55 � 70

ON A LINEAR INVERSE POTENTIAL PROBLEM
WITH APPROXIMATE DATA ON THE POTENTIAL FIELD

ON AN APPROXIMATELY GIVEN SURFACE

E.B. Laneev, E.Yu. Ponomarenko

Communicated by D. Suragan

Key words: ill-posed problem, inverse problem for the potential, Sretenskiy class of bodies, method
of Tikhonov regularization.

AMS Mathematics Subject Classi�cation: 35R25, 35R30.

Abstract. An approximate solution of the linear inverse problem for the Newtonian potential for
bodies of constant thickness is constructed. The solution is stable with respect to the error in the
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integral equation of the �rst kind, the proof of the stability of the solution is based on the Tikhonov
regularization method.
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1 Introduction

The problem considered here is a linear version of the inverse potential problem, considered in [8].
The paper provides a solution to the problem of restoring the shape of the Newtonian potential
density carrier for bodies of constant thickness belonging to the Sretensky class, de�ned in [9], which
ensures the uniqueness of the solution of the inverse potential problem. In [9], the uniqueness of
the inverse potential problem is proved for bounded homogeneous bodies having a common secant
plane, such that every line perpendicular to it intersects the body at no more than two points lying
on di�erent sides of this plane. The problem is formulated in the framework of the odd-periodic
model [4], which allows us to obtain a solution in the form of a Fourier series, which is essential
for the application of numerical methods for solving the problem. The error of the periodic model
with respect to the non-periodic one is studied in [5]. In the problem considered in this paper,
information about the potential is given in the form of a potential �eld on a surface of a general
form. Both the �eld and the surface are given approximately. The idea of the method in [6] is the
basis for constructing a solution to the problem. The problem in this case, including for bounded
bodies of constant thickness with variable density, is reduced to a linear integral equation of the �rst
kind, the approximate solution of which, stable with respect to the error in data on the potential
and the surface, is constructed on the basis of the Tikhonov regularization method [10], [11]. As an
approximate solution, we consider the extremal of the Tikhonov functional, obtained as a solution of
the Euler equation for this functional. The approximate solution is obtained in the form of a Fourier
series with a regularizing factor. The convergence theorem of the approximate solution to the exact
one is proved. The linear problem of reconstructing the distribution density function of sources with
an in�nitely thin carrier in the model of a heat-conducting body with convective heat exchange at
the boundary, solved in [1], is closely related to the problem considered here.
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2 Problem statement

In an in�nite cylinder of rectangular cross-section

D∞ = {(x, y, z) : 0 < x < lx, 0 < y < ly,−∞ < z <∞} ⊂ R3 (2.1)

we consider the following model for the Newtonian potential

∆v(M) = −4πρ(M), M ∈ D∞,
v|x=0,lx = 0, v|y=0,ly = 0,
v → 0 when z → ±∞.

(2.2)

We assume that the support of the density ρ is located in the domain z > H > 0 in the cylinder D∞.
Let ϕ(M,P ) be the source function of problem (2.2) in the domain D∞ of form (2.1). The

function ϕ(M,P ) can be obtained as a series

ϕ(M,P ) =
2

lxly

∞∑
n,m=1

e−knm|zP−zM |

knm
sin

πnxP
lx

sin
πmyP
ly

sin
πnxM
lx

sin
πmyM
ly

, (2.3)

where

knm =

√(πn
lx

)2

+
(πm
ly

)2

.

If zP > H, series (2.3) converges uniformly with respect to the variable M in the domain

D(−∞, H − ε) = {(x, y, z) : 0 < x < lx, 0 < y < ly,−∞ < z < H − ε}, ε > 0. (2.4)

In the domain of D(−∞, H − ε) the solution of problem (2.2) can be represented as

v(M) = 4π

∫
suppϕ

ρ(P )ϕ(M,P )dVP =
8π

lxly

∫
suppϕ

dVPρ(P )
∞∑

n,m=1

e−knm(zP−zM )

knm

× sin(
πnxP
lx

) sin(
πmyP
ly

) sin(
πnxM
lx

) sin(
πmyM
ly

). (2.5)

It can be shown [4] that such a potential corresponds to a Newtonian potential with an odd-periodic
source distribution function ρ in R3.

In the domain of D(−∞, H − ε) the �eld of potential (2.5) has the form

E(M) = iEx + jEy + kEz = −∇v(M) = − 8π

lxly

∫
suppϕ

dVPρ(P )

×
∞∑

n,m=1

e−knm(zP−zM ) sin
πnxP
lx

sin
πmyP
ly

(
i
πn

lxknm
cos

πnxM
lx

sin
πmyM
ly

+ j
πm

lyknm
sin

πnxM
lx

cos
πmyM
ly

+ k sin
πnxM
lx

sin
πmyM
ly

)
. (2.6)

Thus, within the framework of model (2.2), if the density ρ is given, then the potential of density ρ
and the potential �eld can be calculated using formulas (2.5) and (2.6), respectively.

Let us formulate the inverse problem. We assume that the source density ρ in problem (2.2)
corresponds to a body of constant thickness h, located on the plane z = H:

ρ(x, y, z) = σ(x, y)θ(z −H)θ(H + h− z), (2.7)
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where θ(z) is the Heaviside function. According to (2.7), we consider the source distribution density
functions as constants along the z axis and variables in the (x, y) plane inside the density carrier.

THE INVERSE PROBLEM. Let in the framework of model (2.2) on the surface

S = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = F (x, y) < H}, F ∈ C2(Π), (2.8)

Π = {(x, y) : 0 < x < lx, 0 < y < ly, } . (2.9)

the �eld E of form (2.6) of potential (2.5) be given as a vector function E0:

E|S = E0, (2.10)

and the density ρ of form (2.7) is unknown. Let us set the problem of restoring the function ρ of
form (2.7) for the �eld E0 given on S. Assuming that the parameters H and h are known, in fact,
the inverse problem consists in reconstructing the function σ(x, y) in (2.7) for the known function
E0 on the surface S.

3 Reducing the inverse problem to an integral equation in the case of a
�at surface S

Let us consider the z−component of a �eld (2.6) with a density (2.7) in the domain D(−∞, H − ε)
of form (2.4). The value of ε is arbitrarily small and can be chosen so that the surface S of form
(2.8) is located in the domain D(−∞, H − ε), that is, ε < H −max

(x,y)
F (x, y).

Given formula (2.7) for the density ρ, and also given that zM < zP − ε if M ∈ D(−∞, H − ε),
for the component Ez of �eld (2.6), we obtain

Ez(M) = − 8π

lxly

lx∫
0

ly∫
0

σ(xP , yP )

H+h∫
H

dzP

∞∑
n,m=1

e−knm(zP−zM )

× sin
πnxP
lx

sin
πmyP
ly

sin
πnxM
lx

sin
πmyM
ly

dxPdyP

=
16π

lxly

lx∫
0

ly∫
0

∞∑
n,m=1

e−knm(H+h
2
−zM ) sh knm

h
2

knm
sin

πnxM
lx

sin
πmyM
ly

× σ(x, y) sin
πnx

lx
sin

πmy

ly
dxdy =

lx∫
0

ly∫
0

Kz(xM , yM , zM , x, y)σ(x, y)dxdy, (3.1)

where

Kz(xM , yM , zM , x, y) =
16π

lxly

∞∑
n,m=1

e−knm(H+h
2
−zM ) sh knm

h
2

knm

× sin
πnxM
lx

sin
πmyM
ly

sin
πnx

lx
sin

πmy

ly
, knm =

√(πn
lx

)2

+
(πm
ly

)2

. (3.2)

So, if the function σ in (2.7) is known, then we obtain the component of the �eld Ez in form (3.1).
If now, in accordance with the inverse problem, the �eld E, or only its component Ez on a �at

surface (2.8) when F (x, y) ≡ a < H, is known, i.e. according to (2.10)

Ez
∣∣
z=a

= E0
z ,
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from (3.1) we obtain an integral equation of the �rst kind, linear with respect to the desired function
σ:

lx∫
0

ly∫
0

K(xM , yM , x, y)σ(x, y)dxdy = E0
z (xM , yM), (xM , yM) ∈ Π, (3.3)

where the kernel of the integral operator according to representation (3.2) has the form

K(xM , yM , x, y) = Kz(xM , yM , a, x, y)

=
16π

lxly

∞∑
n,m=1

e−knm(H+h
2
−a) sh knm

h
2

knm
sin

πnxM
lx

sin
πmyM
ly

sin
πnx

lx
sin

πmy

ly
. (3.4)

We shall now obtain an equation similar to (3.3) in the case when the surface S has form (2.8)
with the function F of general form.

4 Reducing the inverse problem to an integral equation in the case of a
surface S of general form

We note that the z-component, like every component of �eld (2.6) of potential (2.5), is a harmonic
function in the domain D(−∞, H). It also follows from (2.6) that the component Ez satis�es the
conditions

Ez|x=0,lx = 0 Ez|y=0,ly = 0,
Ez → 0 when z → −∞.

Taking into account condition (2.10) of the inverse problem for Ez of form (2.6), we obtain the
problem

∆Ez(M) = 0, M ∈ D(−∞, H),
Ez|S = E0

z ,
Ez|x=0,lx = 0 Ez|y=0,ly = 0,
Ez → 0 when z → −∞.

(4.1)

If E0
z is z-component of �eld (2.6) on the surface S of form (2.8), then problem (4.1) is the Dirichlet

problem in the domain

D(−∞, F ) = {(x, y, z) : 0 < x < lx, 0 < y < ly,−∞ < z < F (x, y)} (4.2)

which has an unique solution, represented with formula (2.6).

From condition (2.10) of the inverse problem for �eld (2.6), an additional condition for the normal
derivative on the surface S can be obtained. Indeed, �eld (2.6) is potential, and in the domain
D(−∞, H) satis�es the equations

rotE(M) = 0, M ∈ D(−∞, H),
divE(M) = 0.

For the normal derivative of the component Ez on the surface S of form (2.8), given by the
equation z = F (x, y) < H, we obtain

n1
∂Ez
∂n

∣∣∣
S

= (n1,∇Ez)
∣∣
S

= (
∂Ez
∂x

F ′x +
∂Ez
∂y

F ′y −
∂Ez
∂z

)
∣∣∣
S
,
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where n1 = (F ′x, F
′
y,−1) is the inner normal with respect to the domain D(−∞, F ) of form (4.2).

Then, extracting from the equation divE = 0, valid at the points of the surface S ⊂ D(−∞, H), the
derivative with respect to the variable z, we obtain

n1
∂Ez
∂n

∣∣∣
S

= (n1,∇Ez)
∣∣
S

= (
∂Ez
∂x

F ′x +
∂Ez
∂y

F ′y +
∂Ex
∂x

+
∂Ey
∂y

)
∣∣∣
S
. (4.3)

Using the equations rotE = 0 at the points of the surface S ⊂ D(−∞, H), namely

∂Ez
∂x

∣∣∣
S

=
∂Ex
∂z

∣∣∣
S
,

∂Ez
∂y

∣∣∣
S

=
∂Ey
∂z

∣∣∣
S
,

from (4.3) we obtain

n1
∂Ez
∂n

∣∣∣
S

= (
∂Ex
∂z

F ′x +
∂Ey
∂z

F ′y +
∂Ex
∂x

+
∂Ey
∂y

)
∣∣∣
S
. (4.4)

We shall consider the �eld E0 in (2.10), given on S, as a function of the variables x and y on the
rectangle Π of form (2.9). Di�erentiating the components of the �eld E0 by the arguments x and y,
we obtain

∂

∂x
E0
x =

∂

∂x
Ex(x, y, F (x, y)) = (

∂Ex
∂x

+
∂Ex
∂z

F ′x)
∣∣∣
S
,

∂

∂y
E0
y =

∂

∂y
Ey(x, y, F (x, y)) = (

∂Ey
∂y

+
∂Ey
∂z

F ′y)
∣∣∣
S
.

Substituting these derivatives in (4.4), we obtain the expression for the normal derivative in terms
of the derivatives of the components of the vector E0:

n1
∂Ez
∂n

∣∣∣
S

= (
∂Ex
∂x

+
∂Ex
∂z

F ′x +
∂Ey
∂y

+
∂Ey
∂z

F ′y)
∣∣∣
S

=
∂

∂x
E0
x +

∂

∂y
E0
y . (4.5)

If we add condition (4.5) to (4.1), then the component Ez of �eld (2.6) in the domain D(−∞, F ) ⊂
D(−∞, H) of form (4.2) is a solution of the problem

∆Ez(M) = 0, M ∈ D(−∞, F ),
Ez|S = E0

z ,
∂Ez
∂n
|S =

1

n1

(∂E0
x

∂x
+
∂E0

y

∂y

)
, n1 = (Fx, Fy,−1),

Ez|x=0,lx = 0, Ez|y=0,ly = 0,
Ez → 0 ïðè z → −∞,

(4.6)

where the vector E0 = (E0
x, E

0
y , E

0
z ) is �eld (2.10) in the formulation of the inverse problem.

We shall show now that, following the scheme in [6], the inverse problem can be reduced to an
integral equation.

The source function ϕ(M,P ) of problem (2.2) can be represented as the sum of the fundamental
solution and the function W (M,P ), harmonic in P :

ϕ(M,P ) =
1

4πrMP

+W (M,P ), (4.7)

where rMP is the distance between points M and P . Let us put the point M in the domain

D(R,F ) = {(x, y, z) : 0 < x < lx, 0 < y < ly, R < z < F (x, y), R = Const < 0}
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and apply Green formula in the domain D(R,F ) to the solution of problem (4.6) Ez(P ) and to
functions (4πrMP )−1 and W (M,P ). Then we obtain

Ez(M) =

∫
∂D(R,F )

[∂Ez
∂n

(P )
1

4πrMP

− Ez(P )
∂

∂nP

1

4πrMP

(M,P )
]
dσP , M ∈ D(R,F ) (4.8)

and

0 =

∫
∂D(R,F )

[∂Ez
∂n

(P )W (M,P )− Ez(P )
∂W

∂nP
(M,P )

]
dσP , M ∈ D(R,F ) (4.9)

Here the normal is external to the domain D(R,F ). Summing (4.8) and (4.9) and taking into account
(4.7), we obtain

Ez(M) =

∫
∂D(R,F )

[∂Ez
∂n

(P )ϕ(M,P )− Ez(P )
∂ϕ

∂nP
(M,P )

]
dσP , M ∈ D(R,F ).

Given the boundary conditions for Ez and ϕ in problems (4.6) and (2.2), as well as replacing the
external normal with the internal one, we obtain the representation of the component of the �eld Ez
as the sum of the surface integrals

Ez(M) =

∫
S

[
− 1

n1

(∂E0
x

∂x
(P ) +

∂E0
y

∂y
(P )
)
ϕ(M,P ) + E0

z (P )
∂ϕ

∂nP
(M,P )

]
dσP

−
∫

Π(R)

[∂Ez
∂nP

(P )ϕ(M,P )− Ez(P )
∂ϕ

∂nP
(M,P )

]
dσP , M ∈ D(R,F ), (4.10)

where the rectangle Π(R) has the form

Π(R) = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = R} , R < min
(x,y)

F (x, y). (4.11)

The integral over the rectangle Π(R), due to the representation of �eld (2.6) and the representation
of the source function for a �xed point zM > zP = R in accordance with (2.3)

ϕ(M,P ) =
2

πlxly

∞∑
n,m=1

e−knm(zM−R)

knm
sin

πnxM
lx

sin
πmyM
ly

sin
πnxP
lx

sin
πmyP
ly

,

converges to zero when R→ −∞.

The integral over the surface S in (4.10) is reduced to the integral with respect to the variables xP

and yP , given that
∂ϕ

∂n
(M,P ) = (n,∇Pϕ(M,P )), n =

n1

n1

, n1 = (F ′x, F
′
y,−1), and dσP = n1dxPdyP ,

Ez(M) =

lx∫
0

ly∫
0

[
−
(∂E0

x

∂xP
(xP , yP ) +

∂E0
y

∂yP
(xP , yP )

)
ϕ(M,P )

+ E0
z (xP , yP )(n1,∇Pϕ(M,P ))

]
P∈S

dxPdyP .
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Integrating by parts, taking into account the boundary conditions for ϕ, we obtain

Ez(M) =

lx∫
0

ly∫
0

[
E0
x(xP , yP )

∂

∂xP
ϕ(M,P )

∣∣
P∈S + E0

y(xP , yP )
∂

∂yP
ϕ(M,P )

∣∣
P∈S

+ E0
z (xP , yP )(n1,∇Pϕ(M,P ))

∣∣
P∈S

]
dxPdyP . (4.12)

Let us introduce the notation

Φ(xM , yM) = Ez(M)
∣∣
zM=a

, a < min
(x,y)

F (x, y), (4.13)

where Ez is the function of form (4.12). Since the �eld E0 is given, Φ is a known function, and the
source function ϕ(M,P ) for M ∈ Π(a) of form (4.11) where z = a and P ∈ S of form (2.8) can be
represented as an uniformly convergent series (2.3).

On the other hand, since Ez of form (4.12) is a component of �eld (2.6) of the potential, integral
representation (3.1) is valid for Ez. Then, from integral representation (3.1) in order to determine
the unknown density of σ, we obtain the Fredholm integral equation of the �rst kind with respect to
the desired function σ, similar to (3.3)

lx∫
0

ly∫
0

K(xM , yM , x, y)σ(x, y)dxdy = Φ(xM , yM), (xM , yM) ∈ Π. (4.14)

where the kernel of the integral operator has form (3.4) and the rectangle Π has form (2.9).

5 Exact solution of the inverse problem

When solving the inverse potential problem, we assume that the �eld E0 in (2.10) is �eld (2.6) on
surface (2.8), so the solution of equation (4.14) exists in L2(Π). Since the system of eigenfunctions
of the Dirichlet problem for the Laplace equation in the rectangle Π{

sin
πnx

lx

}
·
{

sin
πmy

ly

}∣∣∣n,m=∞

n,m=1

is complete, the kernel of integral equation (4.14) is closed and the equation has an unique solution.
The solution of integral equation (4.14) can be obtained as a Fourier series

σ(x, y) =
∞∑

n,m=1

σ̃nm sin
πnx

lx
sin

πmy

ly
=

∞∑
n,m=1

Φ̃nmKnm sin
πnx

lx
sin

πmy

ly
, (5.1)

where Φ̃nm are the Fourier coe�cients

Φ̃nm =
4

lxly

lx∫
0

ly∫
0

Φ(x, y) sin
πnx

lx
sin

πmy

ly
dxdy (5.2)

of the function Φ of form (4.13), and

Knm = eknm(H+h
2
−a) knm

4π sh knm
h
2

, knm =

√(πn
lx

)2

+
(πm
ly

)2

. (5.3)
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Since, when solving equation (4.14), we consider that the function Φ of form (4.13) corresponds
to the density σ of form (2.7), the coe�cients Φ̃nm(a) = σnm/Knm decrease faster than the value
eknm(H−a)knm increases and series (5.1) converges to σ in L2(Π).

In the case when σ(M) = σ0χD(M), where χD(M) is the characteristic function of some domain
D ⊂ Π and σ0 is a known constant, the solution of the inverse problem is reduced to �nding the
support D of the source density function. To do this, we can use the formula

D = {(x, y) ∈ Π :
1

σ0

σ(x, y) > λ = Const, 0 < λ < 1}. (5.4)

As it is known [10, 11], the Fredholm equation of the �rst kind is an ill-posed problem. Its
approximate solution is unstable with respect to the error of the right part and requires the use of
regularizing algorithms. Let us construct an approximate right-hand side of the integral equation in
the case of an inaccurate data on the �eld E0 and the surface S and estimate its error.

6 Approximate calculation of the normal to an inaccurately de�ned sur-
face

As follows from (4.13), (4.12), when forming the right-hand side of integral equation (4.14), it is
necessary to calculate the vector function of the normal n1 to the surface S of form (2.8), which is
the gradient of the function F (x, y)− z,

n1 = grad (F (x, y)− z) = ∇xyF − k. (6.1)

Let the surface S is given with an error, namely, instead of the exact function F in (2.8), the
function F µ is known, given on a rectangle Π of form (2.9), such that

‖F µ − F‖L2(Π) 6 µ. (6.2)

For the approximate calculation of integral (4.12), it is necessary to calculate the normal to the
surface given approximately, which is also an ill-posed problem, since the calculation of the normal
n1 is associated with the calculation of the derivatives of the function F.

To obtain a stable solution to this problem, we use the approach of [7], that is, we consider the
problem of calculating the gradient of a function as the problem of calculating values of an unbounded
operator [2].

As an approximation to the function ∇xyF in (6.1) calculated from the known function F µ,
associated with the function F by condition (6.2), we consider the gradient of the extremal of the
functional

Nβ
[
W
]

=
wwwW − F µ

www2

L2(Π)
+ β

www∇Wwww2

L2(Π)
, β > 0. (6.3)

For simplicity of calculating the extremal, we consider such surfaces S, for which

F |x=0,lx = 0, F |y=0,ly = 0.

This condition, in particular, occurs in the case when S can be considered as a perturbation of the
plane z = 0. Then the extremal of functional (6.3) is the solution of the following problem for the
Euler equation

−β∆W +W = F µ,
W |x=0,lx = 0, W |y=0,ly = 0.
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The solution of this problem is

W µ
β (x, y) =

∞∑
n,m=1

F̃ µ
nm

1 + βk2
nm

sin
πnx

lx
sin

πmy

ly
, (6.4)

where the Fourier coe�cients F̃ µ
nm are calculated by formulas of form (5.2) and knm has form (5.3).

It is easy to see that series (6.4) converges uniformly on Π.
As an approximate value of the gradient of the function F µ, we consider the vector function

∇xyW
µ
β (x, y) =

∞∑
n,m=1

F̃ µ
nm

1 + βk2
nm

×
(
i
πn

lx
cos

πnx

lx
sin

πmy

ly
+ j

πm

ly
cos

πmy

ly
sin

πnx

lx

)
.

(6.5)

Series (6.5) converges in L2(Π).
Let F− be an odd-periodic continuation of the function F, given on the rectangle Π of form (2.9),

with a period of 2lx for the variable x and with a period of 2ly for the variable y, i.e.

F−(x, y) = F (x, y), (x, y) ∈ Π,
F−(−x, y) = −F (x, y), (x, y) ∈ Π,
F−(x,−y) = −F (x, y), (x, y) ∈ Π,
F−(−x,−y) = F (x, y), (x, y) ∈ Π,
F−(x+ 2lxn, y + 2lym) = F−(x, y), (x, y) ∈ R2, n,m = ±1,±2, ....

Theorem 6.1. [7] Let F− ∈ C2(R2), β = β(µ) > 0, β(µ)→ 0 and µ/
√
β(µ)→ 0 when µ→ 0.

Then ww∇xyW
µ
β(µ) −∇xyF

ww
L2(Π)

6
µ

2
√
β

+

√
β

2

ww∆F
ww
L2(Π)

→ 0 when µ→ 0.

Based on the theorem, we can use formula (6.5) to approximate the normal to the surface using
formula (6.1):

nµ1,β = ∇xyW
µ
β − k. (6.6)

With a known estimate ww∆F
ww
L2(Π)

6M,

it follows from the statement of the theorem thatwwnµ1,β − n1

ww
L2(Π)

=
ww∇xyW

µ
β −∇xyF

ww
L2(Π)

6
µ

2
√
β

+

√
β

2
M.

The maximum for the β expression on the right is achieved when

β(µ) =
µ

M
(6.7)

and, thus denoting in accordance with (6.6) and (6.7)

nµ1 = nµ1,β(µ) = ∇xyW
µ
β(µ) − k, (6.8)

we shall obtain: wwnµ1 − n1

ww
L2(Π)

6
√
Mµ −−→

µ→0
0. (6.9)

It is also not di�cult to obtain the estimatewwW µ
β(µ) − F

ww
L2(Π)

6 2µ. (6.10)

The surface de�ned by the equation z = W µ
β(µ)(x, y), we denote as

Sµ = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = W µ
β(µ)(x, y)}. (6.11)
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7 Solution of the inverse problem in the case of an approximately given
�eld E0 on an approximately given surface

Let instead of the exact vector function E0 in condition (2.10) of the inverse problem, the function
E0,δ = (E0,δ

x , E0,δ
y , E0,δ

z ) is known, given as a function on the rectangle Π of form (2.9), such that

‖E0,δ − E0‖L2(Π) 6 δ. (7.1)

In this case, we assume that the surface S of form (2.8) is given approximately by condition (6.2).
We assume that we also know that

a1 < F (x, y) < a2. (7.2)

In this case using the results of the previous paragraph, the right part Φ(M) of form (4.13) in integral
equation (4.14) will be calculated approximately on a rectangle

Π(a) = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = a} , a < min
(x,y)

W µ
β(µ)(x, y), a < a1 (7.3)

in accordance with formula (4.12) and (4.13) as a function

Eδ,µ
z (M) =

lx∫
0

ly∫
0

[E0,δ
x (xP , yP )

∂

∂xP
ϕ(M,P )|P∈Sµ + E0,δ

y (xP , yP )
∂

∂yP
ϕ(M,P )|P∈Sµ

+ E0,δ
z (xP , yP )(nµ1 ,∇Pϕ(M,P ))|P∈Sµ ]dxPdyP , M ∈ Π(a), (7.4)

where the surface Sµ has form (6.11), the approximate normal nµ1 is calculated by formula (6.8) and
the function

ϕ(M,P ) =
2

lxly

∞∑
n,m=1

e−knm(zP−a)

knm
sin

πnxM
lx

sin
πmyM
ly

sin
πnxP
lx

sin
πmyP
ly

is source function (2.3) of problem (2.2).
Let us estimate the error in calculating the function Eδ,µ

z of form (7.4) with respect to the function
Ez of form (4.12) on the rectangle Π(a) � the right-hand side of integral equation (4.14), i.e. we
estimate the di�erenceEδ,µ

z (M)− Ez(M)
 6 Eδ,µ

z (M)− Eδ,µ,1
z (M)

+
Eδ,µ,1

z (M)− Eδ
z(M)


+
Eδ

z(M)− Ez(M)
, M ∈ Π(a). (7.5)

where Π(a) has form (7.3). In this estimate the function Eδ,µ,1
z of form (7.4) is introduced, where

formally the approximate normal nµ1 is replaced by the exact normal n1 (note that n1(xP , yP )|P∈Sµ =
n1(xP , yP )|P∈S):

Eδ,µ,1
z (M) =

lx∫
0

ly∫
0

[E0,δ
x (xP , yP )

∂

∂xP
ϕ(M,P )|P∈Sµ + E0,δ

y (xP , yP )
∂

∂yP
ϕ(M,P )|P∈Sµ

+ E0,δ
z (xP , yP )(n1,∇Pϕ(M,P ))|P∈Sµ ]dxPdyP , n1 = (F

′

x, F
′

y,−1), (7.6)
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and is also introduced the function Eδ
z of form (7.4), which is calculated on an exactly speci�ed

surface

Eδ
z(M) =

lx∫
0

ly∫
0

[E0,δ
x (xP , yP )

∂

∂xP
ϕ(M,P )|P∈S + E0,δ

y (xP , yP )
∂

∂yP
ϕ(M,P )|P∈S

+ E0,δ
z (xP , yP )(n1,∇Pϕ(M,P ))|P∈S]dxPdyP , n1 = (F

′

x, F
′

y,−1). (7.7)

Let us estimate the di�erence between functions (7.4) and (7.6) in the right-hand side of inequality
(7.5):Eδ,µ

z (M)− Eδ,µ,1
z (M)


M∈Π(a)

=
∣∣∣ lx∫

0

ly∫
0

E0,δ
z (xP , yP )((nµ1 − n1),∇Pϕ(M,P ))|P∈SµdxPdyP

∣∣∣
6

lx∫
0

ly∫
0

[E0,δ
z (xP , yP )

 · nµ1(P )− n1(P )
 · ∇Pϕ(M,P )

]
P∈Sµ

dxPdyP

6 max
M∈Π(a)
P∈Sµ

∇Pϕ(M,P )
 lx∫

0

ly∫
0

E0,δ
z (xP , yP )

 · nµ1(P )− n1(P )

P∈SµdxPdyP .

Using the Cauchy-Bunyakovsky inequality, estimate (6.9) and estimate ‖E0,δ
z ‖ 6 ‖E0‖ + δ,

we obtainEδ,µ
z (M)− Eδ,µ,1

z (M)

M∈Π(a)

= max
M∈Π(a)
P∈Sµ

∇Pϕ(M,P )
‖E0,δ

z ‖ · ‖n
µ
1 − n1‖

6 max
M∈Π(a)
P∈Sµ

∇Pϕ(M,P )
(‖E0‖+ δ) ·

√
Mµ 6 C1

√
µ. (7.8)

Let us estimate the di�erence between functions (7.6) and (7.7) in the right-hand side of inequality
(7.5) using the Lagrange formulaEδ,µ,1

z (M)− Eδ
z(M)


M∈Π(a)

=
 lx∫

0

ly∫
0

[
E0,δ
x (xP , yP )

( ∂

∂xP
ϕ(M,P )|P∈Sµ −

∂

∂xP
ϕ(M,P )|P∈S

)
+ E0,δ

y (xP , yP )
( ∂

∂yP
ϕ(M,P )|P∈Sµ −

∂

∂yP
ϕ(M,P )|P∈S

)
+ E0,δ

z (xP , yP )
(
n1,∇Pϕ(M,P )|P∈Sµ −∇Pϕ(M,P )|P∈S

)]
dxPdyP


=
 lx∫

0

ly∫
0

[
E0,δ
x (xP , yP )

( ∂2

∂xP zP
ϕ(M,P1)(zP

∣∣
P∈Sµ − zP

∣∣
P∈S)

)
+ E0,δ

y (xP , yP )
( ∂2

∂yP zP
ϕ(M,P2)(zP

∣∣
P∈Sµ − zP

∣∣
P∈S)

)
+ E0,δ

z (xP , yP )
(
n1,

∂

∂zP
∇Pϕ(M,P3)

)
(zP
∣∣
P∈Sµ − zP

∣∣
P∈S)

]
dxPdyP

, M ∈ Π(a).
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Since according to (6.11) zP
∣∣
P∈Sµ = W µ

β(µ)(xP , yP ) and zP
∣∣
P∈S = F (xP , yP ), we obtain

Eδ,µ,1
z (M)− Eδ

z(M)

M∈Π(a)

=
 lx∫

0

ly∫
0

[
E0,δ
x (xP , yP )

( ∂2

∂xP zP
ϕ(M,P1)(W µ

β(µ)(xP , yP )− F (xP , yP ))
)

+ E0,δ
y (xP , yP )

( ∂2

∂yP zP
ϕ(M,P2)(W µ

β(µ)(xP , yP )− F (xP , yP ))
)

+ E0,δ
z (xP , yP )

(
n1,

∂

∂zP
∇Pϕ(M,P3)

)
(W µ

β(µ)(xP , yP )− F (xP , yP ))
]
dxPdyP

. (7.9)

We introduce the following notation using (7.2)

z1(xP , yP ) = min{W µ
β(µ)(xP , yP ), a1},

z2(xP , yP ) = max{W µ
β(µ)(xP , yP ), a2}.

(7.10)

Now from (7.9) using (7.10) we obtain

Eδ,µ,1
z (M)− Eδ

z(M)

M∈Π(a)

6 max
M∈Π(a)

P :z1<zP<z2

 ∂2

∂xP zP
ϕ(M,P )

 lx∫
0

ly∫
0

|E0,δ
x (x, y)

 · W µ
β(µ)(x, y)− F (x, y)

dxdy
+ max

M∈Π(a)
P :z1<zP<z2

 ∂2

∂yP zP
ϕ(M,P )

 lx∫
0

ly∫
0

|E0,δ
y (x, y)| ·

W µ
β(µ)(x, y)− F (x, y)

dxdy
+ max

M∈Π(a)
P :z1<zP<z2

(n1,
∂

∂zP
∇Pϕ(M,P )

) lx∫
0

ly∫
0

|E0,δ
z (x, y)| ·

W µ
β(µ)(x, y)− F (x, y)

dxdy.
Applying the Cauchy-Bunyakovsky inequality, assuming that δ < δ0, and using the estimate (6.10),
we obtain

Eδ,µ,1
z (M)− Eδ

z(M)

M∈Π(a)

= max
M∈Π(a)

P :z1<zP<z2

 ∂2

∂xP zP
ϕ(M,P )

‖E0,δ
x ‖ · ‖W

µ
β(µ) − F‖

+ max
M∈Π(a)

P :z1<zP<z2

 ∂2

∂yP zP
ϕ(M,P )

‖E0,δ
y ‖ · ‖W

µ
β(µ) − F‖

+ max
M∈Π(a)

P :z1<zP<z2

(n1,
∂

∂zP
∇Pϕ(M,P )

)‖E0,δ
z ‖ · ‖W

µ
β(µ) − F‖

6 C‖E0,δ‖µ 6 C(‖E0‖) + δ)µ 6 C2µ. (7.11)

Let us estimate the di�erence between functions (7.7) and (4.12) in the right-hand side of in-
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equality (7.5):

Eδ
z(M)− Ez(M)


M∈Π(a)

=
 lx∫

0

ly∫
0

[(
E0,δ
x (xP , yP )− E0

x(xP , yP )
)( ∂

∂xP
ϕ(M,P )|P∈S

)
+
(
E0,δ
y (xP , yP )− E0

y(xP , yP )
)( ∂

∂yP
ϕ(M,P )|P∈S

)
+
(
E0,δ
z (xP , yP )− E0

z (xP , yP )
)(
n1,∇Pϕ(M,P )

)
P∈S

]
dxPdyP

.
Using the Cauchy-Bunyakovsky inequality, as well as (7.1), we obtain from here

Eδ
z(M)− Ez(M)

 = max
M∈Π(a)
P∈S

 ∂

∂xP
ϕ(M,P )|P∈S

 lx∫
0

ly∫
0

|E0,δ
x (x, y)− E0

x(x, y)|dxdy

+ max
M∈Π(a)
P∈S

 ∂

∂yP
ϕ(M,P )|P∈S

 lx∫
0

ly∫
0

|E0,δ
y (x, y)− E0

y(x, y)|dxdy

+ max
M∈Π(a)
P∈S

(n1,∇Pϕ(M,P ))P∈S

 lx∫
0

ly∫
0

|E0,δ
z (x, y)− E0

z (x, y)|dxdy

6 C3‖E0,δ − E0‖ 6 C3δ, M ∈ Π(a). (7.12)

Collecting estimates (7.8), (7.11), (7.12) and assuming that µ < µ0, from (7.5) we obtainEδ,µ
z (M)− Ez(M)


M∈Π(a)

6 C1
√
µ+ C2µ+ C3δ 6 C4

√
µ+ C3δ. (7.13)

Denoting, similarly to (4.13), the approximate right-hand side of integral equation (4.14)

Φδ,µ(xM , yM) = Eδ,µ
z (M)

∣∣
M∈Π(a)

, (7.14)

from (7.13) we obtain an estimate in L2 of the error of the approximate right-hand side of integral
equation (4.14) ∥∥Φδ,µ − Φ

∥∥
L2(Π)

6 C4
√
µ+ C3δ = γ(µ, δ) −−→

µ→0
δ→0

0, (7.15)

where C4, C3 are some constants.
Let us now construct an approximate solution of integral equation (4.14) with right-hand side

(7.14) by the Tikhonov regularization method [10, 11]. As an approximate solution, we consider the
extremal of the Tikhonov functional

M [w] =
∥∥Kw − Φδ,µ

∥∥2

L2(Π)
+ α ‖w‖2

L2(Π) , α > 0, (7.16)

where K is the integral operator in (4.14). The extremal σδ,µα can be obtained as a solution of the
Euler equation

K∗Kw + αw = K∗Φδ,µ

for functional (7.16) and has the form

σδ,µα (x, y) =
∞∑

n,m=1

Φ̃δ,µ
nmKnm

1 + αK2
nm

sin
πnx

lx
sin

πmy

ly
, α > 0. (7.17)
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Here Φ̃δ,µ
nm are the Fourier coe�cients

Φ̃δ,µ
nm =

4

lxly

lx∫
0

ly∫
0

Φδ,µ(x, y) sin
πnx

lx
sin

πmy

ly
dxdy (7.18)

of the function Φδ,µ of form (7.14). The value Knm in formula (7.17) has form (5.3).
Let us note that for δ = 0, µ = 0 and α = 0, formula (7.17) turns into an explicit representation

of exact solution (5.1). When δ > 0, µ > 0 and α = 0, (7.17), generally speaking, may diverge in
accordance with the fact that the inverse problem is ill-posed. For δ > 0, µ > 0 and α > 0, the
convergence is provided by the regularizing factor (1 + αK2

nm)−1.
The following theorem proves the convergence of approximate solution (7.17) in L2(Π) to the

exact solution of the integral equation.

Theorem 7.1. For any α = α(γ) > 0 such that α(γ) → 0, γ/
√
α(γ) → 0 when γ → 0, the

function σδ,µα(γ) of form (7.17), where according to (7.15) γ = γ(µ, δ) = C4
√
µ+C3δ, converges to the

exact solution of integral equation (4.14) in L2(Π) when δ → 0, µ→ 0.

Proof. Following the general scheme [2] of estimating an approximate solution of a linear integral
equation, introducing a function σα of form (7.17) when δ = 0, µ = 0, we obtain

‖σδ,µα − σ‖L2 6 ‖σδ,µα − σα‖L2 + ‖σα − σ‖L2 . (7.19)

To estimate the �rst di�erence in the right-hand side of inequality (7.19), we use estimate (7.15)

‖σδ,µα − σα‖L2 6
[ lxly

4

∞∑
n,m=1

( Knm

1 + αK2
nm

)2|Φ̃δ,µ
nm − Φ̃nm|2

]1/2

6 max
x

( x

1 + αx2

)
‖Φδ,µ − Φ‖L2 6

γ

2
√
α(γ)

. (7.20)

We estimate the second di�erence in the right-hand side of inequality (7.19). We note that according
to (5.1) Φ̃nmKnm = σ̃nm, so we obtain

‖σα − σ‖L2 6
[ lxly

4

∞∑
n,m=1

( αK2
nm

1 + αK2
nm

)2|Φ̃nmKnm|2
]1/2

=
[ lxly

4

∞∑
n,m=1

( αK2
nm

1 + αK2
nm

)2
σ̃2
nm

]1/2

.

Since the series depending on the parameter α is majorized by a converging numerical series with
coe�cients σ̃2

nm it is possible to pass to the limit in α, and hence

‖σα − σ‖L2 → 0, when α→ 0. (7.21)

It follows from (7.19), (7.20), (7.21), and the assumptions of the theorem that

‖σδ,µα(γ) − σ‖L2 → 0, when δ → 0, µ→ 0.
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In the case when σ(M) = σ0χD(M), where χD(M) is the characteristic function of the domain
D in accordance with (5.4), we construct an approximation Dδ,µ

λ to the support D of the density σ
based on the approximate density function of sources (7.17)

Dδ,µ
λ = {(x, y) ∈ Π :

1

σ0

σδ,µα(γ)(x, y) > λ = Const, 0 < λ < 1}. (7.22)

A criterion for the quality of the approximation can be the measure of the symmetric di�erence
between domain (7.22) and the domain D of form (5.4).

Theorem 7.2. Under the conditions of Theorem 7.1 the measure of the symmetric di�erence
mes(Dδ,µ

λ ∆D)→ 0 when δ → 0, µ→ 0.

Proof. It follows from theorem 7.1,

‖ 1

σ0

σδ,µα − χD‖L2(Π) → 0 when δ → 0, µ→ 0.

From the convergence of
1

σ0

σδα to χD in L2, the convergence in measure follows (see [3]). Further,

the proof repeats verbatim the proof of the theorem in [1].

Formulas (7.4), (7.14), (7.17), (7.18), (7.22) give the solution to the inverse problem.

8 Conclusions

The inverse problem of the Newtonian potential for bodies of constant thickness is posed and solved in
the case when the potential �eld on the surface of the general form is known. In this case, the density
function of the distribution of potential sources is found as an approximate regularized solution of
the linear integral Fredholm equation of the �rst kind, which is stable both with respect to the error
in setting the potential and to the error in the surface.
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