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1 Introduction

This article is concerned with the existence of weak energy solutions of the boundary value problems
for quasilinear elliptic systems of the form{

−div a(x, u,Du) = f in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded open domain in Rn (n ≥ 3) with a smooth boundary ∂Ω and f belongs to
L∞(Ω;Rm). Here u : Ω → Rm, m ∈ N∗, is a vector-valued function and Du is the Jacobian matrix
of u given by

Du(x) =
(
D1u(x), D2u(x), ..., Dnu(x)

)
with Di = ∂/∂i(xi).

We denote by Mm×n the real space of all m × n matrices equipped with the inner product ξ : η =∑
i,j ξijηij for all ξ, η ∈Mm×n.
We assume that the function a : Ω × Rm × Mm×n → Mm×n is a Carath�eodory function, i.e.,

x 7→ a(x, s, ξ) is measurable for every (s, ξ) ∈ Rm ×Mm×n and (s, ξ) 7→ a(x, s, ξ) is continuous for
almost every x ∈ Ω and satis�es the following conditions: ξ 7→ a(x, u, ξ) is continuously di�erentiable
and such that for a convex and C1-mapping A : Ω× Rm ×Mm×n → R, we have

a(x, u, ξ) =
∂

∂ξ
A(x, u, ξ) (1.2)

and
A(x, u, 0) = 0 (1.3)

for almost every x ∈ Ω and all u ∈ Rm. Moreover, we assume that

|a(x, s, ξ)| ≤ d1(x) + |s|p−1 + |ξ|p−1 (1.4)
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for almost every x ∈ Ω and for every (s, ξ) ∈ Rm×Mm×n, where 0 ≤ d1 ∈ Lp
′
(Ω), with 1/p+1/p′ = 1

and the exponent p is such that 2 ≤ p < n. In addition, the mapping ξ → a(x, s, ξ) is monotone, i.e.,(
a(x, s, ξ)− a(x, s, η)

)
: (ξ − η) ≥ 0, ∀ξ, η ∈Mm×n. (1.5)

Finally, the following inequality holds:

|ξ|p ≤ a(x, s, ξ) : ξ ≤ pA(x, s, ξ). (1.6)

The concept of Young measure was introduced in [15] to prove the existence of solutions for (1.1)
when p ∈ (1, 2 − 1

n
] and f = µ is a measure. The authors used weak monotonicity assumptions

on the function a and the weak derivative Du is replaced by the approximate derivative apDu.
Hungerb�uhler has studied, in [19], the existence of weak solutions for (1.1) when the right-hand side
belongs to the dual of the Sobolev space W 1,p

0 (Ω;Rm). He used also mild monotonicity assumptions
and Young measures to achieve the result. The uniqueness and maximal regularity for nonlinear
elliptic systems (1.1) have been proved in [16] when f = µ a Radon measure. Zhou [28] introduced
the sign condition:

ai(x, u, ξ) · ξi ≥ 0 for i = 1, ...,m,

instead of the angle condition:
a(x, u, ξ) : Mξ ≥ 0

assumed in [15], to prove the existence and regularity of solutions to (1.1) with f = µ ∈M(Ω;Rm).
For more results, we refer the reader to see [14, 20, 21, 22, 23, 24, 26, 27] and [1, 2, 3, 4, 5, 6, 7, 8]
where we have used the theory of Young measures for various quasilinear systems.

In [2, 3] we have proved the existence of weak solutions for various kinds of quasilinear elliptic
systems similar to (1.1), for f ∈ W−1,p′(Ω;Rm), under various kinds of monotonicity assumptions
and based on the theory of Young measures. See also [10, 11, 12, 13] for more results and [25] for
di�erent theories and methods used in nonlinear analysis.

In this paper, the source term in (1.1) is assumed to be in L∞(Ω;Rm) and a to satisfy conditions
(1.2)-(1.6). The main objective is to prove the existence of a weak energy solution using the concept
of Young measure and energy functionals. Moreover, a is assumed to be the derivative over the third
argument of another function A. This assumption is necessary in order to associate with the problem
an energy functional, and then to minimize this functional to obtain a weak solution. The main
result of the paper consists in justi�cation of su�cient assumptions for such minimization

A prototype example that is covered by our assumptions (1.2)-(1.6) is the following p-Laplacian
problem: Consider

A(x, u, ξ) =
1

p
|ξ|p, a(x, u, ξ) = |ξ|p−2ξ

where p ≥ 2.
The remaining part of this paper is organized as follows: a brief review on Young measures is

presented in Section 2, while Section 3 is devoted to state the existence result and its proof.

2 A brief review on Young measures

By C0(Rm) we denote the closure of the space of continuous functions on Rm with compact support
with respect to the ‖.‖∞-norm. Its dual can be identi�ed withM(Rm), the space of signed Radon
measures with �nite mass. The related duality pairing is given for ν : Ω→M(Rm), by

〈ν, ϕ〉 =

∫
Rm

ϕ(λ)dν(λ).
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Lemma 2.1 (See p. 19 in [17]). Let {zj}j≥1 be a bounded sequence in L∞(Ω;Rm). Then there exists
a subsequence {zk}k ⊂ {zj}j and a Borel probability measure νx on Rm for a.e. x ∈ Ω, such that for
almost each ϕ ∈ C(Rm) we have

ϕ(zk) ⇀
∗ ϕ weakly in L∞(Ω;Rm),

where ϕ(x) = 〈νx, ϕ〉 =
∫
Rm ϕ(λ)dνx(λ) for a.e. x ∈ Ω.

De�nition 1. We call {νx}x∈Ω the family of Young measures associated with the subsequence {zk}k.

Remark 1. • In [9], it is shown that for any Carath�eodory function ϕ : Ω×Rm → R and {zk}k
a sequence that generates the Young measure νx, we then have

ϕ(x, zk) ⇀ 〈νx, ϕ(x, .)〉 =

∫
Rm

ϕ(x, λ)dνx(λ)

weakly in L1(Ω′) for all measurable Ω′ ⊂ Ω, provided that the negative part ϕ−(x, zk) is equiin-
tegrable.

• Ball shows also in [9], that if zk generates the Young measure νx, then for ϕ ∈ L1(Ω;C0(Rm))

lim
k→∞

∫
Ω

g(x, zk(x))dx =

∫
Ω

〈νx, g(x, .)〉dx.

Lemma 2.2 ([18]). If |Ω| <∞ then

zk → z in measure ⇔ νx = δz(x) for a.e. x ∈ Ω.

Lemma 2.3 ([1]). If {Dzk}k is bounded in Lp(Ω;Mm×n), then the Young measure νx generated by
Dzk has the following properties:

(i) νx is a probability measure, i.e. ‖νx‖M(Mm×n) :=
∫
Mm×n dνx(λ) = 1 for almost every x ∈ Ω.

(ii) The weak L1-limit of Dzk is given by 〈νx, id〉 =
∫
Mm×n λdνx(λ).

(iii) νx satis�es 〈νx, id〉 = Dz(x) for almost every x ∈ Ω.

We conclude this section by recalling the following Fatou-type inequality.

Lemma 2.4 ([15]). Let ϕ : Ω × Rm ×Mm×n → R be a Carath�eodory function and zk : Ω → Rm

a sequence of measurable functions such that zk → z in measure and such that Dzk generates the
Young measure νx, with ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω. Then

lim inf
k→∞

∫
Ω

ϕ(x, zk, Dzk)dx ≥
∫

Ω

∫
Mm×n

ϕ(x, z, λ)dνx(λ)dx

provided that the negative part ϕ−(x, zk, Dzk) is equiintegrable.

For more results and details about Young measures, we refer the reader not familiar with this
concept to see for example [9, 17, 18, 25].
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3 Existence of weak energy solution

Before we state the main result of this paper, let us introduce the following de�nition of weak energy
solutions of (1.1).

De�nition 2. A weak energy solution of (1.1) is a function u ∈ W 1,p
0 (Ω;Rm) such that∫

Ω

(a(x, u,Du) : Dϕ)dx =

∫
Ω

f(x)ϕdx, for all ϕ ∈ W 1,p
0 (Ω;Rm).

The main result is given in the following.

Theorem 3.1. Assume f ∈ L∞(Ω;Rm) and (1.2)-(1.6) hold. Then there exists a weak energy
solution of (1.1).

Proof of the main result. Let us de�ne the energy functional J : W 1,p
0 (Ω;Rm)→ R by

J(u) =

∫
Ω

A(x, u,Du)dx−
∫

Ω

fudx.

Proposition 3.1. The functional J is well-de�ned on W 1,p
0 (Ω;Rm) and J ∈ C1(W 1,p

0 (Ω;Rm),R)
with the derivative given by

〈J ′(u), ϕ〉 =

∫
Ω

(a(x, u,Du) : Dϕ)dx−
∫

Ω

fϕdx,

for all ϕ ∈ W 1,p
0 (Ω;Rm).

Proof. For any x ∈ Ω, u ∈ W 1,p
0 (Ω;Rm) and ξ ∈Mm×n, we have

A(x, u, ξ) =

∫ 1

0

d

dt
A(x, u, tξ)dt =

∫ 1

0

a(x, u, tξ) : ξdt.

Using (1.4), we get

A(x, u, ξ) ≤
∫ 1

0

(
d1(x) + |u|p−1 + tp−1|ξ|p−1

)
|ξ|dt

≤ d1(x)|ξ|+ |u|p−1|ξ|+ 1

p
|ξ|p.

(3.1)

This and the H�older inequality imply that

0 ≤
∫

Ω

|A(x, u,Du)|dx ≤ ‖d1‖p′‖Du‖p + ‖u‖p−1
p ‖Du‖p +

1

p
‖Du‖pp

and ∫
Ω

|fu|dx ≤ ‖f‖q′‖u‖q, where 1 < q < p.

Next we deduce that J is well-de�ned on W 1,p
0 (Ω;Rm).

Let us �x x ∈ Ω and 0 < |r| < 1. According to the mean value theorem, there exists θ ∈ [0, 1]
such that ∣∣a(x, u,Du+ θDϕ)

∣∣|Dϕ|
=

∣∣A(x, u,Du+ rDϕ)− A(x, u,Du)
∣∣

|r|
≤
(
d1(x) + |u|p−1 + |Du+ θrDϕ|p−1

)
|Dϕ|

≤
(
d1(x) + |u|p−1 + 2p−2

(
|Du|p−1 + (θr)p−1|Dϕ|p−1

))
|Dϕ|.
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H�older's inequality gives that ∫
Ω

d1(x)|Dϕ|dx ≤ ‖d1‖p′‖Dϕ‖p,∫
Ω

|Du|p−1|Dϕ|dx ≤ ‖Du‖p−1
p ‖Dϕ‖p

and ∫
Ω

|Dϕ|p−1|Dϕ|dx = ‖Dϕ‖pp.

From these inequalities, we deduce that(
d1(x) + |u|p−1 + 2p−2

(
|Du|p−1 + (θr)p−1|Dϕ|p−1

))
|Dϕ| ∈ L1(Ω).

Thanks to the Lebesgue theorem, it follows that

〈J ′(u), ϕ〉 =

∫
Ω

a(x, u,Du) : Dϕdx−
∫

Ω

fϕdx.

Assume now that uk → u in W 1,p
0 (Ω;Rm). Then (uk)k is a bounded sequence in W 1,p

0 (Ω;Rm).
According to Lemma 2.1 there is a Young measure νx generated byDuk in L

p(Ω;Mm×n) and satisfying
the properties of Lemma 2.3. Using (1.5) and [2, Lemma 5.3], we get that

0 ≤
(
a(x, u, λ)− a(x, u,Du+ τξ)

)
: (λ−Du− τξ)

= a(x, u,Du) : (λ−Du)− a(x, u, λ) : τξ

− a(x, u,Du+ τξ) : (λ−Du− τξ),

which gives

−a(x, u, λ) : τξ ≥ −a(x, u,Du) : (λ−Du) + a(x, u,Du+ τξ) : (λ−Du− τξ),

for every λ, ξ ∈ Mm×n and τ ∈ R. We have ξ 7→ a(x, u, ξ) is continuously di�erentiable, hence we
can write

a(x, u,Du+ τξ) : (λ−Du− τξ)
= a(x, u,Du+ τξ) : (λ−Du)− a(x, u,Du+ τξ) : τξ

= a(x, u,Du) : (λ−Du)

+ τ
((
∇a(x, u,Du)ξ

)
: (λ−Du)− a(x, u,Du) : ξ

)
+ o(τ),

where ∇ is the derivative of a with respect to its third variable. Therefore,

−a(x, u, λ) : τξ ≥ τ
((
∇a(x, u,Du)ξ

)
: (λ−Du)− a(x, u,Du) : ξ

)
+ o(τ)

which gives, since τ is arbitrary in R, that

a(x, u, λ) : ξ = a(x, u,Du) : ξ +
(
∇a(x, u,Du)ξ

)
: (Du− λ) (3.2)

on the support of νx. Since (a(x, uk, Duk))k is equiintegrable by (1.4) and (uk)k is bounded in
W 1,p

0 (Ω;Rm), it follows that its weak L1-limit a is given by

a(x) :=

∫
Mm×n

a(x, u, λ)dνx(λ)

(3.2)
= a(x, u,Du)

∫
supp νx

dνx(λ)︸ ︷︷ ︸
:=1

+
(
∇a(x, u,Du)

)t∫
supp νx

(Du− λ)dνx(λ)︸ ︷︷ ︸
:=0

= a(x, u,Du).
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As Lp
′
(Ω;Mm×n) is re�exive, it follows that (a(x, uk, Duk))k converges in L

p′(Ω;Mm×n) and its weak
Lp
′
-limit is also a(x) = a(x, u,Du). This and the H�older inequality imply∣∣〈J ′(uk)− J ′(u), ϕ〉

∣∣ ≤ ∫
Ω

∣∣a(x, uk, Duk)− a(x, u,Du)
∣∣|Dϕ|dx

and so
‖J ′(uk)− J ′(u)‖ ≤ ‖a(x, uk, Duk)− a(x, u,Du)‖p′ −→ 0

as k →∞.

Lemma 3.1. The functional J is bounded from below, coercive and weakly lower semi-continuous.

Proof. By (3.1) and H�older's inequality, it is obvious that J is bounded from below. Using (1.6), we
have

J(u) =

∫
Ω

A(x, u,Du)dx−
∫

Ω

fudx

≥ 1

p

∫
Ω

|Du|pdx− ‖f‖q′‖u‖q, (with 1 < q < p)

≥ 1

p

∫
Ω

|Du|pdx− c‖u‖1,p −→ +∞

as ‖u‖1,p →∞, since W 1,p
0 (Ω;Rm) is continuously embedded in Lq(Ω;Rm). Then J is coercive. Let

(uk) ⊂ W 1,p
0 (Ω;Rm) be a sequence which converges weakly to u in W 1,p

0 (Ω;Rm). Hence uk → u in
Lp(Ω;Rm) and in measure on Ω (for a subsequence still indexed by k), by the compact embedding
of W 1,p

0 (Ω;Rm) in Lp(Ω;Rm). Since νx = δDu(x) for a.e. x ∈ Ω by Lemma 2.3, then Lemma 2.2
implies Duk → Du in measure. We have (A(x, uk, Duk))k is equiintegrable by (3.1), it follows then
by Lemma 2.4 that ∫

Ω

∫
Mm×n

A(x, u, λ)dνx(λ)dx ≤ lim inf
k→∞

∫
Ω

A(x, uk, Duk)dx. (3.3)

On the other hand, assumption (1.5) and the relation a(x, u, ξ) = ∂
∂ξ
A(x, u, ξ) imply, in particular,

that ξ 7→ A(x, u, ξ) is convex, i.e.,

A(x, u, λ)︸ ︷︷ ︸
=:F (λ)

≥ A(x, u,Du) + a(x, u,Du) : (λ−Du)︸ ︷︷ ︸
=:G(λ)

, ∀λ ∈Mm×n.

Since λ 7→ F (λ) is a C1-function by Proposition 3.1, then for τ ∈ R
F (λ+ τξ)− F (λ)

τ
≤ G(λ+ τξ)−G(λ)

τ
for τ < 0

and
F (λ+ τξ)− F (λ)

τ
≥ G(λ+ τξ)−G(λ)

τ
for τ > 0.

Hence ∇F = ∇G, i.e.,
A(x, u, λ) = A(x, u,Du) for all λ ∈ supp νx. (3.4)

Going back to (3.3), it follows by (3.4) that∫
Ω

∫
Mm×n

A(x, u, λ)dνx(λ) =

∫
Ω

∫
supp νx

A(x, u,Du)dνx(λ)dx

=

∫
Ω

A(x, u,Du)dx

≤ lim inf
k→∞

∫
Ω

A(x, uk, Duk)dx.
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This fact implies that
J(u) ≤ lim inf

k→∞
J(uk).

Hence, J is weakly lower semi-continuous and the proof is complete.

Since J is proper, weakly semi-continuous and coercive, then J has a minimizer which is in fact
a weak energy solution of (1.1). The proof of the main result is complete.



A note on quasilinear elliptic systems with L∞-data 23

References

[1] E. Azroul, F. Balaadich, Weak solutions for generalized p-Laplacian systems via Young measures, Moroccan J.
of Pure and Appl. Anal. (MJPAA) 4 (2018), no. 2, 76-83.

[2] E. Azroul, F. Balaadich, Quasilinear elliptic systems in perturbed form, Int. J. Nonlinear Anal. Appl., 10 (2019),
no. 2, 255-266.

[3] E. Azroul, F. Balaadich, A weak solution to quasilinear elliptic problems with perturbed gradient, Rend. Circ.
Mat. Palermo (2) (2020). https://doi.org/10.1007/s12215-020-00488-4

[4] E. Azroul, F. Balaadich, On strongly quasilinear elliptic systems with weak monotonicity, J. Appl. Anal., (2021)
https://doi.org/10.1515/jaa-2020-2041

[5] E. Azroul, F. Balaadich, Existence of solutions for a class of Kirchho�-type equation via Young measures, Numer.
Funct. Anal. Optim. (2021) https://doi.org/10.1080/01630563.2021.1885044

[6] F. Balaadich, E. Azroul, (2021). Elliptic systems of p-Laplacian type. Tamkang Journal of Mathematics, 53.
https://doi.org/10.5556/j.tkjm.53.2022.3296

[7] F. Balaadich, On p-Kirchho�-type parabolic problems, Rendiconti del Circolo Matematico di Palermo Series 2
(2022) https://doi.org/10.1007/s12215-021-00705-8

[8] F. Balaadich, E. Azroul, Existence results for fractional p-Laplacian systems via young measures, Mathematical
Modelling and Analysis 27 (2022), no. 2, 232-241.

[9] J.M. Ball, A version of the fundamental theorem for Young measures, In: PDEs and Continuum Models of Phase
Transitions (Nice, 1988). Lecture Notes in Phys, vol. 344 (1989), 207-215.

[10] L.C. Berselli, C.R. Grisanti, On the regularity up to the boundary for certain nonlinear elliptic systems, Discrete
Contin. Dyn. Syst. Ser. S, 9 (2016), no. 1, 53-71.

[11] M. Bul�i�cek, G. Cupini, B. Stro�olini, A. Verde, Existence and regularity results for weak solutions to (p, q)-elliptic
systems in divergence form, Adv. Calc. Var., 11 (2018), no. 3, 273-288.

[12] J. Chabrowski, K. Zhang, Quasi-monotonicity and perturbated systems with critical growth, Indiana Univ. Math.
J.,(1992), 483-504.

[13] G. Cupini, P. Marcellini, E. Mascolo, Existence and regularity for elliptic equations under p, q-growth, Adv.
Di�erential Equations 19 (2014), 693-724.

[14] G. Dal Maso, F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems,
Nonlinear Anal., 31 (1998), no. 3/4, 405-412.

[15] G. Dolzmann, N. Hungerb�uhler, S. M�uller, Nonlinear elliptic systems with measure-valued right hand side. Math.
Z., 226 (1997), 545-574.

[16] G. Dolzmann, N. Hungerb�uhler, S. M�uller, Uniqueness and maximal regularity for nonlinear elliptic systems of
n-Laplace type with measure valued right hand side. J. Reine Angew. Math. (Crelles J.) 520 (2000), 1-35.

[17] LC. Evans, Weak convergence methods for nonlinear partial di�erential equations. Am. Math. Soc., New York
1990.

[18] N. Hungerb�uhler, A re�nement of Balle's theorem on Young measures, N.Y. J. Math. 3 (1997), 48-53.

[19] N. Hungerb�uhler, Quasilinear elliptic systems in divergence form with weak monotonicity, New York J. Math., 5
(1999), 83-90.

[20] T. Kuusi, G. Mingione, Nonlinear potential theory of elliptic systems, Nonlinear Anal., 138 (2016), 277-299.

[21] F. Leonetti, E. Rocha, V. Staicu, Quasilinear elliptic systems with measure data, Nonlinear Anal., 154 (2017),
210-224.



24 F. Balaadich, E. Azroul

[22] F. Leonetti, E. Rocha, V. Staicu, Smallness and cancellation in some elliptic systems with measure data, J. Math.
Anal. Appl., 465 (2018), no. 2, 885-902.

[23] G. Mingione, Nonlinear measure data problems, Milan J. Math., 79 (2011), 429-496.

[24] B.Z. Omarova, Z.A. Sartabanov, On multiperiodic solutions of perturbed nonlinear autonomous systems with the
di�erentiation operator on a vector �eld, Eurasian Mathematical Journal, 12 (2021), no. 1, 68-81.

[25] N.S. Papageorgiou, V.D. R�adulescu, D.D. Repov�s, Nonlinear analysis - theory and methods, Springer Nature,
Cham, 2019.

[26] M.A. Ragusa, H�older regularity results for solutions of parabolic equations, Variational Analysis and Application,
Book Series: Nonconvex Optimization and its applications, 79 (2005), 921-934.

[27] A. Vinodkumar, C. Loganathan, S. Vijay, Approximate controllability of random impulsive quasilinear evolution
equation, Filomat, 34 (2020), no. 5, 1611-1620,

[28] S. Zhou, A note on nonlinear elliptic systems involving measures, Electron. J. Di�erential Equations 2000 (2000),
no. 8, 1-6.

Farah Balaadich
Department of Mathematics
Laboratory of Applied Mathematics and Scienti�c Computing
Faculty of Science and Techniques, Sultan Moulay Slimane University,
BP 523, 23000, Beni Mellal, Morocco
E-mail: balaadich.edp@gmail.com

Elhoussine Azroul
Department of Mathematics
Faculty of Sciences Dhar El Mehrazn B.P. 1796,
University of Sidi Mohamed Ben Abdellah, Fez Morocco
E-mail: elhoussine.azroul@gmail.com

Received: 13.04.2021


