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Abstract. We develop an asymptotic theory for the partition function of the word embeddings
model word2vec. The proof involves a study of properties of matrices, their determinants and
distributions of random normal vectors when their dimension tends to infinity. The conditions
imposed are mild enough to cover practically important situations. The implication is that for
any word i from a vocabulary W , the context vector ci is a reflection of the word vector wi in
approximately half of the dimensions. This allows us to halve the number of trainable parameters in
static word embedding models.
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1 Introduction and main results

Today, it is impossible to imagine natural language processing (NLP) without vector representations
of words, which can be obtained by pre-training neural language models on large amounts of text.
Early models [15, 16, 13] produced the so-called static word embeddings—each word from the vocab-
ulary was mapped into one single vector, regardless of context. This leads to difficulties in the case
of polysemous (having multiple meanings) words. For example, given the vector of the word bank,
it is not clear whether we are talking about a financial institution or about a river bank. Modern
models [17, 5] produce contextualized embeddings, i.e. they map the word together with its context
into a vector. Thus, the same word in different contexts will have different vectors.

Despite the fact that the latter approach is mainstream today, static vectors remain relevant for
a number of reasons:

• their models are more interpretable (as opposed to deep contextualizers),

• they can be trained much faster (in a few hours, and not in several days),

• they need much less computing power (1 GPU instead of 8–16 GPUs).

Moreover, static vectors are an integral part of (masked) language models that produce contex-
tualized embeddings. Therefore, we believe it is important to continue studying and better under-
standing static vectors.

Another important advantage of static embeddings is the abundance of theoretical studies of their
properties [13, 3, 10, 8, 19, 6, 2, 1, 4, 20]. For us, the starting point is the work of Zh. Assylbekov
and R. Takhanov [4], in which some key assumptions are made about the nature of word vectors
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and text generation, and then a useful property is stated, which allows us to halve the number of
trainable parameters in static word embedding models without sacrificing quality. We will provide
an overview of key aspects of their article to better motivate our work. To begin with, we introduce
the necessary notation.

1.1 Notation

We let R denote the set of all real numbers. Bold-faced lowercase letters (x) denote vectors in the
Euclidean space Rd, bold-faced uppercase letters (X) denote matrices, plain-faced lowercase letters
(x) denote scalars, plain-faced uppercase letters (X) denote scalar random variables, ‘i.i.d.’ stands
for ‘independent and identically distributed’. We use the sign ∼ to abbreviate the phrase ‘distributed
as’, and the sign ∝ to abbreviate ‘proportional to’. Xn

p→ Y denotes convergence of Xn to Y in
probability. Tr(A) is used to denote the trace of a matrix A. For any matrix A with elements aij,
we denote

‖A‖2 =

(∑
i,j

a2
ij

)1/2

, ‖A‖ = sup
‖x‖2=1

‖Ax‖2 , ‖A‖∞ = max
i,j
|aij|.

In particular, for a vector x, ‖x‖2 = (
∑

i x
2
i )

1/2. Ai stands for the i-th row of A and A(j) for the j-th
column of A. For a square matrix A, λj(A) and sj(A) denote its eigenvalues and singular values,
respectively, counted as many times as their multiplicities. Further,

‖A‖σp =

(∑
j

spj(A)

)1/p

for 1 ≤ p <∞, ‖A‖σ∞ = max
j
sj(A).

Recall that for nonnegative symmetric matrices, λj(A) = sj(A) for all j.

1.2 Word modelling and main conjecture

Broadly speaking, word modelling is a mapping of a vocabulary into some structure that can be
analyzed using mathematical tools. The challenge is to develop a mapping that adequately describes
how words interact contextually. One such model is the subject of this paper.

Assuming that words have already been converted into indices, let W := {1, . . . , n} be a finite
vocabulary of unique words. In what follows we assume that our dataset D consists of co-occurence
pairs (i, j). We say that “the words i and j co-occur” when they co-occur in a fixed-size window of
words. For instance, using a window of size 2 we can convert the text the cat sat on the mat into
the set of pairs D = {(the, cat), (cat, the), (cat, sat), (sat, cat), (sat, on), (on, sat), (on, the), (the,
on), (the, mat), (mat, the)}.

In word2vec model, the task is to learn to predict which words are most likely to be near
each other in some long corpus of text. For each word center in the corpus, the model outputs the
probability distribution P (context|center) of how likely each other word context in the vocabulary
is to be within a certain number of words away from center. Following [15], we assume that there
are two vectors for each word i:

• wi ∈ Rd when i ∈ W is a center word, such as the word sat in a window of 5 words

the cat sat on the

• ci ∈ Rd when i ∈ W is a context word, such as the words the, cat, on, the in the same window
of 5 words above.
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Word vectors {wi} are also known as word embeddings, while context vectors {ci} are also known
as context embeddings.

The assumptions of [4] on the nature of word vectors, context vectors, and text generation are as
follows:*)

(i) A priori word vectors w1, . . . ,wn ∈ Rd are i.i.d. draws from an isotropic multivariate Gaussian
distribution: wi

iid∼ N
(
0, 1

d
I
)
, where I is the d× d identity matrix.

(ii) Context vectors c1, . . . , cn are related to word vectors according to ci = Qwi, i = 1, . . . , n, for
some orthogonal matrix Q ∈ Rd×d.

(iii) Given a word j, the probability of any word i being in its context is given by

p(i | j) ∝ pi · ew>j ci (1.1)

where pi = p(i) is the unigram probability for the word i.

Conjecture. For any word i ∈ W , the context vector ci is a simple transformation of the word
vector wi: ci is obtained from the word vector wi by flipping the signs of approximately half of the
elements.

This conjecture is stated in [4] and it is suggested that under Assumptions 1–3 above, the con-
jecture reduces to the fact that the partition function

Zj :=
n∑
i=1

pi · ew>j ci . (1.2)

converges to its mean. The attempt in [4] at proving this statement was unsuccessful.
Our proof of this statement consists of three steps.

(i) We modify Assumptions 1–3, which, as stated, seem to be insufficient.

(ii) We obtain certain bounds for matrices using properties of Schatten–von Neumann classes from
[9]. The fact that those properties have been established in the infinite-dimensional case help
us make our bounds uniform with respect to the matrix dimension (which later we let go to
infinity, unlike [4]).

(iii) The partition function is investigated using precise formulas for means, variances and the
moment generating function of the quadratic form of a normal vector from [18]. As in our
setup the dimension tends to infinity, we have to develop asymptotic counterparts of those
precise formulas.

This last step involves a study of the asymptotic behavior of some determinants whose dimension
tends to infinity.

1.3 Main result

First, we modify the assumption 1 from the previous section in the following form:

*)We refer the reader to the original paper [4] for the motivation behind these assumptions.
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Assumption 1. Word vectors w1, . . . ,wn ∈ Rd are independent and

wi ∼ N (0,Σ), i = 1, . . . , n, (1.3)

where Σ is a d× d positive definite matrix whose elements may change with d and for some m > 0,

‖Σ‖σ∞ ≤ f(d)m, max
i
‖Σi‖2

2 ≤ mdf 2(d). (1.4)

where f(d) is a positive function such that

f(d) · d2 → 0, d→∞. (1.5)

For potential users of our results we note that for pre-trained word2vec embeddings with the
covariance matrix Σ the matrix d−2.1Σ resulting from multiplying embeddings by d−1.05 is a realistic
choice that satisfies our conditions (this does not lead to a deterioration in the quality of vectors as
measured by standard similarity and analogy tasks, see [7, 14]).

The second assumption from [4] is kept almost as it is.
Assumption 2. Context vectors c1, . . . , cn ∈ Rd are images of word vectors

ci = Qwi, i = 1, . . . , n,

where Q is an orthogonal matrix. Its elements may change with d.
Our main result is the following

Theorem 1.1. Under Assumptions 1 and 2,

E[Zj] = 1 + o(1) as d→∞,
V[Zj]→ 0 as d→∞.

Note that our setup differs from [4] not only by the modification of Assumption 1, but also by
the passage to the limit when the dimension of word vectors tends to infinity. Since the dimension
of word vectors is at the same time the width of the hidden layer in static embedding models, we
can assume that our result complements the work on the theoretical analysis of neural networks in
the infinite width mode [12, 11].

The rest of the paper is organized as follows: auxiliary results are stated and proved in Section 2,
convergence of E[Zj] to 1 is established in Section 3, while convergence of V[Zj] to 0 is shown in
Section 4.

2 Auxiliary statements

Two matrices will be particularly important in our work:

A =
1

2
(Q + Q>), B = QΣQ>. (2.1)

Lemma 2.1. For the matrices in (2.1) we have the following bounds:

(i) |Tr(AΣ)| ≤ mf(d)d.

(ii) |Tr [(AΣ)2]| ≤ m2f 2(d)d.

(iii) ‖AΣ‖2
∞ ≤ mf(d)d.
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(iv) |Tr(BΣ)| ≤ m2f(d)d.

(v) ‖BΣ‖∞ ≤ mf(d)d2.

Proof. Note that by orthogonality

|(Ax,x)| =
∣∣∣∣12 [(Qx,x) + (Q>x,x)

]∣∣∣∣
≤ 1

2

[
‖Qx‖2 ‖x‖2 +

∥∥Q>x
∥∥

2
‖x‖2

]
= ‖x‖2

2 .

Hence,
‖A‖σ∞ = max

j
sj(A) = max

j
|λj(A)| = sup

‖x‖2=1

|(Ax,x)| ≤ 1.

(i) By [9, Theorem 8.5] for any matrix A

|Tr(A)| ≤ ‖A‖σ1
. (2.2)

Using also the Hölder inequality [9, equation (7.5)]

‖AB‖σ1
≤ ‖A‖σp ‖B‖σq for

1

p
+

1

q
= 1 (2.3)

(which is true for any A, B), for A defined in (2.1) we have

|Tr(AΣ)| ≤ ‖AΣ‖σ1
≤ ‖A‖σ∞ ‖Σ‖σ1

≤ mf(d)d.

The last inequality uses (1.4).

(ii) ‖Qx‖2 = ‖x‖2 implies ‖A‖ ≤ 1. Moreover, for any matrices A, B [9, §7, Section 2]

‖AB‖σp ≤ ‖A‖ · ‖B‖σp . (2.4)

Hence, by (2.2), (2.3)∣∣Tr
[
(AΣ)2]∣∣ ≤ ∥∥(AΣ)2

∥∥
σ1
≤ ‖AΣ‖2

σ2
≤ ‖A‖2 ‖Σ‖2

σ2
≤ m2f 2(d)d. (2.5)

(iii) We start with
|(AΣ)ij| =

∣∣AiΣ
(j)
∣∣ ≤ ‖Ai‖2

∥∥Σ(j)
∥∥

2
. (2.6)

Here by orthogonality ‖Ai‖2 ≤
1
2

(∥∥Q>i ∥∥2
+ ‖Qi‖2

)
= 1. By (1.4) ‖AΣ‖2

∞ ≤ mf(d)d.

(iv) Apply successively (2.2), (2.3) and (2.4):

|Tr(BΣ)| =
∣∣Tr(QΣQ>Σ)

∣∣ ≤ ∥∥QΣQ>Σ
∥∥
σ1

≤ ‖QΣ‖σ2

∥∥Q>Σ
∥∥
σ2
≤ ‖Q‖2 ‖Σ‖2

σ2
≤ m2f 2(d)d.

The last inequality is as in (2.5).
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(v) By analogy with (2.6),∣∣(QΣQ>Σ)ij
∣∣ =

∣∣(QΣ)i(Q
>Σ)(j)

∣∣ ≤ ‖(QΣ)i‖2

∥∥(Q>Σ)(j)
∥∥

2
. (2.7)

From |(QΣ)ij| ≤
∥∥Σ(j)

∥∥
2
(confer (2.6)) it follows that

‖(QΣ)i‖2
2 =

d∑
j=1

|(QΣ)ij|2 ≤
d∑
j=1

∥∥Σ(j)
∥∥2

2
≤ mf 2(d)d2.

Since a similar bound holds for
∥∥(Q>Σ)(j)

∥∥2

2
, we conclude from (2.7) that ‖BΣ‖∞ ≤ mf(d)d2.

Lemma 2.2. For any i ∈ W,

w>i Qwi − Tr(AΣ)
p→ 0 as d→∞.

Proof. By [18, Theorem 5.2a] we have

E[w>i Qwi] = E[w>i Awi] = Tr(AΣ).

From [18, Theorem 5.2c]
V(w>i Qwi) = 2 Tr

[
(AΣ)2] .

By the Chebyshev inequality and Lemma 2.1.2 for any ε > 0

P
(∣∣w>i Qwi − Tr(AΣ)

∣∣ > ε
)
≤ 1

ε2
V(w>i Qwi)→ 0.

3 Convergence of means to 1 in Theorem 1.1

Recall that the partition function Zj is defined by (1.2). We need to find the expectations in

E[Zj] =
∑
i 6=j

piE[ew>j ci ] + pjE[ew>j cj ] =
∑
i 6=j

piE[ew>j ci ] + pjE[ew>j Awj ].

Lemma 3.1. For any symmetric matrix A such that

d3‖AΣ‖2
∞ → 0 as d→∞ (3.1)

one has
E[ew>j Awj ] = 1 + o(1) as d→∞.

Proof. This is the heart of the proof. Step 1. Let Mz(t) = E[etz] be the moment generating function
(mgf) of a random variable z. If y is distributed as N (µ,Σ), then [18, Theorem 5.2b]

My>Ay(t) = |I− 2tAΣ|−1/2 · exp

{
−1

2
µ>
[
I− (I− 2tAΣ)−1]Σ−1µ

}
where |A| is the determinant of matrix A. By (1.3) this gives

E[ew>j Awj ] = Mw>j Awj
(1) = |I− 2AΣ|−1/2 . (3.2)
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Step 2. Denote H = 2AΣ, x(d) = max |hij|. We want to prove that for k ≤ d and any
1 ≤ i1 < . . . < ik ≤ d

(1− hi1,i1) · · · (1− hik,ik) = 1 + o(1) as d→∞, (3.3)

where the o(1) is uniform in 0 ≤ k ≤ d and for k = 0 the product on the left is 1 by definition. By
(3.1)

|hij| ≤ x(d), d3/2x(d)→ 0 as d→∞. (3.4)

The case k = 0 is trivial. We consider the indices i1 = 1, . . . , ik = k, the other cases being similar.
Denote gk(x1, . . . , xk) = (1− x1) · · · (1− xk), 1 ≤ k ≤ d. The Taylor series for gk is a finite sum

(1− h11) · · · (1− hkk) = 1−
k∑
i=1

hii + r2 (3.5)

where

r2 =
k∑
l=2

∑
l1+...+lj=l

0≤li≤1

∂lgk(0, . . . , 0)

∂xl11 . . . ∂x
lj
j

hl111

l1!
· · ·

h
lj
jj

lj!
.

Using the equation ∂gk(x1,...,xk)
∂x1

= −gk−1(x2, . . . , xk) it is easy to see that in this sum all derivatives
have values ±1. In each term, at least two factors of the form hliii are nontrivial. Hence,

|r2| ≤
k∑
l=2

Ck
l x

l(d). (3.6)

Note that
Ck
l+1x

l+1(d) = Ck
l

k − l
l + 1

xl+1(d) ≤ Ck
l [dx(d)]xl(d).

Since by (3.4) d · x(d) = o(1), there exists d0 > 0 such that d · x(d) ≤ 1 for d ≥ d0. Then from (3.6)
for such d and all k ≤ d

|r2| ≤ (k − 1)Ck
2x

2(d) ≤ d
k!

2!(k − 2)!
x2(d) ≤ 1

2
d3x2(d). (3.7)

Now (3.5) and (3.7) imply |(1 − h11) . . . (1 − hkk) − 1| ≤ dx(d) + 1
2
d3x2(d) = o(1). We have proved

(3.3).
Step 3. Here we prove that |I−H| = 1 + o(1) as d→∞. By the Leibnitz formula

|I−H| =
∑
σ∈Sd

sgn(σ)
d∏
i=1

ti,σ(i),

where ti,j are the elements of T = I −H, Sd is the set of permutations of {1, . . . , d} , sgn(σ) is the
signature of the permutation σ. Separating the diagonal elements, for which i = σ(i) are fixed points
of σ, we have

|I−H| =
∑
σ∈Sd

sgn(σ)
∏
i=σ(i)

(1− hii)
∏
i 6=σ(i)

hi,σ(i). (3.8)

Let k(σ) denote the number of fixed points of the permutation σ. Then the number of points that
do not stay in place is d− k(σ) and by (3.4)∣∣∣∣∣∣

∏
i 6=σ(i)

hi,σ(i)

∣∣∣∣∣∣ ≤ xd−k(σ)(d), 0 ≤ k(σ) ≤ d.
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For d ≥ 0 and 0 ≤ k ≤ d, the rencontres number is defined as the number of permutations of
{1, ..., d} that have k fixed points. We need the equation*)

Dd,k =
d!

k!

d−k∑
l=0

(−1)l

l!
.

It implies

|Dd,k| ≤
d!

k!

∞∑
l=0

1

l!
= e

d!

k!
. (3.9)

In (3.8) only the identity permutation leaves all indices unchanged. The corresponding term is
(1− h11) . . . (1− hdd) which is 1 + o(1) by (3.3). Hence,

|I−H| = 1 + o(1) +
∑

σ∈Sd, k(σ)≤d−1

sgn(σ)
∏
i=σ(i)

(1− hii)
∏
i 6=σ(i)

hi,σ(i). (3.10)

According to (3.3) here
∣∣∣∏i=σ(i)(1− hii)

∣∣∣ ≤ 2, whereas
∏

i 6=σ(i) hi,σ(i) contains d− k(σ) terms. There-
fore by (3.4) and (3.9)∣∣∣∣∣∣

∑
σ∈Sd, k(σ)≤d−1

sgn(σ)
∏
i=σ(i)

(1− hii)
∏
i 6=σ(i)

hi,σ(i)

∣∣∣∣∣∣
≤ 2

d−1∑
k=0

Dd,kx
d−k(d) ≤ 2e

d−1∑
k=0

d!

k!
xd−k(d) = 2e

d−1∑
k=0

d(d− 1)...(k + 1)xd−k(d)

≤ 2e
d−1∑
k=0

(dx(d))d−k ≤ 2edx(d)
∞∑
j=0

(dx(d))j =
2edx(d)

1− dx(d)
= o(1).

This and (3.10) prove that |I− 2AΣ| = 1 + o(1).
Now the statement follows from (3.2) and the fact that (1− x)−1/2 = 1 + o(1), x→ 0.

Lemma 3.2. For i 6= j
E[ew>j ci ] = 1 + o(1). (3.11)

Proof. Let My(t) = E[et>y] be the multivariate mgf of a random vector y. If y ∼ N (µ,Σ), then
[18, Theorem 4.3]

My(t) = et>µ+ 1
2
t>Σt.

In our case this implies

E
[
ew>j ci | wj

]
= E

[
ew>j Qwi | wj

]
= Mwi

(Q>wj)

= e(Q>wj)
>fΣQ>wj/2 = e

f
2
w>j Bwj . (3.12)

Hence, by the law of iterated expectations

E[ew>j ci ] = E
[
E[ew>j ci | wj]

]
= Ee

f
2
w>j Bwj .

Because of condition (1.5) and Lemma 2.1.5 we obtain

d3f 2(d)‖BΣ‖2
∞ ≤ m2d7f 4(d) = m2(d2f(d))3df(d)→ 0. (3.13)

This allows us to use Lemma 2.1 to prove (3.11).

Corollary 3.1. From (2.1), Lemmas 2.1.3, 3.1 and 3.2 it follows that E[Zj] = 1 + o(1) as d→∞.
*)see https://en.wikipedia.org/wiki/Rencontres_numbers
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4 Convergence of variances to zero in Theorem 1.1

Obviously,

V[Zj] =
n∑
s=1

p2
sV
[
ew>j Qws

]
+
∑
s6=t

pspt Cov
[
ew>j Qws , ew>j Qwt

]
.

Proof. We use Lemmas 3.1 and 3.2 which hold under our assumptions for the matrices in (2.1).
1) For s = j by Lemma 3.1 with A = (Q + Q>)/2

V
[
ew>j Qwj

]
= E[e2w>j Awj ]−

[
E[ew>j Awj ]

]2

= o(1). (4.1)

2) For s 6= j by Lemma 3.2

V
[
ew>j Qws

]
= E[e2w>j Qws ]−

[
E[ew>j Qws ]

]2

= o(1).

3) Let all three numbers s, t, j be different. Denote by CovZ(X, Y ) the covariance between X
and Y conditional on Z. By the law of total covariance

Cov
[
ew>j cs , ew>j ct

]
= E

[
Covwj

(
ew>j cs , ew>j ct

)]
+ Cov

(
E
[
ew>j cs | wj

]
,E
[
ew>j ct | wj

])
.

Conditionally on wj, the variables ws and wt are independent, so the first term on the right is zero.
For the second term we use (3.12):

Cov
(
E
[
ew>j cs | wj

]
,E
[
ew>j ct | wj

])
= Cov

(
e
f
2
w>j Bwj , e

f
2
w>j Bwj

)
= V

[
e
f
2
w>j Bwj

]
.

By (3.11) and (3.13) then

Cov
(
ew>j cs , ew>j ct

)
= E[efw>j Bwj ]−

(
Ee

f
2
w>j Bwj

)2

= o(1).

4) Suppose s 6= t and s = j. In the equation

Cov
(
ew>j Qwj , ew>j Qwt

)
= E

[
Covwj

(
ew>j Qwj , ew>j Qwt

)]
+ Cov

(
E
[
ew>j Qwj | wj

]
,E
[
ew>j Qwt | wj

])
the first term on the right is zero because, conditionally on wj, e

w>j Qwj is constant. By (3.12)

E
[
ew>j Qwt | wj

]
= e

f
2
w>j Bwj .

Hence, by (3.1), (3.13) and Lemma 3.1

Cov
(
ew>j Qwj , ew>j Qwt

)
= Cov

(
ew>j Awj , e

f
2
w>j Bwj

)
= E[ew>j (A+fB/2)wj ]−

(
E[ew>j Awj ]

)(
E[ew>j fBwj/2]

)
= o(1). (4.2)

Summarizing, from (4.1)–(4.2) we get

V[Zj] =
n∑
s=1

p2
s · o(1) +

∑
s 6=t

ps · pt · o(1)→ 0 as d→∞.
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