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Abstract. In the paper, an optimization problem with equality-type constraints is studied. It
is assumed that the minimizing function and the functions de�ning the constraints are Frechet
di�erentiable, the set of the admissible points is nonempty and the minimizing function is bounded
below on the set of admissible points. Under these assumptions we obtain an estimate of the derivative
of the Lagrange function. Moreover, we prove the existence of a minimizing sequence {xn} and
a sequence of unit Lagrange multipliers {λn} such that the sequence of the values of derivative
of the Lagrange function at the point (xn, λn) tends zero. This result is a generalization of the
known assertion stating that for a bounded below di�erentiable function f there exists a minimizing
sequence {xn} such that the values of the derivative f ′(xn) tend to zero. As an auxiliary tool,there
was introduced and studied the property of the directional covering for mappings between normed
spaces. There were obtained su�cient conditions of directional covering for Frechet di�erentiable
mappings.
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1 Introduction

Let X be a Banach space with the norm ‖ · ‖. Denote by BX(x, r) a closed ball centered at x ∈ X
with radius r ≥ 0. Let X∗ stand for the topological dual to X and stand ‖ · ‖∗ for the norm of X∗.

Given a positive integer k and Frechet di�erentiable functions f0, f1, ..., fk : X → R, consider the
optimization problem

f0(x)→ min, f1(x) = 0, ..., fk(x) = 0. (1.1)

De�ne the Lagrange function L : X × Rk+1 → R by the formula

L(x, λ) := λ0f0(x) + λ1f1(x) + ...+ λkfk(x), x ∈ X, λ = (λ0, λ1, ..., λk) ∈ Rk+1.

Denote the set of all admissible points byM, i.e.

M := {x ∈ X : f1(x) = ... = fk(x) = 0}.

The Lagrange multiplier rule (see, for example, [10, Section 1.2]) states that if a point x̂ ∈ X is a

local solution to problem (1.1), then there exists a nonzero vector λ ∈ Rk+1 such that
∂L

∂x
(x̂, λ) = 0

and λ0 ≥ 0.
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In this paper, we show that if a function f0 is bounded from below on M 6= ∅ then there exist

sequences {xn} ⊂ M and {λn} ⊂ Rk+1 such that

∥∥∥∥∂L∂x (xn, λn)

∥∥∥∥
∗
→ 0, f0(xn)→ inf

x∈M
f0(x) as n→∞

and ‖λn‖ = 1 for every n. This result is an analog of the known result for unconstrained optimization
problem stating that for a bounded below di�erentiable functional f0 on X there exists a minimizing

sequence {xn} such that
∂f0

∂x
(xn)→ 0 as n→∞ (see, for example, [6, Chapter 5, Section 3]).

Moreover, in this paper, we obtain an estimate of the derivative of the Lagrange function. When
X is a Hilbert space, similar estimates for the �rst-order and the second-order derivatives were
obtained in [2] and [3]. For the unconstrained optimization problem the estimates of the �rst-order
and the second-order derivatives of the minimizing function were obtained in [7, �2.5.2].

2 Main results

Given x0 ∈M and R > 0, denote

γ(x0, R) := inf{f0(x) : x ∈M∩BX(x0, R)}.

Here γ(x0, R) may take the value −∞. However, in what follows, we will assume that γ(x0, R) > −∞.
Note also that f0(x0)− γ(x0, R) ≥ 0 for every x0 ∈M and R > 0.

Theorem 2.1. Given a point x0 ∈M and a number R > 0, assume that

γ(x0, R) > −∞.

Then for every ε > 0 there exist vectors λ = (λ0, λ1, ..., λk) ∈ Rk+1 and x̂ ∈M∩BX(x0, R) such
that

‖λ‖ = 1, λ0 ≥ 0, f0(x̂) ≤ f0(x0),∥∥∥∥∂L∂x (x̂, λ)

∥∥∥∥
∗
≤ (1 + ε)λ0

f0(x0)− γ(x0, R)

R
. (2.1)

Note that if the set M∩ BX(x0, R) contains a point x for which the vectors
∂fi
∂x

(x), i = 0, k

are linearly dependent and f0(x) ≤ f0(x0), then the proposition of Theorem 2.1 trivially holds. In

this case, x̂ = x and the unit vector λ = (λ0, λ1, ..., λk) satisfying the equality
k∑
i=0

λi
∂fi
∂x

(x) = 0 and

the inequality λ0 ≥ 0 is the desired one (if λ0 < 0 then we take −λ instead of λ). In this case, the
left-hand side of (2.1) equals zero and the right-hand side is nonnegative.

If the vectors
∂fi
∂x

(x), i = 0, k are linearly independent on the set {x ∈ M∩ BX(x0, R) : f0(x) ≤
f0(x0)} then the proposition of Theorem 2.1 is nontrivial. In this case, inequality (2.1) implies that
λ0 > 0.

Note also that inequality (2.1) implies the following weaker estimate∥∥∥∥∂L∂x (x̂, λ)

∥∥∥∥
∗
≤ (1 + ε)

f0(x0)− γ(x0, R)

R
, (2.2)

since ‖λ‖ = 1.

Theorem 2.2. Assume that the function f0 is bounded from below onM. Then there exist sequences
of vectors {xn} ⊂ M and {λn} ⊂ Rk+1 such that

∂L

∂x
(xn, λn)→ 0, f0(xn)→ inf

x∈M
f0(x) as n→∞ and ‖λn‖ = 1 ∀n.
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The proofs of these theorems are presented in Section 4. Let us now discuss the ideas of proofs
of these assertions.

Given a point x0 ∈ X and a number R ≥ 0, we put v := (−1, 0, 0, ..., 0) ∈ Rk+1, F :=
(f0, f1, ..., fk). Since γ(x0, R) is the in�mum of f0 over the admissible setM, the points F (x0) + µv,
µ ≥ 0 do not belong to F (BX(x0, R)) as µ > f0(x0) − γ(x0, R). If the mapping F is ᾱ-covering in

the direction v at every point x ∈ M∩ BX(x0, R) such that f0(x) ≤ f0(x0) (i.e.
∂F

∂x
(x)X = Y and

sup

{
α ≥ 0 : αv ∈ ∂F

∂x
(x)BX(0, 1)

}
≥ ᾱ) then F (x0) + µv ∈ F (BX(x0, R)) for µ ∈ [0, αR). This

assertion is Lemma 3.1 below. These reasonings imply that there exists a point x̂ such that F is
ᾱ-covering with the constant ᾱ not exceeding the right-hand side of inequality (2.1). Inequality (2.1)
simply follows from this fact (see Lemma 3.2 below). To prove Theorem 2.2, it is enough to take an
arbitrary minimizing sequence {xn0} and apply Theorem 2.1 as x0 := xn0 , R := 1 and ε := 1 for every
n.

3 Auxiliary assertions

In this section, we prove two auxiliary assertions: Lemmas 3.1 and 3.2. In the proof of Lemma 3.1,
we will use the following minimum existence conditions from [1, Theorem 3] (see also [8, Lemma 1]).

Theorem 3.1. Given a complete metric space (M,ρ), a lower semicontinuous function U : M → R+

and a number α > 0, assume that the function U satis�es the Caristi-like condition

∀x ∈M : U(x) > 0 ∃x′ ∈M \ {x} : U(x′) + αρ(x, x′) ≤ U(x). (3.1)

Then for every x0 ∈M there exists a point x̄ ∈M such that U(x̄) = 0 and ρ(x0, x̄) ≤ α−1U(x0).

Let Y be a �nite-dimensional linear space with a norm ‖ · ‖. Denote by Y ∗ a dual space to Y. We
denote the value of the functional λ ∈ Y ∗ on the vector y ∈ Y by 〈λ, y〉. An analogous notation we
will use for the functionals from X∗. Denote the unit sphere in Y by S, i.e.

S := {v ∈ Y : ‖v‖ = 1}.

For an arbitrary linear bounded operator A : X → Y we denote by A∗ : Y ∗ → X∗ the adjoint
operator to A. For an arbitrary vector v ∈ S we put

cov(A|v) := sup{α ≥ 0 : αv ∈ ABX(0, 1)}.

It is a straightforward task to ensure that cov(A|v) > 0 if and only if v ∈ AX.

Lemma 3.1. Given a Frechet di�erentiable mapping F : X → Y, vectors x0 ∈ X, v ∈ S and a
number R > 0, assume that

(i) ᾱ := inf

{
cov

(
∂F

∂x
(x)

∣∣∣∣ v) : x ∈ BX(x0, R), F (x) ∈ F (x0) + cone{v}
}
> 0;

(ii)
∂F

∂x
(x)X = Y ∀x ∈ BX(x0, R) : F (x) ∈ F (x0) + cone{v}.

Then

F (x0) + αrv ∈ F (BX(x0, r)) ∀ r ∈ [0, R], ∀α ∈ (0, ᾱ).
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Proof. Fix an arbitrary r ∈ [0, R] and α ∈ (0, ᾱ). Put

M := {x ∈ X : F (x)− F (x0)− sαrv = 0, ‖x− x0‖ ≤ sr, s ∈ [0, 1]}.

Obviously, the set M is nonempty, since it contains the point x0. Moreover, M is closed, since F is
continuous. De�ne a functional U : M → R by the formula

U(x) = ‖F (x)− F (x0)− αrv‖, x ∈M. (3.2)

To prove the lemma it is enough to show that there exists a point x̄ ∈ M such that U(x̄) = 0. To
prove this assertion we will apply Theorem 3.1.

Obviously, the functional U is continuous and nonnegative. So, it is enough to prove that U
satis�es the Caristi-like condition (3.1).

Fix an arbitrary x ∈M such that U(x) > 0 and show that there exists a point x′ ∈M \ {x} such
that

U(x′) + α‖x− x′‖ ≤ U(x). (3.3)

The de�nition of M implies that there exists t ∈ [0, 1] such that

F (x) = F (x0) + tαrv, ‖x− x0‖ ≤ tr. (3.4)

Since U(x) = ‖F (x)− F (x0)− αrv‖ > 0, we have t < 1.

Put A :=
∂F

∂x
(x). It follows from the assumption (i) that cov(A|v) ≥ ᾱ > 0. Hence, ᾱ > (α+ ᾱ)/2

by virtue of the choice of α. The de�nition of cov(A|v) implies that there exists a vector e ∈ BX(0, 1)
such that

Ae =
α + ᾱ

2
v.

Since AX = Y by virtue of (ii), we have that there exists a linear operator R : Y → X such that

e = R

(
α + ᾱ

2
v

)
and ARy ≡ y. (3.5)

Since the mapping F is di�erentiable, we have

F (x+ ξ) = F (x) + Aξ + o(ξ), ξ ∈ X, (3.6)

where o : X → Y is a continuous mapping such that there exists δ > 0, for which the following
relation takes place

‖o(ξ)‖ ≤ ᾱ− α
‖R‖(ᾱ + α)

‖ξ‖ ∀ ξ ∈ BX(0, δ). (3.7)

Reducing δ we obtain that
0 < δ < r − tr. (3.8)

Note that when we reduce δ, relation (3.7) remains true.
Consider the equation

ξ = R(αδv − o(ξ))
with the unknown ξ ∈ BX(0, δ). De�ne a mapping Φ : BX(0, δ)→ BX(0, δ) by the formula

Φ(ξ) := R(αδv − o(ξ)), ξ ∈ BX(0, δ).

This mapping is well-de�ned, i.e. ‖R(αδv − o(ξ))‖ ≤ δ for every ξ ∈ BX(0, δ), since

‖R(αδv − o(ξ))‖ ≤ ‖αδRv‖+ ‖Ro(ξ)‖
(3.5)

≤ 2αδ

α + ᾱ
+ ‖Ro(ξ)‖

(3.7)

≤
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(3.7)

≤ 2αδ

α + ᾱ
+
ᾱ− α
ᾱ + α

‖ξ‖ ≤ 2αδ

α + ᾱ
+
ᾱ− α
ᾱ + α

δ = δ ∀ ξ ∈ BX(0, δ).

Moreover, the mapping Φ is compact and continuous since o(·) is continuous and the linear operator
R : Y → X has a �nite-dimensional image (recall that the space Y is �nite-dimensional). Thus, the
Schauder �xed-point theorem (see, for example, [11, Section 2.1]) implies that there exists a point
ξ′ ∈ BX(0, δ) such that ξ′ = Φ(ξ′). Therefore,

ξ′ = R(αδv − o(ξ′)), ‖ξ′‖ ≤ δ. (3.9)

Put
x′ := x+ ξ′. (3.10)

Let us show that x′ ∈M \ {x}. We have

F (x′)− F (x0) = αr

(
t+

δ

r

)
v, ‖x0 − x′‖ ≤ r

(
t+

δ

r

)
, (3.11)

since

F (x′)
(3.10)
= F (x+ ξ′)

(3.6)
= F (x) + Aξ′ + o(ξ′)

(3.9)
= F (x) + AR(αδv − o(ξ′)) + o(ξ′)

(3.5)
=

(3.5)
= F (x) + αδv

(3.4)
= tαrv + αδv + F (x0) = αrv

(
t+

δ

r

)
+ F (x0);

‖x0 − x′‖ ≤ ‖x0 − x‖+ ‖x− x′‖
(3.4)

≤ tr + ‖x− x′‖ (3.10)
= tr + ‖ξ′‖

(3.9)

≤ r

(
t+

δ

r

)
.

It follows from (3.8) that the inequality t+
δ

r
< 1 takes place. Therefore, relation (3.11) and the

de�nition of M implies x′ ∈ M. Moreover, Rv 6= 0 by virtue of (3.5). Therefore, ξ′ 6= 0 by virtue of
(3.9). So, relation (3.10) implies that x′ 6= x. Hence, we have x′ ∈M \ {x}.

Let us prove that (3.3) holds. We have

U(x′)
(3.2)
= ‖F (x′)− F (x0)− αrv‖ (3.11)

= ‖tαrv + αδv − αrv‖ =
∥∥∥((r − tr)− δ)αv∥∥∥ (3.8)

=

(3.8)
=
∥∥∥(r − tr)αv

∥∥∥− ‖δ · αv‖ = ‖tαrv − αrv‖ − ‖αδv‖ (3.4)
= ‖F (x)− F (x0)− αrv‖ − ‖αδv‖

(3.9)

≤
(3.9)

≤ ‖F (x)− F (x0)− αrv‖ − α‖ξ′‖ (3.2)
= U(x)− α‖ξ′‖ (3.10)

= U(x)− α‖x− x′‖.
So, it is shown that there exists a point x′ ∈ M \ {x} such that relation (3.3) holds. Therefore, the
Caristi-like condition (3.1) holds for the function U.

It is shown that all the assumptions of Theorem 3.1 hold. This theorem implies that there exists
a point x̄ ∈ M such that U(x̄) = 0. The de�nitions of the set M and the functional U imply that
x̄ ∈ BX(x0, r) and F (x0) + αrv = F (x̄). Therefore, F (x0) + αrv ∈ F (BX(x0, r)).

Lemma 3.2. Given a linear bounded operator A : X → Y and a vector v ∈ S, there exists a nonzero
functional λ ∈ Y ∗ such that

‖A∗λ‖∗ ≤ −〈λ, v〉cov(A|v).

Here, obviously, 〈λ, v〉 ≤ 0.

Proof. Put c := cov(A|v). The point cv does not belong to the interior of the set ABX(0, 1). Other-
wise, the inclusion (δ + c)v ∈ ABX(0, 1) takes place fo a su�ciently small δ > 0, so cov(A|v) > c in
contradiction to the de�nition of c. Moreover, the set ABX(0, 1) ⊂ Y is convex.

By the �nite-dimensional separability theorem (see, for example [4, Theorem 4.6]) there exists a
nonzero λ ∈ Y ∗ such that 〈λ, Ax〉 ≥ 〈λ, v〉c for any x ∈ BX(0, 1). Therefore, 〈A∗λ, x〉 ≥ 〈λ, v〉c for
every x ∈ BX(0, 1). So, −‖A∗λ‖∗ ≥ 〈λ, v〉c. Therefore, ‖A∗λ‖∗ ≤ −〈λ, v〉c.
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4 Proofs of the main results

Proof of Theorem 2.1. Take an arbitrary ε > 0. Consider the set

M := {x ∈ BX(x0, R) ∩M : f0(x) ≤ f0(x0)}.

Two cases may occur: either there exists a point x ∈ M such that the vectors
∂fi
∂x

(x), i = 0, k

are linearly dependent or these vectors are linearly independent for every x ∈ M. In the �rst case,
the point x̂ = x is the desired one (see the comments after the formulation of Theorem 2.1).

Consider the second case: the vectors
∂fi
∂x

(x), i = 0, k are linearly independent for every x ∈M .

Then the Lagrange multiplier rule imply that the point x0 is not a point of local minimum of f0

under the constraints f1(x) = ... = fk(x) = 0 (see, for example, [9] or [5]). Thus,

f0(x0) > γ(x0, R). (4.1)

Put Y := Rk+1, v := (−1, 0, ..., 0) ∈ Y. De�ne a mapping F : X → Y by the formula

F (x) := (f0(x), f1(x), ..., fk(x)), x ∈ X.

Obviously, the mapping F is di�erentiable and satis�es the assumption (ii) of Lemma 3.1. Indeed,
if F (x) ∈ F (x0) + cone{v} for some x ∈ BX(x0, R), then by virtue of the choice of v we have

f0(x) ≤ f0(x0) and x0, x ∈ M, whereM = {ξ : f1(ξ) = ... = fk(ξ) = 0}. Thus, the vectors ∂fi
∂x

(x),

i = 0, k are linearly independent.
Put

α0 := (1 + ε)(f0(x0)− γ(x0, R))R−1.

It follows from (4.1) that α0 > 0. Let us show that there exists a point x̂ ∈ BX(x0, R) such that

F (x̂) ∈ F (x0) + cone{v} and cov

(
∂F

∂x
(x̂)

∣∣∣∣ v) < α0. (4.2)

Consider to the contrary that

ᾱ := inf

{
cov

(
∂F

∂x
(x)

∣∣∣∣ v) : x ∈ BX(x0, R), F (x) ∈ F (x0) + cone{v}
}
≥ α0. (4.3)

Then the assumption (i) of Lemma 3.1 holds, since α0 > 0.
Put

α := (1 + 2−1ε)(f0(x0)− γ(x0, R))R−1.

It follows from relations (4.1) and α < α0 ≤ ᾱ that α ∈ (0, ᾱ). Therefore, Lemma 3.1 implies that

F (x0) + αRv ∈ F (BX(x0, R)).

Therefore, there exists a point x ∈ BX(x0, R) such that F (x0) +αRv = F (x). Then the de�nition of
the vector v implies that

f0(x0)−
(

1 +
ε

2

)
(f0(x0)− γ(x0, R)) = f0(x), fi(x) = 0, i = 1, k.

So, relation (4.1) and the de�nition of the mapping F imply that f0(x) < γ(x0, R) and x ∈
M
⋂
BX(x0, R) which contradicts the de�nition of γ. Relation (4.2) is proved.
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Applying Lemma 3.2 to the linear operator A :=
∂F

∂x
(x̂) and the vector v = (−1, 0, ..., 0) we

obtain that there exists a vector λ ∈ Y ∗ such that ‖λ‖ = 1 and∥∥∥∥(∂F∂x (x̂)

)∗
λ

∥∥∥∥
∗
≤ −〈λ, v〉 cov

(
∂F

∂x
(x̂)

∣∣∣∣ v) = λ0cov

(
∂F

∂x
(x̂)

∣∣∣∣ v). (4.4)

This inequality and the equality
∂L

∂x
(x̂, λ) =

(
∂F

∂x
(x̂)

)∗
λ, imply that

∥∥∥∥∂L∂x (x̂, λ)

∥∥∥∥
∗
≤ λ0cov

(
∂F

∂x
(x̂)

∣∣∣∣ v).
The de�nition of α0 and the strict inequality in (4.2) imply (2.1). The inclusion (4.2) implies that

f0(x̂) ≤ f0(x0). Inequality (4.4) and the relation A∗λ 6= 0 imply that λ0 ≥ 0. So, the vectors x̂ and λ
are the desired ones. �

Proof of Theorem 2.2. Put
γ0 := inf

x∈M
f0(x), ε := 1.

Take an arbitrary sequence xn0 ⊂ M such that f0(xn0 ) → γ0. Applying Theorem 2.1 at the point
x0 = xn0 as R = 1 we obtain that there exist sequences {xn} ⊂ M and {λn} ⊂ Rk+1 such that
‖λn‖ = 1 for every n, f0(xn) ≤ f0(xn0 ) for every n and∥∥∥∥∂L∂x (xn, λn)

∥∥∥∥
∗
≤ 2

f0(xn0 )− γ(xn0 , R)

R
≤ 2

f0(xn0 )− γ0

R
→ 0

as n→∞. The constructed sequences {xn} ⊂ M and {λn} ⊂ Rk+1 are the desired ones. �
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