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1 Introduction

The composition of two maps f and g is de�ned by (f ◦g)(x) := f(g(x)), if the range of g is contained
in the de�nition set of f . We denote by Tf the composition operator Tf (g) := f ◦ g.

De�nition 1. Let E be a set of real valued functions, and let f : R→ R. We say that f acts on E
by composition (or: superposition) if Tf (E) ⊆ E.

Here are some elementary examples :

• Let E be a vector space of functions, which means that g1 + g2 ∈ E and λg1 ∈ E, for all
g1, g2 ∈ E and all λ ∈ R. Then every linear function f : R→ R acts on E.

• Let E be an algebra of functions, which means that E is a vector space as above, and that
g1g2 ∈ E for all g1, g2 ∈ E. Then any polynomial f such that f(0) = 0 acts on E.

We have a list of natural problems concerning operators Tf .
In case E is a vector space of functions, a composition operator Tf is said trivial if the function

f is linear. Then we have the following questions :

Q1: Do nontrivial composition operators exist ?

In case E is an algebra of functions, the answer is positive. We will see that it is negative for
certain Sobolev spaces.

Q2 : Describe explicitly the set of functions which act on E.

For instance, if E is the set of all continuous functions from R to R, then a function f acts on E
if and only if f is itself continuous.
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In case E is endowed with a norm, then the following problems make sense :

Q3: Determine the functions f for which Tf : E → E is bounded.

Q4: Determine the functions f for which Tf : E → E is continuous.

We propose a wide survey on the answers to the above questions, in case E is the classical Sobolev
space Wm

p (Rn). Some results are given together with their proofs. Some proofs are simpler than the
original ones.

2 Notation

N denotes the set of all positive integers, including 0. Z denotes the set of all integers. For x ∈ Rn,
|x| denotes its euclidean norm.

If E,F are topological spaces, then E ↪→ F means that E ⊆ F , as sets, and the natural mapping
E → F is continuous. If B is a Lebesgue measurable subset of Rn, we denote by |B| its Lebesgue
measure. We denote by χA the characteristic function of a set A.

A multi-index is n-tuple α := (α1, . . . , αn) ∈ Nn. For such α, and for all h := (h1, . . . , hn) ∈ Rn,
we set |α| := α1 + · · ·+αn (this di�ers from the euclidean norm), α! := α1! · · ·αn!, hα := hα1

1 · · ·hαnn .
If f is a function de�ned on an open subset of Rn, and α ∈ Nn as above, we denote by f (α) the
partial derivative

∂|α|f

∂xα1
1 · · · ∂xαnn

.

If h ∈ Rn, the translation operator is de�ned by (τhf)(x) := f(x − h) for all function f on Rn.
The �nite di�erence operator is de�ned by ∆hf := τ−hf − f . The m-th power of ∆h satis�es the
following formula :

(∆m
h f)(x) =

m∑
k=0

(
m

k

)
(−1)m−kf(x+ kh) (2.1)

(easy proof by induction).

Let Ω be an open subset of Rn. We denote by L1,loc(Ω) the set of (equivalence classes of)
locally integrable functions on Ω, endowed with its natural topology (mean convergence on compact
subsets of Ω), and by D(Ω) the set of all inde�nitely many times di�erentiable compactly supported
functions on Ω, endowed with its natural topology, see [1, 1.56].

LetQ := [−1/2, 1/2]n. We �x some function ρ ∈ D(Rn) such that ρ(x) = 1 onQ and supp ρ ⊆ 2Q.

Let E be a subset of L1,loc(Rn). We say that a function f ∈ L1,loc(Rn) belongs locally to E if
ϕf ∈ E for all ϕ ∈ D(Rn) ; in case E is endowed with a norm, we say that a function f ∈ L1,loc(Rn)
belongs locally uniformly to E if

sup
a∈Rn
‖(τaϕ)f‖E < +∞ ,

for all ϕ ∈ D(Rn).

Through the paper, �ball� means �closed ball with nonzero radius� (we exclude balls reduced to
one point).
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3 Composition operators in Lebesgue spaces

Proposition 3.1. Let 1 ≤ p < +∞, and let f : R→ R be a Borel function. Then f acts on Lp(Rn)
if and only if there exists c > 0 such that

|f(t)| ≤ c|t| , for all t ∈ R . (3.1)

Proof. 1. If estimate (3.1) holds, it is easily seen that g ∈ Lp(Rn) implies f ◦ g ∈ Lp(Rn). Indeed,
the following holds :

‖f ◦ g‖p ≤ c ‖g‖p, for all g ∈ Lp(Rn) . (3.2)

2. Assume that f acts on Lp(Rn). Since the null function belongs to Lp(Rn), the same holds for
the constant function f(0). By condition p <∞ we deduce f(0) = 0. Arguing by contradiction, let us
assume that estimate (3.1) does not hold. Then, for some sequence (ak)k≥1, we have |f(ak)| > k|ak|
for all k ≥ 1. Consider a sequence (Bk)k≥1 of disjoint measurable sets in Rn such that

|ak|p|Bk| = k−p−1 . (3.3)

Let
g :=

∑
k≥1

akχBk .

By (3.3), it follows easily that g ∈ Lp(Rn). Since

f ◦ g =
∑
k≥1

f(ak)χBk ,

(3.3) implies again f ◦ g /∈ Lp(Rn), a contradiction.

Remark 1. The above proof works as well in case of Lp(A), for any measurable subset A of Rn such
that |A| = +∞. For the generalization of Proposition 3.1 to Lp spaces on abstract measure spaces,
we refer to [3, Theorem 3.1].

In case of linear operators on normed spaces, it is well known that boundedness is equivalent to
continuity. Of course that does not hold for nonlinear ones. In particular, composition operators can
be bounded but not continuous.

Proposition 3.2. Assume 1 ≤ p ≤ +∞. Let (X,µ) be a measure space. Assume that (X,µ) is non
trivial, i.e. there exists a measurable set A in X such that 0 < µ(A) < +∞. Let f : R→ R be such
that Tf takes Lp(X,µ) to itself. If Tf is continuous from Lp(X,µ) to itself, then f is continuous.

Proof. Assume that Tf is continuous from Lp(X,µ) to itself. Without loss of generality, assume
f(0) = 0. Let A be as in the above statement. For all real numbers u, v,

f ◦ uχA − f ◦ vχA = (f(u)− f(v))χA ,

hence
‖f ◦ uχA − f ◦ vχA‖p = |f(u)− f(v)|µ(A)1/p . (3.4)

Clearly
lim
v→u

vχA = uχA in Lp .

By continuity of Tf , and by (3.4), we obtain the continuity of f .
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By Propositions 3.1 and 3.2, it follows that, in case of Lp(Rn), there exist bounded composition
operators which are not continuous. Proposition 3.2 admits a converse statement :

Proposition 3.3. Let f : R → R be a continuous function such that, for some constant c > 0,
|f(t)| ≤ c |t|, for all t ∈ R. Let (X,µ) be a measure space and let 1 ≤ p < +∞. Then Tf is
continuous from Lp(X,µ) to itself.

Proof. It su�ces to prove the following : for all sequence (gj) converging to g in Lp(X,µ), there
exists a subsequence (gjk) such that (f ◦ gjk) converges to f ◦ g in Lp(X,µ). By the classical measure
theoretic result (see, for instance, the proof of Theorem 3.11 in [15]), there exists a subsequence (gjk)
and a function h ∈ Lp(X,µ) such that

gjk → g a.e. , |gjk | ≤ h .

By the continuity of f , it holds f ◦ gjk → f ◦ g a.e.. By the assumption on f ,

|f ◦ gjk − f ◦ g| ≤ 2c h .

By the Lebesgue dominated convergence Theorem, we conclude that ‖f ◦ gjk − f ◦ g‖p tends to 0.

Remark 2. If f : R → R is bounded and continuous, Tf is easily seen to be continuous from
L∞(X,µ) to itself. The details are left to the reader.

4 Automatic boundedness

De�nition 2. Let E be a normed space. A mapping T : E → E is said bounded if, for all bounded
set A of E, the set T (A) is bounded.

For instance, according to estimate (3.2), any composition operator, which sends Lp(Rn) to itself,
is bounded on Lp(Rn). More generally, for all �reasonable� function space, a weak form of boundedness
is satis�ed by composition operators. Thus we have a kind of automatic boundedness for a large
class of function spaces.

Proposition 4.1. Let E,F be vector subspaces of L1,loc(Ω). Assume that

• E and F are endowed with complete norms such that the embeddings of E and F into L1,loc(Ω)
are continuous.

• D(Ω) is embedded into E.

• ϕg ∈ F , for all ϕ ∈ D(Ω) and g ∈ F .

For all f : R → R such that f(0) = 0 and Tf (E) ⊆ F , there exist a closed ball B ⊂ Ω and two
numbers c1, c2 > 0 such that, for all g ∈ E,

‖g‖E ≤ c1 and supp g ⊆ B ⇒ ‖f ◦ g‖F ≤ c2 . (4.1)

Proof. By contradiction, assume that, for all B, c1, c2 there exists g ∈ E such that

‖g‖E ≤ c1 , supp g ⊆ B , ‖f ◦ g‖F > c2 . (4.2)

Consider a sequence (Bj)j≥1 of disjoint closed balls in Ω. Take functions ϕj ∈ D(Ω) such that
ϕj(x) = 1 on 1

2
Bj (the ball of the same center and half radius than Bj) and ϕj(x) = 0 out of Bj. It is
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easily seen (Closed Graph Theorem, see [17, Chapter II, �6, Theorem 1] or [14, Theorem 2.15]) that,
for ϕ ∈ D(Ω), the linear multiplication operator g 7→ ϕg is bounded on F . Thus we can consider

Mj := sup{‖ϕjg‖F : ‖g‖F ≤ 1} .
According to (4.2), there exist functions gj such that

‖gj‖E ≤ 2−j , supp gj ⊆
1

2
Bj , ‖f ◦ gj‖F > jMj .

Let g :=
∑

j gj. Clearly g ∈ E and, by the embedding E ↪→ L1,loc(Ω),

g(x) =
∑
j≥0

gj(x) a.e. .

By considering supports, ϕj(f ◦ g) = f ◦ gj, hence
jMj ≤ ‖ϕj(f ◦ g)‖F ≤Mj‖f ◦ g‖F

for any j ≥ 1, a contradiction.

Remark 3. If Ω = Rn, and if E is translation and dilation invariant, the conclusion of Proposition
4.1 can be improved : indeed for all balls or cubes B, there exist c1, c2 > 0 such that (4.1) holds for
all g ∈ E.

As an example of use of Proposition 4.1, we give the following variant of Proposition 3.1 :

Proposition 4.2. Let 1 ≤ p < +∞, let Ω be an open subset of Rn such that |Ω| < +∞, and let
f : R→ R be a Borel function. Then f acts on Lp(Ω) if and only if there exist α, β > 0 such that

|f(t)| ≤ α|t|+ β , for all t ∈ R . (4.3)

Proof. Since the su�ciency of condition (4.3) is clear, we deal only with necessity. Assume that f
acts on Lp(Ω). Without loss of generality, we can assume that f(0) = 0. By Proposition 4.1, there
exist a cube Q′ ⊂ Ω and two numbers c1, c2 > 0 such that, for all g ∈ Lp(Ω),

‖g‖p ≤ c1 and supp g ⊆ Q′ ⇒ ‖f ◦ g‖p ≤ c2 . (4.4)

Let b ∈ Ω and r > 0 be such that Q′ = b+ 2rQ. For any a ∈ R, and 0 < ε ≤ 1, let

ga,ε(x) := aρ

(
x− b
rε

)
.

Then the support of ga,ε is contained in Q′. We choose ε depending on a in the following way.
In the case of large a, more precisely if |a| ≥ R := r−n/pc1‖ρ‖−1

p , we choose ε such that

|a| rn/p‖ρ‖p εn/p = c1 . (4.5)

If |a| < R, we take ε = 1. In both cases, we obtain ‖ga,ε‖p ≤ c1, hence ‖f ◦ ga,ε‖p ≤ c2. Since

ρ

(
x− b
rε

)
= 1

on the cube b+ εrQ, this implies ∫
b+εrQ

|f(a)|p dx ≤ cp2 ,

hence |f(a)|pεn ≤ c3, for some constant c3.
If |a| ≥ R, by using (4.5), we obtain |f(a)| ≤ c4|a|, for some constant c4. If |a| < R, we obtain

|f(a)| ≤ c
1/p
3 .

Remark 4. The above proof can be viewed as a prototype of a number of results on composition
operators, as we will see further.
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5 De�nition and main properties of Sobolev spaces

De�nition 3. Let f ∈ L1,loc(Rn), and α ∈ Nn. We say that f has a weak derivative of order α if
there exists g ∈ L1,loc(Rn) such that∫

Rn
g(x)ϕ(x) dx = (−1)|α|

∫
Rn
f(x)ϕ(α)(x) dx

for all ϕ ∈ D(Rn).

If such g exists, it is easily seen to be unique, up to equality almost everywhere; then we denote
it by f (α) and we call it the weak derivative of f of order α.

De�nition 4. Let m ∈ N and 1 ≤ p ≤ +∞. The Sobolev space Wm
p (Rn) is the set of functions

f ∈ L1,loc(Rn) such that, for all |α| ≤ m, f (α) exists in the weak sense, and f (α) ∈ Lp(Rn).

Wm
p (Rn) is a vector subspace of Lp(Rn). It will be endowed with the following norm :

‖f‖Wm
p (Rn) :=

∑
|α|≤m

‖f (α)‖p . (5.1)

We give here some useful properties of Sobolev spaces.
First of all, Wm

p (Rn) is a function space which satis�es the assumptions of Proposition 4.1, see
[1, Theorem 3.3].

The behavior of (5.1) with respect to dilations is described in the following assertion, with a
simple proof :

Proposition 5.1. It holds

‖f(λ(.))‖Wm
p (Rn) ≤ λm−(n/p)‖f‖Wm

p (Rn) ,

for all λ ≥ 1.

Then we have the so-called Sobolev embedding theorems, see [1, Theorem 4.12] :

Proposition 5.2. If

m1 −m2 ≥
n

p1

− n

p2

> 0,

then Wm1
p1

(Rn) ↪→ Wm2
p2

(Rn).

In particular Wm
p (Rn) ↪→ L∞(Rn) if m > n/p. In fact, we have a more precise statement, where

Cb(Rn) denotes the space of bounded continuous functions on Rn :

Proposition 5.3. If m > n/p, or p = 1 and m = n, then Wm
p (Rn) ↪→ Cb(Rn).

The assumptions on the parameters are sharp : Wm
p (Rn) is not embedded in L∞(Rn) in the case

m < n/p, or m = n/p and p > 1.

Remark 5. The elements ofWm
p (Rn) are equivalence classes of functions with respect to the equality

almost everywhere. Thus the precise meaning of Proposition 5.3 is the following : all f ∈ Wm
p (Rn)

contains a (necessarily unique) bounded continuous representative such that ‖f‖∞ ≤ c‖f‖Wm
p
, for

some constant c > 0 depending only on m, p, n.

Proposition 5.4. If m > n/p, or m = n and p = 1, the Sobolev space Wm
p (Rn) is a subalgebra of

Cb(Rn).

See [1, Theorem 4.39] for the proof.
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6 Necessity of Lipschitz continuity

In case m ≥ 1, any function which acts onWm
p by composition is necessarily Lipschitz continuous, at

least locally. This is a major distinction with the case of Lp. To prove this property, we need some
preliminary results.

Lemma 6.1. Assume that Wm
p (Rn) is not embedded into L∞(Rn). There exists a sequence (θj)j≥1

in D(Rn) such that

θj(x) = 1 on 2−jQ , supp θj ⊆ Q , lim
j→+∞

‖θj‖Wm
p (Rn) = 0 .

Proof. In case m < n/p, we take θj(x) = ρ(2jx). By Proposition 5.1,

‖θj‖Wm
p (Rn) ≤ 2j(m−(n/p))‖ρ‖Wm

p (Rn) .

Thus the sequence (θj) has the desired properties.
Now assume that m = n/p and 1 < p < +∞. Let

θj(x) :=
1

j

j∑
k=1

ρ(2kx) .

If |α| = m, then the function x 7→ ρ(α)(2kx) has support in the set Sk := 2−k+1Q \ 2−kQ. Thus, for
all 1 ≤ k ≤ j and x ∈ Sk, ∣∣∣θ(α)

j (x)
∣∣∣ =

1

j
2mk

∣∣ρ(α)(2kx)
∣∣ ≤ cj−12mk .

Hence

‖θ(α)
j ‖pp =

j∑
k=1

∫
Sk

∣∣∣θ(α)
j (x)

∣∣∣p dx ≤ cj−p
j∑

k=1

2kmp2−nk = cj1−p .

Thus the sequence (‖θ(α)
j ‖p) tends to 0 for all |α| = m. The same holds, with a simple proof, for

|α| < m.

Lemma 6.2. De�ne the sequence of functions (Bm)m≥1 in L1(R) by B1 := 1[0,1] and Bm+1 := Bm∗B1

for all m. Then

∆m
h f(x) =

∫ +∞

−∞
Bm(t)

∑
|α|=m

m!

α!
f (α)(x+ th)hα

 dt , (6.1)

for almost all x ∈ Rn, all h ∈ Rn, all m ≥ 1 and all f ∈ Wm
p (Rn).

Proof. We consider the case of an m times continuously di�erentiable function f . An approximation
procedure will complete the proof in general case.

Step 1 : case n = 1. In this case, formula (6.1) reduces to

∆m
h f(x) =

∫ +∞

−∞
Bm(t)f (m)(x+ th)hmdt . (6.2)

We prove it by induction. The case m = 1 is well known. Assuming that (6.2) holds, we obtain

∆m+1
h f(x) = hm

∫ +∞

−∞
Bm(t)∆hf

(m)(x+ th) dt
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= hm+1

∫ +∞

−∞
Bm(t)

(∫ +∞

−∞
B1(s)f (m+1)(x+ (t+ s)h) ds

)
dt .

By Fubini, a change of variable, and the de�nition of Bm, we obtain formula (6.2) at rank m+ 1.
Step 2 : general case. We �x x, h in Rn, and set g(t) := f(x + t(h/|h|))) for all t ∈ R. Then

∆m
h f(x) = ∆m

|h|g(0). Applying Step 1 to the function g, we obtain (6.1). The details are left to the
reader.

Lemma 6.3. For all m ≥ 1, 1 ≤ p ≤ ∞, there exists c > 0 such that(∫
Rn
|∆m

h f(x)|p dx

)1/p

≤ c|h|m‖f‖Wm
p (Rn)

for all h ∈ Rn and all f ∈ Wm
p (Rn).

Proof. By de�nition of Bm, Bm ≥ 0 and
∫ +∞
−∞ Bm(t) dt = 1. Applying (6.1), we obtain

‖∆m
h f‖p ≤ |h|m

∑
|α|=m

m!

α!
‖f (α)‖p .

Theorem 6.1. Assume that m ≥ 1 and that Wm
p (Rn) is not embedded into L∞(Rn). Then any

function f : R→ R, such that Tf sends Wm
p (Rn) to itself, is Lipschitz continuous on R.

Proof. Throughout the proof, ‖.‖ will denote the norm in Wm
p (Rn).

Step 1 : construction of the comb-shaped function. This construction was �rst introduced by
S. Igari [11]. Let AN := Zn ∩ [−N,N ]n, for every positive integer N . We �x a real number s such
that

0 < s <
1

2m+ 1
. (6.3)

Let b, b′ be real numbers. Then we consider integers N, j ≥ 1, and a real number r > 0, whose
values will be �xed depending on b, b′. Our test function will be de�ned by

g(x) :=
∑
µ∈AN

ρ

(
1

s

(x
r
− µ

))
(b′ − b) + θj(x) b . (6.4)

The �rst condition on parameters will be

3rN ≤ 2−j . (6.5)

By inequality s < 1/2 and by condition (6.5), we deduce that the cubes r(2sQ+ µ) are disjoint, and
that r(2sQ+ µ) ⊂ r(Q+ µ) ⊂ 2−jQ, if µ ∈ AN . Hence

g(x) = b′ , if x ∈ r(sQ+ µ) for some µ ∈ AN , (6.6)

g(x) = b , if x ∈ 2−jQ \
⋃
µ∈AN

r(2sQ+ µ) . (6.7)

By (6.5), we have r ≤ 1. Then Proposition 5.1 gives us∥∥∥ ∑
µ∈AN

ρ
(1

s

( .
r
− µ

))∥∥∥ ≤ c1r
(n/p)−mNn/p , (6.8)
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for some constant c1.

Step 2 : adjustment of parameters. Now we assume that f acts on Wm
p (Rn) by composition. By

Proposition 4.1, we can �nd constants δ1, δ2 such that ‖f ◦ u‖ ≤ δ2 for every function u such that
‖u‖ ≤ δ1, and u has support in Q. In order to apply this property to u = g, we need the following
inequalities :

|b| ‖θj‖ ≤
δ1

2
, (6.9)

δ1

3c1|b− b′|
≤ r(n/p)−mNn/p ≤ δ1

2c1|b− b′|
. (6.10)

Now we discuss the choice of j,N, r with respect to b, b′, such that conditions (6.5), (6.9) and (6.10)
hold. First, we choose j = j(b) ≥ 1 such that (6.9) holds. This is possible by Lemma 6.1. In the
case m < n/p, we de�ne

r :=

(
δ1

2c1|b− b′|
N−n/p

) p
n−mp

,

which ensures condition (6.10) ; since

rN =

(
δ1

2c1|b− b′|

) p
n−mp

N
mp

pm−n ,

condition (6.5) holds for all su�ciently large N , depending on |b− b′|.
In the case m = n/p, we take N such that (6.10) holds. Such a choice is possible if |b− b′| ≤ c2,

where c2 > 0 depends only on p, n, δ1. Then we put r := 2−j/3N .

Step 3 : end of the proof. By combining inequalities (6.8), (6.9) and (6.10), we deduce ‖g‖ ≤ δ1.
Using Lemma 6.3, we obtain

‖∆m
h (f ◦ g)‖p ≤ δ3|h|m ,

for all h ∈ Rn, where δ3 depends only on δ2,m, n, p. Let Q
+ :=]0, 1/2]n and e1 := (1, 0, . . . , 0) ∈ Rn.

By condition (6.3) we have

x+ `rse1 ∈ r(Q+ µ) ⊂ 2−jQ (` = 0, . . . ,m) ,

x+ `rse1 /∈
⋃

µ′∈AN

r(2sQ+ µ′) , (` = 1, . . . ,m) ,

for all x ∈ r(sQ+ + µ); for such x, equalities (6.6) and (6.7), and formula (2.1), imply that∣∣∆m
rse1

(f ◦ g)(x)
∣∣ = |f(b′)− f(b)| .

Hence

δ3 ≥ c3r
−m

(∑
µ∈AN

∫
r(sQ++µ)

∣∣∆m
rse1

(f ◦ g)(x)
∣∣p dx

)1/p

≥ c4|f(b′)− f(b)|Nn/pr(n/p)−m .

By (6.10) we obtain the existence of a constant δ4 such that |f(b′)− f(b)| ≤ δ4|b− b′| for all b, b′ ∈ R
satisfying |b′ − b| ≤ c2. Thus f is uniformly Lipschitz continuous.

Theorem 6.2. Assume that m ≥ 1. Then any function f : R→ R, such that Tf sends Wm
p (Rn) to

itself, is locally Lipschitz continuous on R.



48 G. Bourdaud

Proof. Let f : R → R be a function which acts on Wm
p (Rn). Let a ∈ R. We introduce a localized

version of Tf with the help of the following statement :

Lemma 6.4. There exists a nonlinear operator Ua which sends Wm
p (Rn) to itself, such that, for all

g ∈ Wm
p (Rn),

Uag(x) = f(a+ g(x))− f(a) , for all x ∈ Q ,

‖g‖Wm
p (Rn) ≤ δ1 and supp g ⊆ Q ⇒ ‖Uag‖Wm

p (Rn) ≤ δ2 .

The proof is essentially the same as that of Proposition 4.1, see [6, Lemma 1] for details.
Returning to the proof of Theorem 6.2, we argue in the same way as in the proof of Theorem 6.1,

just replacing Tf by Ua. We de�ne g by (6.4), with θj(x) replaced by ρ(2x), s = 1/4 and r = 1/6N .
Inequality (6.9) becomes |b| ≤ δ3, for some constant δ3 depending only on δ1. The double inequality
(6.10) reduces to

δ4

|b− b′|
≤ Nm ≤ δ5

|b− b′|
, (6.11)

where δ4, δ5 depend on δ1 and c1. If |b − b′| ≤ δ4, we can choose N satisfying (6.11). We obtain a
constant δ6 such that

|f(a+ b)− f(a+ b′)| ≤ δ6|b− b′| ,

for b, b′ satisfying |b| ≤ δ3 and |b − b′| ≤ δ4. Thus f is Lipschitz continuous in a neighborhood of
a.

An easy modi�cation of the above proof gives us the following statement :

Proposition 6.1. Let us assume m ≥ 3, and de�ne p1 by :

2− n

p1

:= m− n

p
. (6.12)

Then every function f : R→ R, such that Tf sends Wm
p (Rn) to W 2

p1
(Rn), is locally H�older continuous

of order 2/m.

7 A case of degeneracy: Dahlberg Theorem

As announced in Introduction, Sobolev spaces provide simple examples of spaces for which the answer
to question Q1 is negative.

Theorem 7.1. Assume that m is an integer satisfying

1 +
1

p
< m <

n

p
. (7.1)

Then, for each function f : R → R which acts on Wm
p (Rn) by composition, there exists c ∈ R such

that f(t) = ct for all t ∈ R.

This theorem was �rst proved by B. Dahlberg [9] for smooth functions f . Indeed, we have a
slightly stronger property :

Proposition 7.1. Under condition (7.1), let us de�ne p1 by condition (6.12). Then, for each function
f : R → R such that Tf sends Wm

p (Rn) to W 2
p1

(Rn), there exists c ∈ R such that f(t) = ct for all
t ∈ R.

By Proposition 5.2, we have Wm
p (Rn) ↪→ W 2

p1
(Rn). Thus Theorem 7.1 follows by Proposition 7.1.
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Proof. Step 1. We assume �rst that f is of class C2. Since Wm
p (Rn) does not contain nonzero

constant functions, we have f(0) = 0. By Proposition 4.1, there exist two numbers c1, c2 > 0 such
that, for all g ∈ Wm

p (Rn),

‖g‖Wm
p (Rn) ≤ c1 and supp g ⊆ 2Q ⇒ ‖f ◦ g‖W 2

p1
(Rn) ≤ c2 . (7.2)

De�ne the function u ∈ D(Rn) by
u(x) := x1ρ(x) , (7.3)

where x1 denotes the �rst coordinate of x ∈ Rn. Let a > 0, and 0 < ε ≤ 1 (a number to be
determined with respect to a). Let us de�ne ga ∈ D(Rn) by

ga(x) := au
(x
ε

)
.

Then supp ga ⊂ 2Q, and ‖ga‖Wm
p (Rn) ≤ c1 if

a ε(n/p)−m‖u‖Wm
p (Rn) = c1 . (7.4)

Due to the condition m < n/p, the above equality determines ε as a function of a, if a is su�ciently
large. Hence it holds ‖f ◦ ga‖W 2

p1
(Rn) ≤ c2 for all large numbers a. Since

(f ◦ ga)(x) = f
(a
ε
x1

)
, x ∈ εQ ,

we deduce that (a
ε

)2p1
∫
εQ

∣∣∣f ′′ (a
ε
x1

)∣∣∣p1 dx ≤ cp12 .

By using (7.4) and a change of variable, we obtain a constant c3 > 0 such that

ap1−1

∫ +a/2

−a/2
|f ′′(t)|p1 dt ≤ c3 , (7.5)

for all large numbers a. By the assumption m > 1 + (1/p), we have p1 > 1. If we take a to +∞, we
deduce that ∫ +∞

−∞
|f ′′(t)|p1 dt = 0 .

Hence f ′′(t) = 0 almost everywhere. Since f ′′ is continuous, we conclude that f(t) = ct, for some
constant c.

Step 2. We turn now to the general case. By Theorem 6.2 and Proposition 6.1, we know that
f is continuous. Let ω ∈ D(R), with support in [−1,+1], even, such that

∫
ω(t) dt = 1. Let us

set ωj(t) := jω(jt) for all positive integers j. The convolution ωj ∗ f is de�ned, and it is a smooth
function. Let us de�ne

fj(t) := (ωj ∗ f)(t)− (ωj ∗ f)(0) .

For all function g with support in Q,

(fj ◦ g)(x) = ρ(x)

∫
R

(f((g(x) + t)ρ(x))− f(tρ(x)))ωj(t) dt

for all x ∈ Rn. In other words :

supp g ⊆ Q ⇒ fj ◦ g = ρ

∫
R

(f ◦ ((g + t)ρ)− f ◦ (tρ))ωj(t) dt . (7.6)
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Let M := sup{‖ρ h‖Wm
p (Rn) : ‖h‖Wm

p (Rn) ≤ 1}. Let j0 be the �rst integer such that

j0 ≥ 2c−1
1 ‖ρ‖Wm

p (Rn) .

Let g be such that supp g ⊆ Q and

‖g‖Wm
p (Rn) ≤

c1

2M
.

Then, for all j ≥ j0, and all |t| ≤ 1/j, it holds

‖(g + t)ρ‖Wm
p (Rn) ≤ c1 .

By (7.2), we obtain
‖fj ◦ g‖W 2

p1
(Rn) ≤ 2Mc2

for all j ≥ j0. All together, we have obtained constants c3, c4 > 0 such that

‖g‖Wm
p (Rn) ≤ c3 and supp g ⊆ Q ⇒ ‖fj ◦ g‖W 2

p1
(Rn) ≤ c4 , (7.7)

for all j ≥ j0. Reasoning as in Step 1, we conclude that, for some constants aj, j ≥ j0, we have
fj(t) = ajt for all t ∈ R. Thus we obtain

(ωj ∗ f)(t) = (ωj ∗ f)(0) + ajt

for all t ∈ R. Since f is continuous, we know that limj→+∞(ωj ∗ f)(t) = f(t) for all t ∈ R. Taking
t = 1, we obtain limj→+∞ aj = f(1). We conclude that f(t) = f(1)t for all t ∈ R.

8 Composition operators on W 1
p

First of all, we recall a classical result :

Theorem 8.1. For all f : R→ R, the following properties are equivalent :

(1) f is Lipschitz continuous,

(2) f has a weak derivative in L∞(R),

(3) There exists g ∈ L∞(R) and a constant c ∈ R such that

∀x ∈ R f(x) =

∫ x

0

g(t) dt+ c .

Proof. The implication (3) ⇒ (1) is straightforward. The equivalence (2) ⇔ (3) is easy to prove.
Concerning (1)⇒ (3), we refer to [10, Theorem 7.18] (Alternatively, we can observe that any Lipschitz
continuous function is absolutely continuous, then apply [15, Theorem 8.17]).

Theorem 8.2. Let f : R→ R, such that f(0) = 0. Then f acts on W 1
p (Rn) if and only if

• f is Lipschitz continuous, if W 1
p (Rn) 6⊂ L∞(R),

• f is locally Lipschitz continuous, if W 1
p (Rn) ⊂ L∞(R).

This theorem is due to Marcus and Mizel [12]. Roughly speaking, su�ciency result relies upon
the formula ∂j(f ◦ g) = (f ′ ◦ g)∂jg. In the case W 1

p (Rn) ⊂ L∞(Rn), we just need that f ′ belongs to
L∞ on the range of g. The necessity of the Lipschitz conditions follows by Theorems 6.1 and 6.2.
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9 Full description of acting functions in higher order Sobolev spaces

Let us give a su�cient condition for composition :

Theorem 9.1. Assume that m ≥ max(2, n/p), or m = 2, p = 1. If a function f : R → R satis�es
f(0) = 0 and f ′ ∈ Wm−1

p (R), then f acts on Wm
p (Rn).

Proof. A preliminary remark : under the assumptions of Theorem 9.1, it holds

Wm−1
p (R) ↪→ L∞(R) .

That follows by Proposition 5.3.
Here we restrict ourselves to the case m = 2. The method that we use is typical of the general

case. Also we assume that f is of class Cm, with bounded derivatives up to order m, and that g
is smooth, with derivatives tending to 0 at in�nity; see [4, 5] and [16, 5.2.4, Theorem 2] for the
approximation procedure to cover the general case.

Let g ∈ W 2
p (Rn). We have to prove that the second order derivatives of f ◦ g belongs to Lp(Rn).

It holds
∂j∂k(f ◦ g) = (f ′′ ◦ g)(∂jg)(∂kg) + (f ′ ◦ g)∂j∂kg . (9.1)

The second term belongs to Lp, because f
′ ∈ L∞. Thus we can concentrate on the �rst one. By the

applying Cauchy-Schwarz inequality, we obtain

‖(f ′′ ◦ g)∂jg ∂kg‖p ≤ U
1/2p
j U

1/2p
k , (9.2)

where

Uj :=

∫
Rn
|(f ′′ ◦ g)(x)|p|∂jg(x)|2p dx .

Let us introduce

h(x) :=

∫ +∞

x

|f ′′(t)|p dt .

Then −Uj is equal to∫
Rn

(h′ ◦ g)(x)∂jg(x)∂jg(x)|∂jg(x)|2p−2 dx =

∫
Rn
∂j(h ◦ g)(x) ∂jg(x)|∂jg(x)|2p−2 dx .

An integration by parts gives

Uj = (2p− 1)

∫
Rn

(h ◦ g)(x) ∂2
j g(x)|∂jg(x)|2p−2 dx .

Hence

Uj ≤ (2p− 1)‖f ′′‖pp
∫
Rn
|∂2
j g(x)| |∂jg(x)|2p−2 dx . (9.3)

In case p = 1, the above inequality becomes Uj ≤ ‖f ′′‖1 ‖∂2
j g‖1. That completes the proof of Theorem

in the case m = 2, p = 1.
In case p > 1, we use the H�older inequality to derive

Uj ≤ (2p− 1)‖f ′′‖pp ‖∂2
j g‖p

(∫
Rn
|∂jg(x)|2p dx

)1−(1/p)

.

By Proposition 5.2 and condition 2 ≥ n/p, W 2
p (Rn) ↪→ W 1

2p(Rn). That completes the proof of
Theorem 9.1.
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Remark 6. The above proof shows also that the composition operator is bounded under assumptions
of Theorem 9.1. More precisely, there exist a constant c = c(p, n) > 0 such that

‖f ◦ g‖W 2
p (Rn) ≤ c‖f ′′‖p

(
‖g‖W 2

p (Rn) + ‖g‖2−(1/p)

W 2
p (Rn)

)
. (9.4)

We turn now to the complete description of composition operators. Due to Theorems 7.1 and
8.2, we will consider only the case m ≥ 2, together with the three following subcases :

• m > n/p, or m = n and p = 1.

• m = n/p and p > 1.

• m = 2, p = 1 and n ≥ 3 .

Theorem 9.2. Let m ≥ 2, 1 ≤ p < +∞. If m > n/p, or if m = n and p = 1, then a function
f : R→ R acts on Wm

p (Rn) if and only if f(0) = 0 and f belongs locally to Wm
p (R).

Proof. 1- Assume that f belongs locally to Wm
p (R), and that g ∈ Wm

p (Rn). By Proposition 5.3, g
is bounded. Let ϕ ∈ D(R) such that ϕ(t) = 1 on the range of g. Then f ◦ g = (ϕf) ◦ g. Since
ϕf ∈ Wm

p (R), we can apply Theorem 9.1, and conclude that f ◦ g ∈ Wm
p (Rn).

2- Assume that Tf sends Wm
p (Rn) to itself. By considering f ◦ g, where g ∈ D(Rn) satis�es

g(x) = x1 on an arbitrary ball of Rn, we conclude that f , together with all its derivatives up to order
m, belongs to Lp on each bounded interval of R.

Theorem 9.3. Let m = n/p ≥ 2 and p > 1. Then a function f : R → R acts on Wm
p (Rn) if and

only if f(0) = 0 and f ′ belongs locally uniformly to Wm−1
p (R).

Proof. The su�ciency of the condition on f follows by a modi�cation of the proof of Theorem 9.1,
see [4, 5] or [16, 5.2.4, Theorem 2].

To prove the necessity, we use the same ideas as in the proof of Theorem 6.1. Let f : R→ R be
a function which acts on Wm

p (Rn). We introduce constants δ1, δ2 as in the proof of Theorem 6.1. Let
b be a real number. Let j = j(b) ≥ 1 such that (6.9) holds. Let us consider the function

gb(x) := λu(2jx) + θj(x) b ,

where u is the function introduced in (7.3), and λ is a constant, to be �xed below. By the assumption
m = n/p, it holds ‖u(2j(.))‖ ≤ ‖u‖. Thus, the choice of λ := δ1/2‖u‖ implies ‖gb‖ ≤ δ1. Hence we
have

‖f ◦ gb‖ ≤ δ2 . (9.5)

On the cube 2−jQ, it holds (f ◦ gb)(x) = f(λ2jx1 + b), hence

∂m1 (f ◦ gb)(x) = λm2jmf (m)(λ2jx1 + b) .

Then using (9.5), a change of variable, and condition m = n/p, we �nd a constant δ3 > 0 such that∫ b+(λ/2)

b−(λ/2)

|f (m)(y)|p dy ≤ δ3 ,

for every b ∈ R. Thus we have proved that f (m) belongs to Lp(R) locally uniformly. Since we know
yet that f ′ ∈ L∞, it follows easily that f ′ belongs to Wm−1

p (R) locally uniformly.

Theorem 9.4. If n ≥ 3, then a function f : R → R acts on W 2
1 (Rn) if and only if f(0) = 0 and

f ′′ ∈ L1(R).
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Proof. Su�ciency of f ′′ ∈ L1(R) follows by Theorem 9.1. To prove necessity, we proceed as in the
proof of Theorem 7.1. Then the estimate (7.5) becomes∫ +a/2

−a/2
|f ′′(t)| dt ≤ c3 ,

for all large a. By taking a→ +∞, we obtain f ′′ ∈ L1(R).

10 Continuity of composition on Sobolev spaces

The more precise versions of Theorems 9.1, 9.2, 9.3 show that all the composition operators which
send Wm

p (Rn) to itself are bounded. They are also continuous, according to the following :

Theorem 10.1. Let m be an integer ≥ 1, 1 ≤ p <∞, and let f : R→ R. If f acts by composition
on Wm

p (Rn), then the composition operator Tf is continuous from Wm
p (Rn) to itself.

This theorem was proved step by step between 1976 and 2019 :

• for m = 1 and p = 2, by Ancona [2],

• for m = 1 and any p, by Marcus and Mizel [13],

• for m > n/p and 1 < p <∞, by Lanza de Cristoforis and the author [6],

• in the general case by Moussai and the author [7], who proved also this �automatic� continuity
on the so-called Adams-Frazier spaces Wm

p ∩ Ẇ 1
mp(Rn), where Ẇ denotes the homogeneous

Sobolev space, and on the spaces Ẇm
p ∩ Ẇ 1

mp(Rn), conveniently realized.



54 G. Bourdaud

References

[1] R. Adams, J. Fournier, Sobolev spaces. Elsevier (2003).

[2] A. Ancona, Continuit�e des contractions dans les espaces de Dirichlet. C.R.A.S. 282 (1976), 871�873, and Springer
LNM 563 (1976), 1�26.

[3] J. Appell, P. Zabrejko, Nonlinear superposition operators. Cambridge U.P. (1990).

[4] G. Bourdaud, Le calcul fonctionnel dans les espaces de Sobolev. Invent. math. 104 (1991), 435�446.

[5] G. Bourdaud, Superposition in homogeneous and vector valued Sobolev spaces. Trans. Amer. Math. Soc. 362
(2010), 6105�6130.

[6] G. Bourdaud, M. Lanza de Cristoforis, Regularity of the symbolic calculus in Besov algebras. Studia Math. 184
(2008), 271�298.

[7] G. Bourdaud, M. Moussai, Continuity of composition operators in Sobolev spaces. Ann. I. H. Poincar�e - AN 36
(2019), 2053�2063.

[8] G. Bourdaud, W. Sickel, Composition operators on function spaces with fractional order of smoothness. RIMS
Kokyuroku Bessatsu B26 (2011), 93�132.

[9] B.E.J. Dahlberg, A note on Sobolev spaces. Proc. Symp. Pure Math. 35 (1979), no. 1, 183�185.

[10] J. Foran, Fundamentals of real analysis. Marcel Dekker (1991).

[11] S. Igari, Sur les fonctions qui op�erent sur l'espace Â2. Ann. Inst. Fourier 15 (1965), 525�536.
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