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1 Introduction

In 1938, due to the applications in elliptic partial di�erential equations, Morrey [28] introduced a
class of function spaces, nowadays named after him. In recent years, there is an increasing interest
in applications of Morrey spaces in various areas of analysis, such as partial di�erential equations,
potential theory and harmonic analysis; we refer, for example, to [1], [11], [12], [21], [25], [33],
[35] and their references.

We begin with some basic notation from the theory of Morrey spaces.

Let µ be Lebesgue measure in Rn, let S(µ,Rn) = S(µ) be the space of all Lebesgue measurable
functions x : Rn → R and let χ(D) stand for the characteristic function of a set D ⊂ Rn. Along with
the Lebesgue spaces Lp ≡ Lp(Rn), p ∈ [1,∞] ideal spaces X are often used in harmonic analysis.
Recall their de�nition (see, for example, [20], [24]).

A Banach space X of measurable functions on Ω is said to be ideal if it follows from the condition
x ∈ X, the measurability of y and the validity of the inequality |y(t)| ≤ |x(t)| for almost all t ∈ Ω
that y ∈ X and ‖y|X‖ ≤ ‖x|X‖ (the symbol ‖x|X‖ denotes the norm of an element x in the space
X). Let v ∈ S(µ), v > 0 almost everywhere (v is a weight). We denote by the symbol Xv a new
ideal space in which the norm is given by the equation ‖x|Xv‖ = ‖x · v|X‖. When X = Lp, our
de�nition of weighted space di�ers somewhat from the often used one: when the weight is included
in the measure.

Along with function spaces we need ideal spaces of sequences. Let ei = {..., 0, 1, 0, ...}, (i ∈ Z, the
unit stands in the i-th place) be the standard basis in the space of two-side sequences. We denote
by the symbol l an ideal space of sequences x =

∑∞
i=−∞ xie

i (xi ∈ R) with the norm ‖x|l‖. All the
properties listed above for function spaces are preserved for sequence spaces. For details concerning
the theory of sequence spaces, see [23].
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The classical Morrey space Mλ,Lp , (λ ∈ R) (see [28]), consists of all functions x ∈ L1,loc(Rn) for
which the following norm is �nite:

‖x|Mλ,Lp‖ = sup
t∈Rn

sup
r>0

r−λ‖x(t+ .)χ(B(0, r))|Lp‖.

We note that if λ = 0, then Mλ,Lp = Lp, if λ = n
p
, then Mλ,Lp = L∞, if λ < 0 or λ > n

p
, then

Mλ,Lp consists only of functions equivalent to zero.

As a natural generalization of Lebesgue spaces, the interpolation properties of Morrey spaces
became an interesting question. The �rst result on this problem is due to Stampacchia [34] and,
independently, Campanato and Murthy [17]. They obtained an interpolation property for linear
operators from Lebesgue spaces to Morrey spaces on Rn and showed that, if a linear operator T is
bounded from Lqi(Rn) to Morrey spaces Mλi,Lpi (Rn) with the operator norm Mi, i ∈ {0, 1}, then T
is also bounded from Lqθ(Rn) to Mλθ,L

pθ (Rn) when

1

qθ
=

1− θ
q0

+
θ

q1

,
1

pθ
=

1− θ
p0

+
θ

p1

, λθ = (1− θ)λ0 + θλ1 (1.1)

for some θ ∈ (0, 1) with the operator norm not more than a positive constant multiple of M1−θ
0 M θ

1 .
In 1969, Peetre [31] found that the previous conclusion still holds true when (Lq0(Rn), Lq1(Rn)) and
Lqθ(Rn) are replaced, respectively, by a certain abstract pair (A0, A1) and an interpolation space A
constructed from (A0, A1).

However, the converse result in general is not true. In 1995, Ruiz and Vega [32] proved that, when
n ≥ 2, u ∈ (0, n), θ ∈ (0, 1), 1 ≤ p2 < p3 <

n−1
u
< p1 <∞ and λ1 = 1

p1
− 1
u
, λ2 = 1

p2
− 1
u
, λ3 = 1

p3
− 1
u
for

any given C ∈ (0,∞), there exists a positive continuous linear operator T : Mλi,Lpi (Rn) → L1(Rn),
i ∈ {1, 2, 3}, with the operator norm satisfying ‖T |Mλi,Lpi (Rn) → L1(Rn)‖ ≤ Ki, i ∈ {1, 2}, but
‖T |Mλ,Lp3 (Rn) → L1(Rn)‖ ≥ CK1−θ

0 Kθ
1 for 1

p3
= 1−θ

p0
+ θ

p1
. This implies the lack of convexity of

operators on Morrey spaces.

In the case n = 1, Blasco, Ruiz and Vega [9] in 1999 proved that, for a particular u, if 1 < p0 <
p1 < u <∞ and λ1 = 1

p1
− 1

u
, λ2 = 1

p2
− 1

u
, then there exist q0, q1 ∈ (1,∞) and a positive continuous

linear operator T which is bounded from Mλi,Lpi (R) to Lqi(R), i ∈ {0, 1}, but not bounded from
Mλθ,L

pθ (R) to Lqθ(R) when conditions (1.1) are satis�ed. These counterexamples show that Morrey
spaces have no interpolation property in general.

Nevertheless, under some restriction, Morrey spaces also have some interpolation properties. Let
0 < λ0 <

n
p0
, 0 < λ1 <

n
p1
, θ ∈ (0, 1) and pθ, λθ be de�ned by (1.1). Recently, Lemarie-Rieusset [21],

[22] showed that for p0, p1, λ0, λ1, θ, pθ and λθ as above,

[Mλ0,Lp0 (Rn),Mλ1,Lp1 (Rn)]θ = Mλθ,L
pθ (Rn) (1.2)

if and only if

p0λ0 = p1λ1, (1.3)

holds, which gives a necessary and su�cient condition ensuring the interpolation property of Morrey
spaces on Rn. Here, [Mλ0,Lp0 (Rn),Mλ1,Lp1 (Rn)]θ denotes the space obtained using the �rst of Calder�on
interpolation methods [16] for a pair of Morrey spaces (Mλ0,Lp0 (Rn),Mλ1,Lp1 (Rn)).

Note that the situation changes radically for pairs of local Morrey spaces [13], [14], [15], [2],
[3], [6]. For example, if in (1.2) global Morrey spaces are replaced by local Morrey spaces, then
equality (1.2) will hold without restriction on the indices (1.3).

In this paper, we give a generalization of equality (1.2) to general Morrey spaces. Namely,
for any functions ϕi : R2

+ → R+ each of which is concave, positively homogeneous of degree one,
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nondecreasing and continuous in each variable and such that ϕi(0, 0) = 0, (i=0,1,2), the triple of
spaces

{ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

); ϕ(M τ
l0,X0

,M τ
l1,X1

)}.

has interpolation properties. Here, ϕ(t, s) ≡ ϕ2(ϕ0(t, s), ϕ1(t, s)), (t, s ≥ 0), (M τ
l0,X0

,M τ
l1,X1

) is a
pair of general Morrey spaces, and ϕ(X0, X1) denotes the space constructed from the pair of ideal
spaces (X0, X1) using the construction of Calder�on � Lozanovski��. In particular, we show that for
any concave function ϕ, the triple of spaces

{Mλ0,Lp0 (Rn), Mλ1,Lp1 (Rn), ϕ̃(Mλ,L1(Rn), L∞(Rn))} (1.4)

has interpolation properties, when condition (1.3) is met. Here, ϕ̃(t, s) ≡ ϕ(tθ0s1−θ0 , tθ1s1−θ1), (θ0 =
1/p0, θ1 = 1/p1, λ = λ0/θ0; t, s ≥ 0).

Note that if instead of the triplet of global Morrey spaces (1.4) we consider the corresponding
triplet of local Morrey spaces, then the triplet of local Morrey spaces will have the interpolation
property not only when (1.3) is satis�ed, but also in a much more general case [3], [6].

2 Basis constructions

We now replace the Lebesgue space Lp in the de�nition of the classical Morrey space by an ideal space
X, the outer sup-norm by the norm in an any ideal space L and replace the balls B(0, r) by homothetic
sets U(0, r) ⊂ Rn. Below, we always assume that 0 ∈ U(0, 1) and µ(U(0, 1))) ∈ (0,∞). Moreover,
we often assume that U(0, 1) is star-shaped with respect to the point 0, that is, if t ∈ U(0, 1), then
γt ∈ U(0, 1) for all γ ∈ (0, 1). In general, the star-shapedness assumption is not necessary, but
sometimes is useful.

We also need local Morrey spaces constructed from a family of sets {U(0, ri)} with discretely
varying parameter.

We denote by Υ the set of non-negative number sequences τ = {τi} each of which satis�es the
conditions

∀i : τi < τi+1,
⋃
i

(τi, τi+1] = R+.

When τi+1 =∞, we assume that (τi,∞] = (τi,∞).

De�nition 1. [2]. Let an ideal space X on Rn, an ideal space l of two-sided sequences with the
standard basis {ei} and a sequence τ ∈ Υ be given. By Morrey space M τ

l,X we mean the set of all

functions x ∈ L1,loc(Rn) for which the following norm is �nite:

‖x|M τ
l,X‖ = sup

t∈Rn
‖
∞∑

i=−∞

ei‖x(t+ .)χ(U(0, τi))|X‖|l‖.

The spaces introduced in De�nition 1 are called global discrete Morrey spaces.

Discrete spaces are more convenient to consider at least for the following reasons. Firstly, all
classical Morrey spaces can be realized as discrete Morrey spaces (see the example below), and
secondly, one does not need to think about the measurability of the function ‖x(t+ .)χ(B(0, r))|X‖.

Note that all discrete Morrey spaces are ideal.

The following example shows that most recently investigated Morrey spaces can be implemented
as discrete Morrey spaces.
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Example 1. Let U(0, 1) be a star-shaped set of a positive measure, λ > 0, p ∈ [1,∞], the ideal
space X and the space Mλ,p;X , the norm in which is given by the equality

‖x|Mλ,p;X‖ =

{
supt∈Rn(

∫∞
0

(r−λ‖x(t+ .)χ(U(0, r))|X‖)p dr
r

)1/p
, for p ∈ [1,∞);

supt∈Rn supr{r−λ‖x(t+ .)χ(U(0, r))|X‖}, for p =∞

be given.
If p ∈ [1,∞), then for each function x ∈Mλ,p;X the following inequalities hold:

sup
t∈Rn

2−λ(ln2)1/p(
∑
i

(2−iλ‖x(t+ .)χ(U(0, 2i))|X‖)p)1/p ≤ ‖x|Mλ,p;X‖

≤ sup
t∈Rn

2λ · (ln2)1/p(
∑
i

(2−iλ‖x(t+ .)χ(U(0, 2i))|X‖)p)1/p.

Thus, for p ∈ [1,∞) on the space Mλ,p;X we can introduce an equivalent norm

‖x|Mλ,p;X‖b = sup
t∈Rn

(
∑
i

(2−λi‖x(t+ .)χ(U(0, 2i))|X‖)p)1/p.

If p =∞, then for each x ∈Mλ,∞;X the following inequalities hold:

sup
t∈Rn

2−λ sup
i

2−iλ‖x(t+ .)χ(U(0, 2i))|X‖ ≤ ‖x|Mλ,∞;X‖

≤ sup
t∈Rn

2λ sup
i

2−iλ‖x(t+ .)χ(U(0, 2i))|X‖.

So on the space Mλ,∞;X

‖x|Mλ,∞;X‖b = sup
t∈Rn
{sup

i
2−iλ‖x(t+ .)χ(U(0, 2i))|X‖}

is an equivalent norm.
Put τi = 2i, (i ∈ Z), for the sequence of points {τi}∞−∞ consider the corresponding partition τ for

R+ and de�ne a weight sequence by setting ωλ(i) = 2−λi, (i ∈ Z). Then we get that for all p ∈ [1,∞]
up to equivalence of the norms:

M τ
lpωλ ,X

= Mλ,p;X .

Let Ccv denote the set of all functions ϕ : R2
+ → R+ concave, positively homogeneous of degree

one, nondecreasing and continuous in each variable and such that ϕ(0, 0) = 0.
The class Ccv is a cone with respect to the operations of addition and multiplication by a non-

negative number.
We recall the de�nition of the construction of Calder�on � Lozanovski��.

De�nition 2. Let a couple of ideal spaces (X0, X1) on Ω and ϕ ∈ Ccv be given. The space ϕ(X0, X1)
consists of all measurable functions x, for which there is a pair of functions x0 ∈ X0, x1 ∈ X1 such
that almost everywhere holds the inequality

|x(t)| ≤ ϕ(x0(t), x1(t)).

On the space ϕ(X0, X1) the norm is introduced by the equality

‖x|ϕ(X0, X1)‖

= inf{λ > 0 : |x(t)| ≤ λϕ(x0(t), x1(t)) (for a. e. t ∈ Ω),

xi ∈ Xi, ‖xi|Xi‖ ≤ 1; (i = 0, 1)}. (2.1)

The space ϕ(X0, X1) is an ideal Banach space equipped with this norm.
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If ϕθ(t, s) = tθ · s1−θ then the de�nition of the space ϕθ(X0, X1), which is usually denoted by
Xθ

0 ·X1−θ
1 , was proposed by A.P. Calder�on [16]; for an arbitrary ϕ ∈ Ccv the space ϕ(X0, X1) was

de�ned by G.Ya. Lozanovski�� [26].
The equality proposed below is well known

‖x|ϕθ(X0, X1)‖ = inf{‖x0|X0‖θ · ‖x1|X1‖1−θ : |x(t)| ≤ xθ0(t) · x1−θ
1 (t) a.e. on Ω}.

The Calder�on � Lozanovski�� construction of ϕ(X0, X1) has found many applications in the theory
of ideal spaces [27], in the theory of interpolation of linear operators [10], [19], [30], in the geometric
theory of Banach spaces [8].

In cases in which exact estimates of constants are important, we can introduce on the space
ϕ(X0, X1) norms di�erent from (2.1) as follows. Let ψ(a1, a2) : R2 → R+ be a norm on R2. Then on
ϕ(X0, X1) the norm is de�ned by the equality

‖x|{ϕ(X0, X1), ψ}‖ = inf{ψ(a1, a2) :

|x(t)| ≤ ϕ(x0(t), x1(t)), a.e. on Ω, xi ∈ Xi, ‖xi|Xi‖ = ai; (i = 0, 1)}. (2.2)

The space ϕ(X0, X1) is an ideal Banach space equipped with the norm ‖ . |{ϕ(X0, X1), ψ}‖.
Of course all the norms on ϕ(X0, X1), de�ned by equation (2.2), are equivalent. If we put

ψ∞(a1, a2) = max{|a1|, |a2|}, then the norm on the space {ϕ(X0, X1), ψ∞} coincide with the norm
de�ned in (2.1). For example (see [4]), using the introduced norms one can to de�ne the exact dual
space {ϕ(X0, X1), ψ}′ and exact dual norm on the space {ϕ(X0, X1), ψ}.

For each ϕ ∈ Ccv for all a, b, c, d > 0 the following inequality holds

ϕ(a+ b, c+ d) = (c+ d)ϕ(
a+ b

c+ d
, 1) = (c+ d)ϕ(

a

c

c

c+ d
+
b

d

d

c+ d
, 1) ≥

(c+ d){ c

c+ d
ϕ(
a

c
, 1) +

d

c+ d
ϕ(
b

d
, 1)} = ϕ(a, c) + ϕ(b, d). (2.3)

Now we will show that condition (1.3) is equivalent to the fact that the corresponding Morrey
spaces are obtained using Calder�on's constructions ϕθ0(., .), ϕθ1(., .) for one special pair of spaces.

Lemma 2.1. Let the space M τ
l,X be constructed from the spaces X, l, the sequence τ ∈ Υ and the

set U(0, 1). Let θ ∈ (0, 1). Then

(M τ
l,X)θ(L∞)1−θ = M τ

lθ,Xθ

and the norms on these spaces coincide.

Proof. Let x ∈ (M τ
l,X)θ(L∞)1−θ. This means that there exists x0 ∈ M τ

l,X with ‖x0|M τ
l,X‖ = 1 such

that the equality |x(t)| = λxθ0(t) · 11−θ, (t ∈ Rn) holds and λ = ‖x|(M τ
l,X)θ‖. Then the following

relations follow

‖|x
λ
|1/θ|(M τ

l,X)θ(L∞)1−θ‖ = 1 ⇔ sup
t
‖Σ∞−∞‖x1/θ(t+ .)χ(U(0, ri))|X‖ei|l‖θ = λ

⇔ sup
t
‖Σ∞−∞ ((‖x(t+ .)χ(U(0, ri))|X‖)θ) 1/θei|l‖θ = λ⇔ ‖x|M τ

lθ,Xθ‖ = λ.

Let us prove the reverse inequality. Let x ∈ M τ
lθ,Xθ , x ≥ 0 and ‖x|M τ

lθ,Xθ‖ = 1. This means that
the equality

sup
t
‖Σ∞−∞ ((‖x1/θ(t+ .)χ(B(0, ri))|X‖)θ) 1/θei|l‖θ = 1.
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Put x0(t) = x1/θ(t). Then obvious equality x(t) = xθ0(t) · (1)1−θ, t ∈ Ω holds. Let us check that the
equality ‖x0|M τ

l,X‖ = 1 holds. Indeed,

‖x0|M τ
l,X‖ = sup

t
‖Σ∞−∞‖x0(t+ .)χ(U(0, ri))|X‖ei|l‖

= sup
t
‖Σ∞−∞‖x1/θ(t+ .)χ(U(0, ri))|X‖ei|l‖

= sup
t
‖Σ∞−∞ ((‖x1/θ(t+ .)χ(U(0, ri))|X‖)θ) 1/θei|l‖ = 1.

Corollary 2.1. Let 0 < λ < n
p
and θ ∈ (0, 1) be given. We de�ne the numbers γ and q by the

equalities

ν = θλ, q =
p

θ
.

Then the space (M τ
λ,Lp)

θ(L∞)1−θ and the space M τ
γ,Lq coincide and the norms in these spaces are

equal.

Proof. If the inequalities |x(t)| ≤ γ|x0(t)|θ and ‖x0|M τ
λ,Lp‖ ≤ 1 are satis�ed for all t, then the

following relations are valid

sup
t
{sup
r>0

r−λ‖χ(U(0, r))(
|x(t+ .)|

γ
)1/θ|Lp‖} ≤ 1

⇔ sup
t
{sup
r>0

r−λθ‖χ(U(0, r))|x(t+ .)|1/θ|Lp‖θ} ≤ γ

⇔ sup
t
{sup
r>0

r−ν‖|χ(U(0, r))x(t+ .)||Lq‖} ≤ γ.

Corollary 2.2. Let a couple of Morrey spaces (Mλ0,Lp0 ,Mλ1,Lp1 ) be given. Condition (1.3) is satis�ed
if and only if there are numbers λ, p and θ0, θ1 ∈ (0, 1) for which the following equalities are satis�ed

Mλ0,Lp0 = (Mλ,L1)θ0(L∞)1−θ0 , Mλ1,Lp1 = (Mλ,L1)θ1(L∞)1−θ1

Proof. De�ne the parameters θ0, θ1 by the equalities θ0 = 1
p0
, θ1 = 1

p1
, λ = λ0

θ0
≡ λ1

θ1
. Then the

following equalities are valid

Mλ0,Lp0 = (Mλ,L1)θ0(L∞)1−θ0 , Mλ1,Lp1 = (Mλ,L1)θ1(L∞)1−θ1

and it su�ces to apply Corollary 2.1.

Let us note the connection between the Calder�on � Lozanovski�� construction and the generalized
Orlicz - Morrey space.

First we recall the de�nition of Young functions. A function N : R+ → R+ is called a Young
function ifN is convex, left-continuous, strictly increases and limt→0N(t) = N(0) = 0, limt→∞N(t) =
∞.

Let a Young function N be given, by which the Orlicz space LN(Rn) is constructed. A natural
generalization of the Lebesgue-Morrey space is the Orlicz-Morrey space, the norm in which is given
by the equality

‖x|M τ
l,LN‖ = sup

t
{‖
∑

ei‖χ(U(0, ri))x(t+ .)|LN‖|l‖}
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= sup
t
{‖
∑

ei{inf{λi > 0 : ‖χ(U(0, ri))N(
|x(t+ .)|

λi
)|L1‖ ≤ 1}}‖|l‖.

If we put l = l∞ω , then the formula for the norm in the space M τ
l∞ω ,L

N has the form

‖x|M τ
l∞ω ,L

N‖ = sup
t
{‖
∑

ei‖χ(U(0, ri))x(t+ .)|LN‖|l‖}

= sup
t
{sup

i
ω(i){inf{λi > 0 : ‖χ(U(0, ri))N(

|x(t+ .)|
λi

)|L1‖ ≤ 1}}. (2.4)

Let θ ∈ (0, 1), p = 1
θ
, Nθ(t) = t

1
θ , (t ∈ [0,∞)). Then from (2.4) follows the equality

M τ
l∞ω ,L

Nθ
= M τ

l∞ω ,L
p

and the norms in these spaces coincide.
Another natural generalization of the Lebesgue-Morrey space is the Orlicz-Morrey space

ϕN(M τ
l,L1 , L∞), constructed by the Calder�on � Lozanovski�� construction.

Let a Young function N be given. We de�ne the function ϕN(., 1) by the equality ϕN(s, 1) =
N−1(s), (s ∈ [0,∞)), and put ϕN(s, t) = tϕN(s/t, 1). Then ϕN ∈ Ccv.

Lemma 2.2. Let N be a Young function, and the function ϕN ∈ Ccv is constructed.
Then the following equality is true

‖x|ϕN(M τ
l,L1 , L∞)‖ = sup

t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}}.

Proof. If |x(t)| ≤ γϕN(x0(t), 1) and ‖x0|M τ
l,L1‖ = 1, then

|x(t)| ≤ γϕN(x0(t), 1)⇔ |x(t)|
γ
≤ ϕN(x0(t), 1)⇔ ‖N(

|x(t)|
γ

)|M τ
l,L1‖ = ‖x0|M τ

l,L1‖

⇔ sup
t
{‖
∑

ei‖χ(U(0, 2i))N(
|x(t+ .)|

γ
)|L1‖|l‖} = ‖x0|M τ

l,L1‖

⇒ sup
t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}} ≤ γ.

From here it follows that

‖x|ϕN(M τ
l,L1 , L∞)‖ ≥ sup

t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}}.

On the other hand, if

sup
t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}} < 1,

then

sup
t
{‖
∑

ei‖χ(U(0, ri))N(
|x(t+ .)|

1
)|L1‖|l‖} ≤ 1.

Therefore N(|x(.)|) ∈ M τ
l,L1 , ‖N(|x(.)|)|M τ

l,L1‖ ≤ 1 and |x(t)| ≡ ϕN(N(|x(t)|), 1). From here it
follows that

‖x|ϕN(M τ
l,L1 , L∞)‖ ≤ 1.
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If we put l = l∞ω , then the formula for the norm in the space ϕN(M τ
l∞ω ,L

1 , L∞) has the form

‖x|ϕN(M τ
l∞ω ,L

1 , L∞)‖ = sup
t
{inf{λ > 0 : sup

i
{ω(i)‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖ ≤ 1}}}

= sup
t
{sup

i
{inf{λi > 0 : ‖χ(U(0, ri))N(

|x(t+ .)|
λi

)|L1‖ ≤ 1

ωi
}}}. (2.5)

Let θ ∈ (0, 1). We de�ne a Young function by the equality Nθ(t) = t
1
θ , (t ∈ [0,∞)) and put

p = 1
θ
, ωθ(i) = (ω(i))

1
θ , (i ∈ Z).

Then it follows from (2.5) that

ϕNθ(M
τ
l∞ω ,L

1 , L∞) = M τ
l∞ωθ

,Lp

and the norms in these spaces coincide.
Note that from (2.5) it turns out that the space ϕn(M τ

l∞ω ,L
1 , L∞) coincides with the Orlicz-Morrey

space introduced by E. Nakai [29]. It is for these spaces that interpolation theorems are formulated
below.

The following theorem is a basis for obtaining interpolation theorems for global Morrey spaces.

Theorem 2.1. Let X0, X1 be two ideal spaces, ϕ, ϕ0, ϕ1 ∈ Ccv and

ϕ(t, s) = ϕ(ϕ0(t, s), ϕ1(t, s)), t, s ∈ R+. (2.6)

Then ϕ ∈ Ccv, the following equality is true

ϕ(X0, X1) = ϕ(ϕ0(X0, X1), ϕ1(X0, X1)),

and for each x ∈ ϕ(X0, X1) the inequalities

‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖

≤ ‖x|ϕ(X0, X1)‖ ≤ 2‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖ (2.7)

hold.

Proof. Let us prove �rst that ϕ ∈ Ccv.
The positive homogeneity of �rst degree of the function ϕ is obvious. Let us check the concavity.

Indeed, using inequality (2.3), we obtain

ϕ(
t0 + t1

2
, 1) = ϕ(ϕ0(

t0 + t1
2

, 1), ϕ1(
t0 + t1

2
, 1))

≥ ϕ(
1

2
(ϕ0(t0, 1) + ϕ0(t1, 1)),

1

2
(ϕ1(t0, 1) + ϕ1(t1, 1)))

=
1

2
ϕ(ϕ0(t0, 1) + ϕ0(t1, 1), ϕ1(t0, 1) + ϕ1(t1, 1))

≥ 1

2
{ϕ(ϕ0(t0, 1), ϕ1(t0, 1)) + ϕ(ϕ0(t1, 1), ϕ1(t1, 1))} =

1

2
{ϕ(t0, 1) + ϕ(t1, 1)}.

Let us prove the left inequality in (2.7).
Let x ∈ ϕ(X0, X1) and ‖x|ϕ(X0, X1)‖ < 1. Then there are x0 ∈ X0, x1 ∈ X1 such that

|x(t)| ≤ ϕ(x0(t), x1(t)), (t ∈ Ω); ‖x0|X0‖ < 1; ‖x1|X1‖ < 1.
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Let us de�ne new functions z0, z1 by the equalities:

z0(t) = ϕ0(x0(t), x1(t)), z1(t) = ϕ1(x0(t), x1(t)); (t ∈ Ω).

Then

z0 ∈ ϕ0(X0, X1), ‖z0|ϕ0(X0, X1)‖ < 1, z1 ∈ ϕ1(X0, X1), ‖z1|ϕ1(X0, X1)‖ < 1

and

ϕ(z0(t), z1(t)) = ϕ(ϕ0(x0(t), x1(t)), ϕ1(x0(t), x1(t))), (t ∈ Ω).

Therefore

x ∈ ϕ(ϕ0(X0, X1), ϕ1(X0, X1)), ‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖ < 1.

These relations prove the left inequality in (2.7).
Let us prove the right inequality in (2.7).
Let

x ∈ ϕ(ϕ0(X0, X1), ϕ1(X0, X1)), ‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖ < 1.

Then there are x0, x1 ∈ X0, y0, y1 ∈ X1 such that

‖x0|X0‖ < 1; ‖x1|X0‖ < 1; ‖y0|X1‖ < 1, ‖y1|X1‖ < 1

and

|x(t)| ≤ ϕ(ϕ0(x0(t), y0(t)), ϕ1(x1(t), y1(t))), (t ∈ Ω).

Let us de�ne new functions by the equalities: z0(t) = max{x0(t), x1(t)}, z1(t) = max{y0(t), y1(t)}.
Then

ϕ0(x0(t), y0(t)) ≤ ϕ0(z0(t), z1(t)), (t ∈ Ω); ϕ1(x1(t), y1(t)) ≤ ϕ1(z0(t), z1(t)), (t ∈ Ω);

‖z0|X0‖ < 2; ‖z1|X1‖ < 2.

For all t ∈ Ω holds the inequality

|x(t)| ≤ ϕ(ϕ0(z0(t), z1(t)), ϕ1(z0(t), z1(t))) = ϕ(z0(t), z1(t)), (t ∈ Ω).

Therefore ‖x|ϕ(X0, X1)‖ < 2. These relations prove the right inequality in (2.7).

Corollary 2.3. Let a couple ideal space Xi on Rn, a couple ideal space of sequence li, (i = 0, 1), a
set U(0, 1) ⊂ Rn, for which 0 ∈ U(0, 1) and µ(U(0, 1)) ∈ (0,∞), and a sequence τ ∈ Υ be given. Let
the spaces M τ

li,Xi
be constructed from the spaces Xi, li, (i = 0, 1), the set U(0, 1) and the sequence

τ ∈ Υ.
Let ϕ, ϕ0, ϕ1 ∈ Ccv be �xed, and the function ϕ ∈ Ccv is constructed by equality (2.6).
Then

ϕ(M τ
l0,X0

,M τ
l1,X1

) = ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))

and for all x ∈ ϕ(M τ
l0,X0

,M τ
l1,X1

) the following inequalities are valid

‖x|ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))‖ ≤ ‖x|ϕ(M τ
l0,X0

,M τ
l1,X1

)‖

≤ 2 ‖x|ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))‖.
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Corollary 2.4. Let 0 ≤ θ0, θ1 ≤ 1, ϕ ∈ Ccv be �xed, and the function ϕθ0,θ1 ∈ Ccv is constructed by
the equality

ϕθ0,θ1(t, s) = ϕ(tθ0s1−θ0 , tθ1s1−θ1). (2.8)

Then

ϕθ0,θ1(M
τ
l,X , L

∞) = ϕ((M τ
l,X)θ0(L∞)1−θ0 , (M τ

l,X)θ1(L∞)1−θ1)

and the following inequalities are valid

‖x|ϕ((M τ
l,X)θ0(L∞)1−θ0 , (M τ

l,X)θ1(L∞)1−θ1)‖ ≤ ‖x|ϕθ0,θ1(M τ
l,X , L

∞)‖

≤ 2 ‖x|ϕ((M τ
l,X)θ0(L∞)1−θ0 , (M τ

l,X)θ1(L∞)1−θ1)‖.

Corollary 2.5. Let 0 < λ0 <
n
p0
, 0 < λ1 <

n
p1
, θ ∈ (0, 1) and ϕ ∈ Ccv be given and condition (1.3)

be satis�ed. Let θ0 = 1
p0
, θ1 = 1

p1
, λ = λ0

θ0
, and the function ϕθ0,θ1 is de�ned by (2.8).

Then

ϕθ0,θ1(Mλ,L1 , L∞) = ϕ(Mλ0,Lp0 ,Mλ1,Lp1 )

and the following inequalities are valid

‖x|ϕ(Mλ0,Lp0 ,Mλ1,Lp1 )‖ ≤ ‖x|ϕθ0,θ1(Mλ,L1 , L∞)‖ ≤ 2 ‖x|ϕ(Mλ0,Lp0 ,Mλ1,Lp1 )‖.

To obtain interpolation theorems, we need one geometric property of an ideal space.

De�nition 3. Say (see, for example, [20], [24]) that an ideal space X ⊂ S(µ,Ω) has the Fatou
property if from 0 ≤ xn ↑ x; xn ∈ X and supn ‖xn|X‖ < ∞ it follows that x ∈ X and ‖x|X‖ =
supn ‖xn|X‖.

It is well known that the Lebesgue spaces Lpω, (l
p
ω) for p ∈ [1,∞] have the Fatou property, and

the space c0 has not the Fatou property.
The following theorem is not a very general fact for the Calder�on � Lozanovski�� construction on

a couple of ideal spaces. The question of when the space ϕ(X0, X1) has the Fatou property depends
on the properties of the couple of ideal spaces (X0, X1) and the function ϕ is discussed in more detail
in [5].

Theorem 2.2. [5]. Let ϕ ∈ Ccv and an interpolation couple of ideal spaces (X0, X1) be given. If
X0 and X1 have the Fatou property, then the space ϕ(X0, X1) has the Fatou property too.

The next theorem shows that if parameters of the global Morrey space have the Fatou property,
then the global Morrey space also has the Fatou property.

Theorem 2.3. [7]. Let an ideal space X on Rn, an ideal space of sequences l, a set U(0, 1) ⊂ Rn,
for which 0 ∈ U(0, 1) and µ(U(0, 1)) ∈ (0,∞), and a sequence τ ∈ Υ be given. Let the space M τ

l,X be
constructed from the spaces X, l, the set U(0, 1) and the sequence τ ∈ Υ.

If both ideal spaces l and X have the Fatou property, then the space M τ
l,X has the Fatou property

too.

We apply Theorems 2.1 - 2.3 to obtain interpolation theorems. Namely, we write out conditions
for the coincidence of the Calder�on � Lozanovski�� construction on a couple of Morrey spaces with the
value of the Gustavsson � Peetre � Ovchinnikov interpolation functor on a couple of Morrey spaces.

We recall [10] that a couple of normed spaces (A0, A1) is referred to as an interpolation couple
if both spaces are embedded in a separable topological linear space V .
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Let ϕ ∈ Ccv and a interpolation couple (A0, A1) be given. Denote by (A0, A1)ϕ the Gustavsson �
Peetre � Ovchinnikov interpolation functor [10], [19], [30] calculated for the couple (A0, A1):

a ∈ (A0, A1)ϕ ⇔ a =
∞∑
−∞

ai; ai ∈ A0

⋂
A1, the series converges in the spaceA0 + A1;

‖a|(A0, A1)ϕ‖

= inf{max{sup
n
{ sup
εi=±1

‖
n∑
−n

εi
ai

ϕ(1, 2i)
|A0‖, sup

εi=±1
‖

n∑
−n

εi
ai

ϕ(2i, 1)
|A1‖}} : a =

∞∑
−∞

ai} <∞.

Theorem 2.4. [10], [19], [30]. Let ϕ ∈ Ccv and an interpolation couple of ideal spaces (X0, X1)
on Ω be given. If X0 and X1 have the Fatou property, then

{ϕ(X0, X1), ψ} = (X0, X1)ϕ,

the norms in these spaces are equivalent, and the equivalence constant does not depend on X0, X1

and the function ϕ.

Thus, the triple of spaces {X0, X1; ϕ(X0, X1)} is an interpolation triple.
From Theorems 2.1 � 2.4 we obtain the following interpolation theorem.

Theorem 2.5. Let a couple of ideal spaces Xi on Rn, a couple of ideal spaces of sequence li, (i = 0, 1),
a set U(0, 1) ⊂ Rn, for which 0 ∈ U(0, 1) and µ(U(0, 1)) ∈ (0,∞), and a sequence τ ∈ Υ be given.
Let all spaces X0, X1, l0, l1 have the Fatou property. Let the spaces M τ

li,Xi
be constructed from the

spaces Xi, li, (i = 0, 1), the set U(0, 1) and the sequence τ ∈ Υ. Let ϕ, ϕ0, ϕ1 ∈ Ccv be given. De�ne
the function ϕ by equality (2.6). We form the triple of spaces

{ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

); ϕ(M τ
l0,X0

,M τ
l1,X1

)}.

Let an interpolation couple (A0, A1) be given.
1) If a linear operator S is bounded as an operator

S : Ai → ϕi(M
τ
l0,X0

,M τ
l1,X1

), (i = 0, 1),

then
S : (A0, A1)ϕ → ϕ(M τ

l0,X0
,M τ

l1,X1
)

and is bounded.
2) If a linear operator P is bounded as an operator

P : ϕi(M
τ
l0,X0

,M τ
l1,X1

)→ Ai, (i = 0, 1),

then
P : ϕ(M τ

l0,X0
,M τ

l1,X1
)→ (A0, A1)ϕ

and is bounded.

Proof. From Theorems 2.2 and 2.3 it follows that all spaces

M τ
l0,X0

, M τ
l1,X1

; ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

);

ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

)); ϕ(M τ
l0,X0

,M τ
l1,X1

)
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have the Fatou property. Therefore, it follows from Theorem 2.4, that

ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))

= (ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))ϕ (2.9)

and the norms in these spaces are equivalent.
From Theorem 2.1 it follows that

ϕ(M τ
l0,X)

,M τ
l1,X1

) = ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

)) (2.10)

and the norms in these spaces are equivalent.
From (2.9) � (2.10) it follows that

ϕ(M τ
l0,X)

,M τ
l1,X1

) = (ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))ϕ

and the norms in these spaces are equivalent.
From the latter relation we obtain statements 1) and 2).

Corollary 2.6. (An interpolation theorem for classical Morrey spaces.)
Let 0 < λ0 <

n
p0
, 0 < λ1 <

n
p1
, θ ∈ (0, 1) and ϕ ∈ Ccv be given and condition (1.3) be satis�ed.

Let θ0 = 1
p0
, θ1 = 1

p1
, λ = λ0

θ0
, and the function ϕθ0,θ1 is de�ned by (2.8).

Then statements 1) and 2) in Theorem 2.5 hold for the triple of spaces

{Mλ0,Lp0 , Mλ1,Lp1 ; ϕθ0,θ1(Mλ,L1 , L∞)}.

Corollary 2.7. (An interpolation theorem for generalized Orlicz � Morrey spaces.)
Let two Young functions N0, N1 be given, and the functions ϕNi(s, 1) = N−1

i (s) and ϕNi(s, t) =
tϕNi(s/t, 1) (i = 0, 1) are constructed.

Let ϕ ∈ Ccv be �xed, and the function ϕN0,N1 ∈ Ccv be de�ned by the formula

ϕN0,N1(t, s) = ϕ(tN−1
0 (

s

t
), tN−1

1 (
s

t
)); t, s > 0.

Then statements 1) and 2) in Theorem 2.5 hold for the triple of spaces

{ϕN0(M
τ
l∞ω ,L

1 , L∞), ϕN1(M
τ
l∞ω ,L

1 , L∞);ϕN0,N1(M
τ
l∞ω ,L

1 , L∞)}.

Remark 1. In the article we considered the Morrey space de�ned on Rn. If we consider the Morrey
space de�ned on a subset Ω ⊂ Rn, (0 ∈ Ω) then in De�nitions 1 it is necessary to replace U(0, τ) by
U(0, τ) ∩ Ω. All results will remain true.
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[26] G.Ya. Lozanovskĭi, On some Banach lattices IV. Siberian Math. J., 14 (1973), 97�108.

[27] L. Maligranda, Orlicz spaces and interpolation, Seminars in Math. 5, Univ. of Campinas, Campinas, 1989, iii +
206 pp.

[28] C.B. Morrey, On the solution of quasi-linear elliptic partial di�erential equations. Trans. Amer. Math. Soc., 43
(1938), 126-166.

[29] E. Nakai, Orlicz� Morrey spaces and the Hardy � Littlewood maximal function. Studia Math., 188 (2008), n. 3,
193-224.

[30] V.I. Ovchinnikov, The methods of orbits in interpolation theory. Math. Reports, 1 (1984), Part 2, 349�516.

[31] J. Peetre, On the theory of Lpλ spaces. J. Funct. Anal., 4 (1969), 71-87.

[32] A. Ruiz, L. Vega, Corrigendato "Unique continuation for Schrödinger operators" and remark on interpolation in
Morrey spaces. Publ. Math. Barc., 39 (1995), 405-411.

[33] Y. Sawano, Morrey spaces from various points of view. In: Rodino L., Toft J. (eds) Mathematical Analysis and
Applications - Plenary Lectures. ISAAC 2017. Springer Proceedings in Mathematics & Statistics, vol. 262 (2018),
Springer, 1-15

[34] G. Stampacchia, L(p,λ) �spaces and interpolation. Comm. Pure Appl. Math., 17 (1964), 293-306.
http://dx.doi.org/10.1002/cpa.3160170303

[35] W. Yuan, W. Sickel, D. Yang, Interpolation of Morrey � Campanato and smoothness spaces. Sci. Math. China,
58 (2015), no. 9, 1835-1908.

Evgenii Ivanovich Berezhnoi
Department of Mathematics
Yaroslavl State University
14 Sovetskaya St
150 000 Yaroslavl, Russian Federation
E-mail: ber@uniyar.ac.ru

Received: 20.01.2021


