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1 Introduction

Let µ be the n-dimensional Lebesgue measure in Rn and M be an arbitrary system of Lebesgue
measurable subsets of Rn. For a function f(x), defined and integrable on each e from M , we define
the function

f̄(t,M) = sup
e∈M
|e|>t

1

|e|

∣∣∣∣ ∫
e

f(x)dµ

∣∣∣∣, t > 0,

where the supremum is taken over all e ∈ M , whose measure is |e| def
= µe > t. In the case when

sup{|e| : e ∈M} = α <∞ and t > α we assume that f̄(t,M) = 0.
Let parameters p, q satisfy the conditions 0 < p 6 ∞, 0 < q 6 ∞. We define the net spaces

Np,q(M), as the set of all functions f , such that for q <∞

‖f‖Np,q(M) =

(∫ ∞
0

(
t

1
p f̄(t,M)

)q
dt

t

) 1
q

<∞,

and for q =∞
‖f‖Np,∞(M) = sup

t>0
t

1
p f̄(t,M) <∞.

These spaces were introduced in the work [18].
Net spaces have found important applications in various problems of harmonic analysis, operator

theory and the theory of stochastic processes [2, 3, 4, 22, 23, 19, 24, 21].
Let (A0, A1) be a compatible pair of Banach spaces [8],

K(t, a;A0, A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1), a ∈ A0 + A1,

be the Petre functional. For 0 < q <∞, 0 < θ < 1 the interpolation space is defined by
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(A0, A1)θ,q =

{
a ∈ A0 + A1 : ‖a‖(A0,A1)θ,q =

(∫ ∞
0

(t−θK(t, a))q
dt

t

)1/q

<∞
}
,

and for q =∞ by

(A0, A1)θ,q =

{
a ∈ A0 + A1 : ‖a‖(A0,A1)θ,q = sup

0<t<∞
t−θK(t, a) <∞

}
.

In papers [1, 6, 7, 15, 24, 18, 19, 20, 27, 28] the interpolation properties of the net spaces were
investigated and found an application in various problems of analysis. In particular, the following
equalities were obtained

(Np0,q0(M), Np1,q1(M))θ,q = Np,q(M), (1.1)

where 1
p

= 1−θ
p0

+ θ
p1
, 0 < θ < 1, 0 < q0, q1, q 6∞.

In the case when M is the set of all segments in R, or M is the set of all dyadic cubes in Rn. An
analogue of equality (1.1) with respect to the anisotropic interpolation method of Fernandez is also
proved, when M is the set of all rectangles in Rn. In the case when M is an arbitrary net, only the
embedding takes place [18, Theorem 1]

(Np0,q0(M), Np1,q1(M))θ,q ↪→ Np,q(M). (1.2)

For some nets M the space Np1,∞(M) coincides with the Morrey space. In papers [10, 16, 17, 25]
it was shown that the Morrey spaces the equality of form (1.1) does not hold. Therefore for general
nets, in the case when M is an arbitrary net equality (1.1) is not true.

In this paper, we study the interpolation properties of these spaces for fairly general nets. We
prove a certain analogue of the Marcinkiewicz-type interpolation theorem for linear operators. Note
that here we use ideas developed in [11, 12, 13], where an alternative analogue of the Marcinkiewicz-
type interpolation theorem for Morrey spaces is obtained. For properties of linear operators in Morrey
spaces, see recent papers [5, 14, 26].

Given functions F and G, in this paper F . G means that F 6 c G (or c F ≥ G), where c
is a positive number, depending only on numerical parameters, that may be different on different
occasions. Moreover, F � G means that F . G and G . F .

2 Interpolation of the net spaces for local nets

A family of measurable sets G = {Gt}t>0 is called a local net if it satisfies the following condition:
Gt ⊂ Gs for t 6 s and |Gt| = t.

An example of a local net is the set {Bt(x)}t>0 of all balls centered at the point x.

Lemma 2.1. (Hardy’s inequalities, [9, p. 25]) Let µ > 0 and 1 6 τ 6 ∞. Then the following
inequalities hold (∫ ∞

0

(
y−µ

∫ y

0

|g(r)|dr
r

)τ
dy

y

) 1
τ

6 µ−1

(∫ ∞
0

(
y−µ|g(y)|

)τ
dy

y

) 1
τ

and (∫ ∞
0

(
yµ
∫ ∞
y

|g(r)|dr
r

)τ
dy

y

) 1
τ

6 µ−1

(∫ ∞
0

(
yµ|g(y)|

)τ
dy

y

) 1
τ

,

for all functions g Lebesgue measurable on (0,∞).
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Theorem 2.1. Let 0 < p0 < p1 <∞, 0 < q0, q1, q,≤ ∞, 0 < θ < 1. If G = {Gt}t>0 is a local net,
then

(Np0,q0(G), Np1,q1(G))θ,q = Np,q(G),

where 1/p = (1− θ)/p0 + θ/p1.

Proof. From embedding (1.2) we have

(Np0,q0(G), Np1,q1(G))θ,q ↪→ Np,q(G).

Let us show the reverse inclusion. Let f ∈ Np,q(M) and t > 0, χGt be the characteristic function of
the set Gt. Let σ = min{q0, q1, q}. Using the embedding Npi,σ ↪→ Npi,qi , i = 0, 1 we get

‖f‖(Np0,q0 (G),Np1,q1 (G))
θ,q

. ‖f‖(Np0,σ(G),Np1,σ(G))
θ,q

�

 ∞∫
0

(
t
−θ( 1

p0
− 1
p1

)
K(t

1
p0
− 1
p1 , f ;Np0,σ(G), Np1,σ(G))

)q dt
t

 1
q

.

(∫ ∞
0

(
t
−θ( 1

p0
− 1
p1

)
(
‖fχGt‖Np0,σ + t

1
p0
− 1
p1 ‖f(1− χGt)‖Np1,σ

))q) 1
q

. (2.1)

Note that

‖fχGt‖Np0,σ 6

(∫ t

0

(
s1/p0 f̄(s,G)

)σ ds
s

) 1
σ

+
p0

σ
t1/p0 f̄(t, G)

and

‖f(1− χGt)‖Np0,σ �
(∫ ∞

t

(
s1/p1f(1− χGt)(s,G)

)σ ds
s

) 1
σ

+ t1/p1 f̄(t, G).

Putting these relations in (2.1), applying the Hardy inequality, we obtain

‖f‖(Np0,q0 (G),Np1,q1 (G))
θ,q

. ‖f‖Np,q(G).

3 Marcinkiewicz-type interpolation theorem for linear operators

Let G = {Gt}t>0 be a local net. We define the net FG,Ω =
⋃
x∈ΩG+ x, where G+ x = {Gt + x}t>0.

The net FG,Ω will be called the net generated by a local net G and a set Ω ⊂ Rn.
Example. Let Ω = Rn, G = {Qt}t>0 be the set of cubes centered at 0 with the length of the edge

equal to t, then FG,Ω = {Qt + x}x∈Rn is the set of all cubes in Rn.

Theorem 3.1. Let Ω ⊂ Rn, G = {Gt}t>0 be a local net, FG,Ω =
⋃
x∈ΩG + x. Let 0 < p0 < p1 <∞

and 0 < q0, q1 6∞, q0 6= q1, 0 < θ < 1, 1 6 τ 6∞,

1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

.

If the following inequalities hold for a linear operator T and some M0,M1 > 0

‖Tf‖Nqi,∞(G+x) 6Mi‖f‖Npi,1(G+x), x ∈ Ω, i = 0, 1, (3.1)

for all functions f ∈ Npi,1(G+ x), (i = 0, 1), then the following inequality holds
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‖Tf‖Nq,τ (FG,Ω) 6 cM1−θ
0 M θ

1‖f‖Np,τ (FG,Ω), (3.2)

for all functions f ∈ Np,τ (FG,Ω), where c > 0 depends only on the parameters p0, p1, q0, q1, p, q, τ, θ.

Proof. Let 1 6 τ <∞, f ∈ Np,τ (FG,Ω), for an arbitrary x ∈ Rn, s > 0 we define the functions

f0,s = fχGs+x, f1,s = f − f0,s,

where χGs+x denotes the characteristic function of the set Gs + x. It is easy to see that f0,s ∈
Np0,1(G+ x) and f1,s ∈ Np1,1(G+ x). Then f = f0,s + f1,s and

sup
ξ>t

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

Tf(y)dy

∣∣∣∣ 6 sup
ξ>t

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

Tf0,s(y)dy

∣∣∣∣
+ sup

ξ>t

1

|Gs|

∣∣∣∣ ∫
Gξ+x

Tf1,s(y)dy

∣∣∣∣ = I1 + I2.

First, we estimate I1, according to inequality (3.1) we have

I1 = sup
ξ>t

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

Tf0,s(y)dy

∣∣∣∣
6 t
− 1
q0 sup

r>0
r

1
q0 sup

ξ>r

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

Tf0,s(y)dy

∣∣∣∣
= t
− 1
q0 ‖Tf0,s‖Nq0,∞(G+x) 6M0t

− 1
q0 ‖f0,s‖Np0,1(G+x)

= M0t
− 1
q0

(∫ s

0

r
1
p0 sup

ξ>r

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

f0,s(y)dy

∣∣∣∣drr +

∫ ∞
s

r
1
p0 sup

ξ>r

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

f0,s(y)dy

∣∣∣∣drr
)
.

If ξ 6 s, y ∈ Gξ + x, we have f0,s(y) = f(y)χGs+x = f(y). If ξ > s, then∣∣∣∣ ∫
Gξ+x

f0,s(y)dy

∣∣∣∣ =

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣.
For the first integral, we have the following,∫ s

0

r
1
p0 sup

ξ>r

1

|Gξ

∣∣∣∣ ∫
Gξ+x

f0,s(y)dy

∣∣∣∣drr
6
∫ s

0

r
1
p0 sup

ξ>r

1

|Gξ

∣∣∣∣ ∫
Gξ+x

f(y)dy

∣∣∣∣drr 6
∫ s

0

r
1
p0 f̄(r, FG,Ω)

dr

r
.

For the second integral, we have∫ ∞
s

r
1
p0 sup

ξ>r

1

|Gξ

∣∣∣∣ ∫
Gξ+x

f0,s(y)dy

∣∣∣∣drr =

∫ ∞
s

r
1
p0 sup

ξ>r

1

|Gξ

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣drr
=

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣ ∫ ∞
s

r
1
p0 sup

ξ>r

1

|Gξ|

dr

r
=

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣ ∫ ∞
s

r
1
p0
−1dr

r

= p′0s
1
p0

1

|Gs|

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣ 6 p′0s
1
p0 f̄(s, FG,Ω).
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Thus, we get

I1 .M0t
− 1
q0

(∫ s

0

r
1
p0 f̄(r, FG,Ω)

dr

r
+ s

1
p0 f̄(s, FG,Ω)

)
.

We estimate I2, in a similar way, applying inequality (3.1), and we obtain

I2 = sup
s>t

1

|Gs|

∣∣∣∣ ∫
Gs+x

Tf1,s(y)dy

∣∣∣∣
6 t
− 1
q1 sup

r>0
r

1
q1 sup

s>r

1

|Gs|

∣∣∣∣ ∫
Gs+x

Tf1,s(y)dy

∣∣∣∣ = t
− 1
q1 ‖Tf1,s(y)‖Nq1,∞(G+x)

6M1t
− 1
q1 ‖f1,s‖Np1,1(G+x) = M1t

− 1
q1

(∫ ∞
0

r
1
p1 sup

s>r

1

|Gs|

∣∣∣∣ ∫
Gs+x

f1,s(y)dy

∣∣∣∣drr
)

= M1t
− 1
q1

(∫ s

0

r
1
p1 sup

ξ>r

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

f1,s(y)dy

∣∣∣∣drr +

∫ ∞
s

r
1
p1 sup

ξ>r

1

|Gξ|

∣∣∣∣ ∫
Gξ+x

f1,s(y)dy

∣∣∣∣drr
)

= M1t
− 1
q1

(
J1 + J2

)
.

To estimate J1, J2 note that

∣∣∣∣ ∫
Gξ+x

f1,s(y)dy

∣∣∣∣ =

0, ξ 6 s,∣∣∣∣ ∫Gξ+x\Gs+x f(y)dy

∣∣∣∣, ξ > s

=

0, ξ 6 s,∣∣∣∣ ∫Gξ+x f(y)dy −
∫
Gs+x

f(y)dy

∣∣∣∣ 6 ∣∣∣∣ ∫Gξ+x f(y)dy

∣∣∣∣+

∣∣∣∣ ∫Gs+x f(y)dy

∣∣∣∣, ξ > s.

Further,

J1 6
∫ s

0

r
1
p1 sup

ξ>r

1

|Gξ|

(∣∣∣∣ ∫
Gξ+x

f(y)dy

∣∣∣∣+

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣)drr
6
∫ s

0

r
1
p1

(
f̄(s, FG,Ω) +

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣ sup
ξ>r

1

|Gξ|

)
dr

r
6 2f̄(s, FG,Ω)

∫ s

0

r
1
p1
dr

r
= 2p1s

1
p1 f̄(s, FG,Ω)

and

J2 6
∫ ∞
s

r
1
p1 sup

ξ>r

1

|Gξ|

(∣∣∣∣ ∫
Gξ+x

f(y)dy

∣∣∣∣+

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣)drr
6
∫ ∞
s

r
1
p1

(
f̄(s, FG,Ω) +

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣ sup
ξ>r

1

|Gξ|

)
dr

r
6
∫ ∞
s

r
1
p1 f̄(r, FG,Ω)

dr

r

+

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣ ∫ ∞
s

r
1
p1 sup

ξ>r

1

|Gξ|
dr

r
=

∫ ∞
s

r
1
p1 f̄(r, FG,Ω)

dr

r
+

∣∣∣∣ ∫
Gs+x

f(y)dy

∣∣∣∣s 1
p1
−1
p1

p1 − 1

.
∫ ∞
s

r
1
p1 f̄(r, FG,Ω)

dr

r
+ s

1
p1 f̄(s, FG,Ω).

Combining the obtained estimates, we get the following estimate
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I2 .M1t
1
q1

(∫ ∞
s

r
1
p1 f̄(r, FG,Ω)

dr

r
+ s

1
p1 f̄(s, FG,Ω)

)
.

So, we have

sup
s>t

1

|Gs|

∣∣∣∣ ∫
Gs+x

Tf(y)dy

∣∣∣∣ .M0t
− 1
q0

(∫ s

0

r
1
p0 f̄(r, FG,Ω)

dr

r
+ s

1
p0 f̄(s, FG,Ω)

)

+M1t
− 1
q1

(∫ ∞
s

r
1
p1 f̄(r, FG,Ω)

dr

r
+ s

1
p1 f̄(s, FG,Ω)

)
.

Assume that s = ctγ, where γ =

(
1
q1
− 1

q0

)/(
1
p1
− 1

p0

)
. Then, taking into account the estimates

obtained above, we get

‖Tf‖Nq,τ (FG,Ω) =

(∫ ∞
0

(
t

1
q sup
s>t
x∈Rn

1

|Gs|

∣∣∣∣ ∫
Gs+x

f(x)dx

∣∣∣∣)τ dtt
) 1

τ

.M0A1 +M0A2 +M1A3 +M1A4,

where

A1 =

(∫ ∞
0

(
t

1
q
− 1
q0

∫ ctγ

0

r
1
p0 f̄(r, FG,Ω)

dr

r

)τ
dt

t

) 1
τ

,

A2 =

(∫ ∞
0

(
t

1
q
− 1
q0 (ctγ)

1
p0 f̄(ctγ, FG,Ω)

)τ
dt

t

) 1
τ

,

A3 =

(∫ ∞
0

(
t

1
q
− 1
q1

∫ ∞
ctγ

r
1
p1 f̄(r, FG,Ω)

dr

r

)τ
dt

t

) 1
τ

and

A4 =

(∫ ∞
0

(
t

1
q
− 1
q1 (ctγ)

1
p1 f̄(ctγ, FG,Ω)

)τ
dt

t

) 1
τ

.

Using the following change of the variable ctγ = y, we get

A1 = γ−
1
τ c
−θ
(

1
p1
− 1
p0

)
B1, A2 = γ−

1
τ c
−θ
(

1
p1
− 1
p0

)
B2

A3 = γ−
1
τ c

(1−θ)
(

1
p1
− 1
p0

)
B2, A4 = γ−

1
τ c

(1−θ)
(

1
p1
− 1
p0

)
B3,

where

B1 =

(∫ ∞
0

(
y
θ
(

1
p1
− 1
p0

) ∫ y

0

r
1
p0 f̄(r, FG,Ω)

dr

r

)τ
dy

y

) 1
τ

,

B2 =

(∫ ∞
0

(
y

1
p f̄(y, FG,Ω)

)τ dy
y

) 1
τ

= ‖f‖Np,τ (FG,Ω),

B3 =

(∫ ∞
0

(
y
−(1−θ)

(
1
p1
− 1
p0

) ∫ ∞
y

r
1
p1 f̄(r, FG,Ω)

dr

r

)τ
dy

y

) 1
τ
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and

B4 =

(∫ ∞
0

(
y

1
p f̄(y, FG,Ω)

)τ dy
y

) 1
τ

= ‖f‖Np,τ (FG,Ω).

To estimate B1, B3 we apply Hardy’s inequalities from Lemma 2.1, we obtain

B1 .

(∫ ∞
0

(
y
θ
(

1
p1
− 1
p0

)
+ 1
p0 f̄(r, FG,Ω)

)τ
dy

y

) 1
τ

. ‖f‖Np,τ (FG,Ω),

B3 .

(∫ ∞
0

(
y

(θ−1)
(

1
p1
− 1
p0

)
+ 1
p1 f̄(r, FG,Ω)

)τ
dy

y

) 1
τ

. ‖f‖Np,τ (FG,Ω).

Thus, from the obtained estimates we come to the following estimate,

‖Tf‖Nq,τ (FG,Ω) .

(
M0c

−θ
(

1
p1
− 1
p0

)
+M1c

(1−θ)
(

1
p1
− 1
p0

))
‖f‖Np,τ (FG,Ω),

where the corresponding constants depend only on p0, p1, q0, q1, p, q, τ and θ.

Let c =

(
M1

M0

) p0p1
p1−p0

, then

‖Tf‖Nq,τ (FG,Ω) .M1−θ
0 M θ

1‖f‖Np,τ (FG,Ω).

Therefore, we got the required estimate.
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[9] O.V. Besov, V.P. Il’in, S.M. Nikośkii,Integral representations of functions and imbedding theorems. Izdat.
"Nauka”, Moscow, 1975 (in Russian).

[10] O. Blasco, A. Ruiz, L. Vega, Non interpolation in Morrey-Campanato and block spaces. Ann. Scuola Norm. Sup.
Pisa Cl. Sci., 4 (1999), 31–40.

[11] V.I. Burenkov, D.K. Chigambayeva, E.D. Nursultanov, Marcinkiewicz-type interpolation theorem and estimates
for convolutions for Morrey-type spaces. Eurasian Math. J., 9 (2018), no. 2, 82–88.

[12] V.I. Burenkov, E.D. Nursultanov, Interpolation theorems for nonlinear operators in general Morrey-type spaces
and their applications. Proc. Steklov Inst. Math., 312 (2021), 124–149.

[13] V.I. Burenkov, E.D. Nursultanov, Interpolation theorems for nonlinear Urysohn integral operators in general
Morrey-type spaces. Eurasian Math. J., 11 (2020), no. 4, 87–94.

[14] V.I. Burenkov, M.A. Senouci,Boundedness of the generalized Riesz potential in local Morrey type spaces, Eurasian
Math. J., 12 (2021), no. 4, 92–98.

[15] A.H. Kalidolday, E.D. Nursultanov,Interpolation properties of certain classes of net spaces. arXiv:2107.10633
[math.FA]
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