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1 Introduction

This paper deals with the impulsive differential equation with piecewise constant arguments of the
form

x
′
(t) = λx(t)− g(x[t])− h(x[t+ 1]), t 6= k ∈ Z+ = {1, 2, . . . }, t ≥ 0, (1.1)

x(t−) = dx(t), t = k ∈ Z+, (1.2)

where λ > 0 is a real constant, d ∈ R\{0, 1}, g, h : R→ R are continuously differentiable functions,
x(k−) = lim

t→k−
x(t), x(k) = x(k+) = lim

t→k+
x(t), i.e., x(t) is right continuous at t = k and [.] denotes the

greatest integer function.
On the other hand, the theory of impulsive differential equations has been developed very rapidly.

Such equations consist of differential equations with impulse effects and emerge in the modeling of
real world problems observed in engineering, physics and biology, etc. The books [8], [24] are good
sources for the study of impulsive differential equations and their applications. Moreover, there exist
many papers that investigate the behavior of solutions of impulsive differential equations ([9]-[36]).
In addition, recently some papers were published dealing with impulsive differential equations and
systems ([3]-[22]).

Since the early 1980s, differential equations with piecewise constant arguments have attracted a
great deal of attention from researchers in science. Differential equations with piecewise constant
arguments appear in diverse areas such as engineering, physics and mathematics. The work [11]
covers a systematical study on mathematical models with piecewise constant arguments. Differen-
tial equations with piecewise constant arguments are closely related to difference and differential
equations. Therefore, they are stated as hybrid dynamical systems [14]. The qualitative works on
convergence, oscillation, periodicity and stability of solutions of differential equations with piecewise
constant arguments have been done by works [1]-[13]. Also, Wiener’s book [34] is a distinguished
source with respect to this area.
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Carvalho [12] developed a method to obtain conditions for the existence of nonconstant periodic
solutions of certain differential equations. After this work, the scalar equation

x
′
(t) = λx(t)− g(x[t])

and the system

x
′

1(t) = −λx1(t) + g(x2([t]− 1)),

x
′

2(t) = −λx2(t) + g(x1([t]− 1))

were considered by Seifert [32] and proved that this equation and system have a periodic solution
with period 2 using the method. Moreover, in 2014, Lafci and Bereketoglu [23] studied the existence
of periodic solutions of the following nonlinear impulsive differential system with piecewise constant
arguments.

x
′

1(t) = λx1(t)− g(x2[t− 1]),

x
′

2(t) = λx2(t)− g(x1[t− 1]), t 6= k ∈ Z+ = {1, 2, . . . }, t ≥ 0,

x1(t−) = dx1(t), x2(t−) = dx2(t), t = k ∈ Z+.

As we know, there are only a few papers ([21]-[29]) on the periodicity of impulsive differential equa-
tions with piecewise constant arguments. So, our aim is to search periodic solutions with period 2 of
the impulsive differential equation with piecewise constant arguments (1.1)-(1.2) by using Carvalho’s
method which is given below.

Theorem 1.1. (Carvalho′s method, [17]) If p is a positive integer and x(k) is a periodic sequence of
period p, then the following statements hold true:

(i) If p > 1 is odd and m = p−1
2
, then

x(k) = a0 +
m∑
j=1

aj cos
(2jkπ

p

)
+ bj sin

(2jkπ

p

)
, (1.3)

for all k > 1.
(ii) If p is even and p = 2m, then

x(k) = a0 + am cosπk +
m−1∑
j=1

aj cos
(2jkπ

p

)
+ bj sin

(2jkπ

p

)
, (1.4)

for all k > 1.
For example, if p = 2, then

x(k) = a0 + a1 cos πk. (1.5)

A solution to (1.1)− (1.2) is defined as below.

Definition 1. A function x defined on [0,∞) is said to be a solution to (1.1)-(1.2) if it satisfies the
following conditions:

(i) x : [0,∞)→ R is continuous for t ∈ [0,∞) with the possible exception of the points t = 1, 2, . . . ,

(ii) x is right continuous and has left-hand limits at the points t = 1, 2, . . . ,

(iii) x′(t) exists for every t ∈ [0,∞) with the possible exception of the points t = 0, 1, 2, . . . , where
one-sided derivatives exist,

(iv) x(t) satisfies equation (1.1) on each interval k < t < k + 1, k ∈ N = {0, 1, 2, ...},

(v) x(t) satisfy (1.2) at t = 1, 2, ....
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2 Main results

In this section, we prove the existence of the solutions and study the periodicity of equation (1.1)
with impulse condition (1.2).

Theorem 2.1. Any solution x to (1.1)− (1.2) on the interval [0,∞) has the form

x(t) = x([t]) expλ(t− [t])− [g(x([t]) + h(x[t+ 1])]
expλ(t− [t])− 1

λ
, t 6= k ∈ N, (2.1)

and for t = k, k ∈ N, x(k) satisfies the difference equation

x(k + 1) =
α

d
x(k)− β

d
[g(x(k)) + h(x(k + 1))], (2.2)

where α = expλ and β = (expλ− 1)/λ.

Proof. In the interval k < t < k + 1, equation (1.1) can be reduced to the ordinary differential
equation

x
′
(t)− λx(t) = −[g(x(k))− h(x(k + 1)]. (2.3)

Solving equation (2.3), we obtain

x(t) = x(k) expλ(t− k)− [g(x(k)) + h(x(k + 1)]
expλ(t− k)− 1

λ
, k < t < k + 1.

Replacing k by [t], we obtain (2.1). At t = k, we find the solution of equation (1.1) in the interval
k − 1 < t < k as

x(t) = x(k − 1) expλ(t− k + 1)− [g(x(k − 1)) + h(x(k))]
expλ(t− k + 1)− 1

λ
.

Now, using impulse condition (1.2) with the assumption of right continuity at t = k, we find difference
equation (2.2).

It is noted that impulsive differential system (1.1) − (1.2) has a unique solution satisfying the
following conditions:

x(0) = x0, x(1) = x1,

where x0 and x1 are real constants. Also, we note that under the same conditions difference equation
(2.2) has a unique solution.

Theorem 2.2. Let x be a solution to (1.1)−(1.2). If x(k) satisfies equation (2.2) such that x(k+p) =
x(k) for all k ∈ N, then we have x(t+p) = x(t) for all t ∈ [0,∞), where p is the least positive integer.

Proof. In the interval k < t < k + 1, from (2.1), we get

x(t+ p) = x(k + p) expλ(t− k)− [g(x(k + p)) + h(x(k + p+ 1))]
expλ(t− k)− 1

λ

= x(k) expλ(t− k)− [g(x(k)) + h(x(k + 1))]
expλ(t− k)− 1

λ
= x(t).

Theorem 2.3. Let x(t) be a solution to (1.1) − (1.2). If x(k) satisfies equation (2.2) such that
x(k + 1) = x(k), then x(t) is a constant.
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Proof. From (2.2) and the definition of β, we get

x(k) =
−β

1− α
[g(x(k)) + h(x(k + 1))] =

g(x(k)) + h(x(k + 1))

λ

and substituting this into (2.1) for k < t < k + 1, we have

x(t) =
g(x(k)) + h(x(k + 1))

λ
expλ(t− k)− [g(x(k)) + h(x(k + 1))]

expλ(t− k)− 1

λ

=
g(x(k)) + h(x(k + 1))

λ
.

Theorem 2.4. Assume that λ > 0 is a sufficiently small real constant. If g and h are odd functions
and there is a number a > 0 such that

g(a)− h(a) = a(d+ 1) (2.4)

and
g
′
(a) + h

′
(a) 6= −d+ 1, g

′
(a)− h′(a) 6= d+ 1, (2.5)

then there exists a solution x with the least period 2 of (1.1)− (1.2).

Proof. A solution x of (1.1)− (1.2) is given by (2.1). From Theorem 2.2, it is known that

x(t+ 2) = x(t) for all t ∈ [0,∞) (2.6)

provided that
x(k + 2) = x(k) for all k ∈ N, (2.7)

where x(k) is a solution of (2.2). So, we should only prove that (2.7) is true. Because of Theorem
1.1, we can choose a solution of (2.2) as

x(k) = a0(α) + a1(α) cosπk, (2.8)

where α = eλ, ai, i = 0, 1 are real-valued functions. Substituting (2.8) into (2.2), we obtain

a0(1− α

d
)− a1(1 +

α

d
) cosπk +

β

d
[g(a0 + a1 cos πk) + h(a0 − a1 cosπk)] = 0. (2.9)

If equation (2.9) is satisfied for k = 0 and k = 1, then it holds for all k ∈ N. So, putting k = 0 and
k = 1 into (2.9), we get the following system

a0(1− α

d
)− a1(1 +

α

d
) +

β

d
[g(a0 + a1) + h(a0 − a1)] = 0,

a0(1− α

d
) + a1(1 +

α

d
) +

β

d
[g(a0 − a1) + h(a0 + a1)] = 0. (2.10)

For λ = 0, it is α = 1 and also β(1) = 1. Hence, (2.10) reduces to the system

a0(1− 1

d
)− a1(1 +

1

d
) +

1

d
[g(a0 + a1) + h(a0 − a1)] = 0,

a0(1− 1

d
) + a1(1 +

1

d
) +

1

d
[g(a0 − a1) + h(a0 + a1)] = 0. (2.11)
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Since g and h are odd and satisfy (2.4), system (2.11) has a solution as a0 = 0, a1 = a. Therefore,
equation (2.2) has a periodic solution with period 2 as

x(k) = a cosπk. (2.12)

This means that (1.1)− (1.2) has a solution of least period 2 for λ = 0.
Now, let λ be sufficiently small. Again, we should find a solution x(k) of equation (2.2) of form

(2.8). To fulfill this, we use the Implicit Function Theorem to show that there exists a δ > 0 such
that there are functions a0(α) and a1(α) which are continuous for 0 ≤ α − 1 < δ and a0(1) = 0,
a1(1) = a. Putting (2.8) into (2.2), we find

a0(α)(1− α

d
)− a1(α)(1 +

α

d
) cosπk +

β(α)

d
[g(a0(α) + a1(α) cosπk) (2.13)

+h(a0(α)− a1(α) cosπk)] = 0.

Again, if this equation holds for k = 0 and k = 1, then it will be satisfied for all k ∈ N. Substituting
k = 0 and k = 1 into (2.14), respectively, we obtain the system

a0(α)(1− α

d
)− a1(α)(1 +

α

d
) +

β(α)

d
[g(a0(α) + a1(α)) + h(a0(α)− a1(α))] = 0,

a0(α)(1− α

d
) + a1(α)(1 +

α

d
) +

β(α)

d
[g(a0(α)− a1(α)) + h(a0(α) + a1(α))] = 0.

(2.14)

Since g and h are odd, the Jacobian determinant of system (2.14) at α = 1 is

J =
1

d2

∣∣∣∣ d− 1 + g
′
(a) + h

′
(a) −d− 1 + g

′
(a)− h′(a)

d− 1 + g
′
(a) + h

′
(a) d+ 1− g′(a) + h

′
(a)

∣∣∣∣
=

2

d2
(d2 − 1 + 2dh

′
(a) + 2g

′
(a)− g′2(a) + h

′2
(a))

=
2

d2
(g
′
(a)− h′(a)− 1− d)(g

′
(a) + h

′
(a)− 1 + d).

From (2.5), we obtain that J 6= 0 at α = 1. So, for sufficiently small λ > 0, there is a δ > 0 such
that there exist functions a0(α), a1(α) that are continuous on [1, 1+ δ) and form a solution of system
(2.14) such that a0(1) = 0, a1(1) = a.
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