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1 Introduction

The 19th Hilbert problem [13] concerns the analyticity of the solutions of regular problems in the
calculus of variations. The attempt to prove such a problem pushed many mathematicians to prove
regularity results for elliptic and parabolic linear equations. Among them, let us quote the seminal
contributions by Schauder [20, 21], who proved Hölder regularity for solutions to equations with
Hölder continuous coefficients, and the seminal works of Calderón and Zygmund [2, 3], who proved
Lp-regularity for solutions to equations with continuous coefficients by using the singular kernel
approach. This technique based on the potentials was adopted by Nash [19] to complete the proof of
the 19th Hilbert problem. More specifically, he proved that weak solutions to elliptic and parabolic
equations with L∞ coefficients are Hölder continuous. One year before, De Giorgi in [9] solved
the same problem using a completely different and totally new method based on some variational
embeddings.

The two approaches are totally different. De Giorgi’s approach was extended by Ladyženskaja,
Solonnikov and Ural’ceva in [16] to the parabolic case and by Di Benedetto to the nonlinear case (see,
for instance, [11]). A similar approach holds also in the case of nonvariational operators as proved by
Krylov and Safonov [15]. The singular kernel approach is not so flexible as the variational approach.
For its application to the nonlinear case we cite the fundamental work of Iwaniec [14], which could be
considered as the starting point of nonlinear Calderón-Zygmund theory, [18] and references therein.
Moreover, as showed by De Giorgi’s counterexample [10], general regularity results for systems are
not valid (with the exception of the case N = 2).

After De Giorgi’s breakthrough, the natural question was whether these new techniques could
be adapted to retrieve results from Schauder and Calderón-Zygmund results, namely whether the
variational technique of De Giorgi, originally conceived for equations with L∞ coefficients, could be
extended to a broader theory which could also include variational and non-variational operators of
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generic order 2m and systems of equations with smooth coefficients. Thanks to an intuition due to
De Giorgi, this goal was achieved by Campanato. He first introduced suitable function spaces and
thanks to their embedding properties he was able to prove Schauder regularity estimates for local
solutions to homogeneous equations with Hölder continuous coefficients.

The use of the variational approach to prove Lp-regularity is less straightforward. This point was
(partially) solved by Campanato and Stampacchia [7]. The strategy is the following: first one proves
regularity results in the spaces L2 and BMO (refer to [4]), then the Lp-regularity is proved by making
use of the Stampacchia interpolation theorem (as introduced in [22, 23], see also [5]). The theory was
then extended by Campanato [6] to the case m,N > 1. The problem was that the BMO regularity
requires that the coefficients are not merely continuous (using De Giorgi’s techniques requires the
Hölder continuity of the coefficients). So, the use of BMO regularity in proving Lp-regularity has
as a natural consequence an unnecessary extra regularity assumption on the coefficients, that are
assumed to be Hölder continuous instead of merely continuous.

In this short note we prove that the De Giorgi approach works in Lp with the right regularity of
the coefficients, i.e that Campanato’s assumptions can be weakened to just continuous coefficients,
recovering in this way the Lp-theory obtained by Calderón and Zygmund by means of singular
integrals. Such a result is implicitly proved in other papers (the first one was [8]), but to our
knowledge, it was never explicitly stated. Hence, the novelty of this work lies in the fact that we are
able to show that Campanato-De Giorgi’s approach is equivalent to the one of Calderon-Zygmund. In
particular, exploiting the old and original Campanato variational technique developed in the sixties,
we prove the same result obtained with the singular integral approach. For more recent techniques
concerning regularity in Lp spaces, we refer the reader to [11, 12, 18] and the references therein.

The result we prove here has the same field of application as Campanato’s techniques, i.e. it is
valid for systems, for elliptic and parabolic operators of order 2m, for variational, nonvariational and
ultraweak solutions (for the definition of ultraweak solution see, for instance, [24]). For the sake of
simplicity, here we consider only the case of elliptic equations in variational form of order 2 reduced
to the principal part, but, as already stated, this approach works in general.

Let N ∈ N and Ω be an open bounded subset of RN . By Lp(Ω) we denote the standard Lebesgue
space of p-integrable real-valued functions on Ω, and by W k,p(Ω) we denote the standard Sobolev
space of functions in Lp(Ω) with weak derivatives up to the order k in Lp(Ω).

We consider linear elliptic equations reduced to the principal part, namely of the form

−
N∑

i,j=1

Di (aijDju) = −
N∑
i=1

Difi + f0. (1.1)

Here aij(·) are assumed to be bounded and continuous functions in Ω satisfying the ellipticity con-
dition, namely that there exists ν > 0 such that

N∑
i,j=1

aij ξiξj > ν
N∑
i=1

|ξ|2 (1.2)

for all x ∈ Ω and ξ ∈ RN . We will say that u ∈ W 1,2(Ω) is a variational solution in Ω to (1.1) if∫
Ω

N∑
i,j=1

aijDjuDiφ dx =

∫
Ω

(
N∑
i=1

fiDiφ+ f0φ) dx, ∀φ ∈ W 1,2
0 (Ω),

where F := −
∑N

i=1Difi + f0 belongs to W−1,2(Ω) . This means that fi ∈ L2(Ω) for each i = 1, ..., N
and f0 ∈ Lq(Ω) where q is the maximum between 1 and 2̂ = 2N

N+2
.
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Given p > 1 and F := −
∑N

i=1Difi + f0, where fi ∈ Lp(Ω) for all i = 1, . . . , N and f0 ∈ Lq(Ω),
with q the maximum between 1 and p̂ = pN

N+p
, we define

‖F‖W−1,p(Ω) := ‖f0‖Lq(Ω) +
N∑
i=1

‖fi‖Lp(Ω).

The main result of this paper is the following:

Theorem 1.1. Fix 2 < p < ∞. Let u ∈ W 1,p
loc (Ω) be a local variational solution to (1.1) with

F ∈ W−1,p(Ω) Then for any compact set K ⊂ Ω the following inequality

‖Du‖Lp(K) 6 C
(
‖F‖W−1,p(Ω) + ‖u‖Lp(Ω)

)
(1.3)

holds. Here C is a positive constant that depends on dist(K, ∂Ω), p,N, ν, ‖aij‖∞, the modulus of
continuity ω of the functions aij and the Lebesgue measure of the set Ω.

We recall that Theorem 1.1 is proved in [7] under the assumption of Hölder continuity of the
coefficients. Hence, in this note we will assume that (1.3) holds in the case of constant coefficients.

In the sequel, as usual, C will denote a generic positive constant which may change from line to
line and also within the same line. We will explicitly write the dependence on the parameters when
needed. Moreover, by Bx(r) we denote the ball of radius r > 0 centered at the point x.

2 Regularity results for continuous coefficients

Recall that the coefficients aij are continuous in Ω. In order to localize the solution u we will use
a Vitali covering of the compact set K ⊂ Ω. Hence, we assume that for every ε > 0 there exists a
finite family of points {xk}k=1,...,nε ⊂ K such that

K ⊂ ∪
k=1,...,nε

Bxk(ε)

and
Bxi(2ε) ∩Bxj(2ε) = ∅

except for a finite number mK of indices. Using the Vitali covering we introduce smooth cut-off
functions θk ∈ C∞0 (RN), k = 1, . . . , nε such that

θk(x) :=

{
1 in Bxk(ε),

0 in Bxk(2ε)
c.

We will use the functions θk in order to localize the solution u to the ball Bxk(2ε).
Recall that the variational formulation of (1.1) reads as follows:∫

Ω

N∑
i,j=1

aijDjuDiφ dx =

∫
Ω

N∑
i=1

fiDiφ dx+

∫
Ω

f0 φ dx.

For a general number r ∈ (1,∞), denote by r∗ := rN
N−r the corresponding critical Sobolev exponent.

Note that if we take u ∈ W 1,p(Ω) (thus taking the test functions φ ∈ W 1,p′(Ω)), the minimal
requirement for F so that the integrals above are well defined is that fi ∈ Lp(Ω) and f0 ∈ Lq(Ω)
with q = ((p′)∗)′ = p̂ = pN

N+p
, thanks to the Sobolev embedding (cf. [17, Theorem 12.4]). Note also

that q∗ = p.
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Proposition 2.1. Let u ∈ W 1,2(Ω) be a variational solution to (1.1) with F ∈ W−1,2(Ω). Then, for
any compact K ⊂ Ω the following estimate

‖Du‖2
L2(K) 6 C

(
‖u‖2

L2(Ω) + ‖F‖2
W−1,2(Ω)

)
holds, where C = C(dist(K, ∂Ω), ν, N, ‖aij‖L∞(Ω)) is independent of u ∈ W 1,2(Ω).

Proof. Let k ∈ {1, . . . , nε} be fixed. Using θ2
ku ∈ W

1,2
0 (Ω) as test function, we have∫ ∑

aijDjuDi(θ
2
ku)dx =

∫ ∑
aijDju (θkuDiθk + θkDi(θku)) dx.

Moreover, using the identity θkDju = Dj(θku)− uDjθk we get that∫ ∑
aijDjuDi(θ

2
ku)dx

=

∫ ∑
[aijuDiθk (Dj(θku)− uDjθk) + aijDi(θku) (Dj(θku)− uDjθk)] dx

=

∫ ∑
aiju(Diθk)Dj(θku)dx−

∫ ∑
aiju

2(Diθk)(Djθk)dx

+

∫ ∑
aijDi(θku)Dj(θku)dx−

∫ ∑
aijuDi(θku)Djθk dx.

Hence ∫ ∑
aijDj(θku)Di(θku)dx =

∫ ∑
aijDjuDi(θ

2
ku)−

∫ ∑
aiju(Diθk)Dj(θku)dx

+

∫ ∑
aiju

2(Diθk)(Djθk)dx+

∫ ∑
aijuDi(θku)Djθk dx =: I1 + I2 + I3 + I4. (2.1)

We note that
D(θ2

ku) = (Dθk)(θku) + θkD(θku),

thus
‖D(θ2

ku)‖2
L2(Ω) ≤ C

(
‖θku‖2

L2(Ω) + ‖D(θku)‖2
L2(Ω)

)
. (2.2)

By definition of variational solution, and using the Peter-Paul inequality, we have that

|I1| =
∣∣∣∣ ∫ (∑ fiDi(θ

2
ku) + f0(θ2

ku)
)
dx

∣∣∣∣
≤ C

(
c(ε)‖F‖2

W−1,2(Bxk (2ε)) + ε‖θ2
ku‖2

W 1,2(Ω)

)
6 C

(
‖F‖2

W−1,2(Bxk (2ε)) + ‖θ2
ku‖2

L2(Ω) + ε‖D(θ2
ku)‖2

L2(Ω)

)
≤ C

(
‖F‖2

W−1,2(Bxk (2ε)) + ‖u‖2
L2(Bxk (2ε)) + ε‖D(θku)‖2

L2(Ω)

)
,

where in the last inequality we have used (2.2). Again using the Peter-Paul inequality we also have
that

|I2| 6 C
(
‖u‖2

L2(Bxk (2ε)) + ε‖D(θku)‖2
L2(Ω)

)
,

and a similar estimate holds for the term I4. Finally, it is readily seen that

|I3| 6 C‖u‖2
L2(Bxk (2ε)).
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Therefore, from (2.1) and ellipticity assumption (1.2) we get

ν‖D(θku)‖2
L2(Ω) 6 C1‖F‖2

W−1,2(Bxk (2ε)) + C2‖u‖2
L2(Bxk (2ε)) + C3ε‖D(θku)‖2

L2(Ω).

Hence, taking ε > 0 small enough

‖Du‖2
L2(Bxk (ε)) ≤ ‖D(θku)‖2

L2(Ω) 6 C
(
‖F‖2

W−1,2(Bxk (2ε)) + ‖u‖2
L2(Bxk (2ε))

)
.

Summing up over the elements of the Vitali covering we can conclude that

‖Du‖2
L2(K) 6 mK C

(
‖u‖2

L2(Ω) + ‖F‖2
W−1,2(Ω)

)
which is the desired estimate.

Remark 1. A careful inspection of the passages in the previous proof reveals that the final constant
C > 0 depends only on the ellipticity constant ν, the dimension N , the L∞-norm of the coefficients
aij and the distance dist(K, ∂Ω) of the compact set K from the boundary of Ω.

Recall that 2∗ = 2N
N−2

denotes the critical Sobolev exponent.

Proposition 2.2. Fix 2 < p ≤ 2∗ if N > 2, 2 < p < ∞ if N ≤ 2. Let u ∈ W 1,p(Ω) be a local
variational solution to (1.1) with F ∈ W−1,p(Ω). Then for any compact set K ⊂ Ω the following
inequality

‖Du‖Lp(K) 6 C
(
‖F‖W−1,p(Ω) + ‖u‖L2(Ω)

)
(2.3)

holds. Here C is a positive constant that depends on dist(K, ∂Ω), p,N, ν, ‖aij‖∞ and the modulus of
continuity ω of the functions aij.

Proof. We make use of the Vitali covering of the compact set K again. Note that here we assume
that

Bxi(3ε) ∩Bxj(3ε) = ∅

except for a finite number mK of indices. Thus, fix k ∈ {1, . . . , nε} and φ ∈ W 1,p′

0 (Ω) (note that
θku ∈ W 1,p(Ω)). Since by assumption u is a variational solution, taking θkφ ∈ W 1,p′

0 (Ω) as a test
function we have that∫ (∑

fiDi(θkφ) + f0(θkφ)
)
dx =

∫ ∑
aijDjuDi(θkφ) dx.

Moreover∫ ∑
aijDjuDi(θkφ) dx =

∫ ∑
aijDju(Diθk)φ dx+

∫ ∑
aij(Dju)θk(Diφ) dx

=

∫ ∑
aijDju(Diθk)φ dx+

∫ ∑
aijDj(θku)(Diφ) dx−

∫ ∑
aij(Djθk)u(Diφ) dx.
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Therefore we have that∫ ∑
aijDj(θku)Diφ dx

=

∫ ∑
aij(Dju)Di(θkφ)dx−

∫ ∑
aijDju(Diθk)φ dx+

∫ ∑
aij(Diφ)(Djθk)u dx

=

∫ ∑
fiDi(θkφ)dx+

∫
f0(θkφ)dx−

∫ ∑
aijDju(Diθk)φ dx

+

∫ ∑
aij(Diφ)(Djθk)u dx

=

∫ ∑(
fiDiθk − aij(Diθk)(Dju)

)
φ dx+

∫
f0θkφ dx

+

∫ ∑(
fiθk + aij(Diθk)u

)
Diφ dx.

Since this holds for every φ ∈ W 1,p′

0 (Ω), the function θku is a variational solution in Ω of the following
problem

N∑
i=1

Di (aij(x)Dj(θku)) = F̃ :=
N∑
i=1

Dif̃i + f̃0,

where

f̃0 := f0θk +
N∑

i,j=1

(
fiDiθk − aij(Diθk)(Dju)

)
and

f̃i := fiθk +
N∑
j=1

aij(Diθk)u, for every i = 1, . . . , N.

Since p < 2∗ it is not difficult to see that q < 2. Moreover, note that if S ⊂ RN has finite
Lebesgue measure |S| <∞, and 1 ≤ r ≤ t then Lt(S) ⊂ Lr(S) and

‖g‖Lr(S) ≤ |S|
t−r
tr ‖g‖Lt(S) for all g ∈ Lt(S).

From this observation we have that f̃0 ∈ Lq(Ω) since f0 ∈ Lq(Ω), fi ∈ Lp(Ω), Dju ∈ Lploc(Ω), and
we have the following inequality

‖f̃0‖Lq(Ω) ≤ C

(
‖f0‖Lq(Bxk (2ε)) +

N∑
i=1

‖fi‖Lq(Bxk (2ε)) + ‖Du‖Lq(Bxk (2ε))

)

≤ C

(
‖f0‖Lq(Bxk (2ε)) +

N∑
i=1

‖fi‖Lp(Bxk (2ε)) + ‖Du‖L2(Bxk (2ε))

)
≤ C

(
‖F‖W−1,p(Bxk (2ε)) + ‖u‖L2(Bxk (3ε)) + ‖F‖W−1,2(Bxk (3ε))

)
≤ C

(
‖F‖W−1,p(Bxk (3ε)) + ‖u‖L2(Bxk (3ε))

)
.

Observe that in the second-to-last passage in the above inequality we have made use of Proposition
2.1, which yields

‖Du‖L2(Bxk (2ε)) 6 C
(
‖u‖L2(Bxk (3ε)) + ‖F‖W−1,2(Bxk (3ε))

)
. (2.4)
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Moreover, by the Sobolev embedding (cf. [17, Theorem 12.4]) and (2.4) we also get that

‖u‖Lp(Bxk (2ε)) ≤ C‖u‖W 1,2(Bxk (2ε)) ≤ C
(
‖u‖L2(Bxk (3ε)) + ‖F‖W−1,2(Bxk (3ε))

)
≤ C

(
‖u‖L2(Bxk (3ε)) + ‖F‖W−1,p(Bxk (3ε))

)
. (2.5)

Therefore for every i = 1, . . . , N we have that f̃i ∈ Lp(Ω) since fi ∈ Lp(Ω) and u ∈ Lploc(Ω), and the
following inequality

‖f̃i‖Lp(Ω) ≤ C
(
‖fi‖Lp(Bxk (2ε)) + ‖u‖Lp((Bxk (2ε))

)
≤ C

(
‖F‖W−1,p(Bxk (2ε)) + ‖u‖L2(Bxk (2ε))

)
holds. By the above computations we get that

‖F̃‖W−1,p(Ω) ≤ C
(
‖F‖W−1,p(Bxk (3ε)) + ‖u‖L2(Bxk (3ε))

)
. (2.6)

Freezing the coefficients with respect to the point xk, we obtain

N∑
i=1

Di

(
aij(xk)Dj(θku)

)
= F̃ −

N∑
i,j=1

Di

(
(aij(xk)− aij(x))Dj(θku)

)
. (2.7)

Define G ∈ W 1,p(Ω) as the right-hand side of (2.7). Using the Campanato-Stampacchia estimate for
Hölder continuous coefficients (refer to (4.1) in [7]), which in particular holds for constant coefficients,
and inequality (2.6), we obtain

‖D(θku)‖Lp(Ω) ≤ C‖G‖W−1,p(Ω) ≤ C
(
‖F̃‖W−1,p(Ω) + ω(2ε)‖D(θku)‖Lp(Ω)

)
≤ C

(
‖F‖W−1,p(Bxk (3ε)) + ‖u‖L2(Bxk (3ε)) + ω(2ε)‖D(θku)‖Lp(Ω)

)
.

Here ω(·) denotes the modulus of continuity of the coefficients aij. Taking ε > 0 small enough we
get

‖Du‖Lp(Bxk (ε)) ≤ ‖D(θku)‖Lp(Ω) ≤ C
(
‖F‖Lp(Bxk (3ε)) + ‖u‖L2(Bxk (3ε))

)
.

Summing up over the elements of the Vitali covering we finally get

‖Du‖Lp(K) 6 mK C
(
‖F‖W−1,p(Ω) + ‖u‖L2(Ω)

)
,

which is the desired estimate.

Remark 2. Upon careful inspection of the passages in the previous proof, one realizes that the
constant C in (2.3) depends on the same parameters dist(K, ∂Ω), ν, N, ‖aij‖L∞(Ω) as in Proposition
2.1, and on the additional parameters p and ω(·), the modulus of continuity in Ω of the coefficients
aij.

Proof of Theorem 1.1. By Proposition 2.2 we obtain that

‖Du‖Lp(K) 6 C
(
‖F‖W−1,p(Ω) + ‖u‖Lp(Ω)

)
holds for 2 < p ≤ 2∗. Reproducing the same argument for 2∗ < p ≤ 2∗∗ and so on, one can prove the
validity of (1.3) for any p ∈ (2,+∞).
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Remark 3. By duality arguments, one also can prove similar estimates for any p ∈ (1, 2). Indeed, if
p > 2 and p′ = p/(p− 1) ∈ (1, 2) is the conjugate exponent of p, inequality (1.3) holds also replacing
p by p′, assuming additionally that F ∈ W−1,p′(Ω). Recall that

‖Du‖Lp′ (K) = sup
gi∈Lp(Ω)

supp gi⊂K
‖gi‖Lp(Ω)≤1

∫ N∑
i=1

(Diu)gi dx,

where K ⊂⊂ Ω. We fix (g1, . . . , gN) ∈ Lp(Ω)× · · · × Lp(Ω) such that ‖gi‖Lp(Ω) 6 1 and supp gi ⊂ K

for each i = 1, . . . , N . Consider the local variational solution w ∈ W 1,p
0 (K) to the Dirichlet problem

in K associated with

−
N∑

i,j=1

Di(ajiDjw) = −
N∑
i=1

Digi =: G

(such a solution exists since by assumption the coefficients aji(·) satisfy the ellipticity condition, thus
the operator associated with them is coercive, and one can apply Lax-Milgram theory). Since w
satisfies the Dirichlet boundary conditions, and (1.3) holds for p > 2, we have that

‖Dw‖Lp(K) ≤ C‖G‖W−1,p(Ω).

Using the fact that u is a variational solution to (1.1) we get that∫ N∑
i=1

(Diu)gi dx =

∫ N∑
i,j=1

ajiDjwDiu dx =

∫ N∑
i=1

fi(Diw) dx+

∫
f0w dx

≤
N∑
i=1

‖fi‖Lp′ (K)‖Diw‖Lp(K) + ‖f0‖Lq(K)‖w‖Lp∗ (K)

≤ C

(
N∑
i=1

‖fi‖Lp′ (Ω) + ‖f0‖Lq(Ω)

)
‖Dw‖Lp(K) + ‖f0‖Lq(Ω)‖w‖Lp(K)

≤ C‖F‖W−1,p′ (Ω)‖Dw‖Lp(K)

≤ C‖F‖W−1,p′ (Ω)‖G‖W−1,p(K)

≤ C‖F‖W−1,p′ (Ω)

where q is such that q∗ = p′. Here we have first used the Sobolev embedding W 1,p ⊂ Lp
∗ , then the

Poincare inequality for functions in W 1,p
0 (cf. [1, Corollary 9.19]). Finally, taking the supremum with

respect to all gi ∈ Lp(Ω) such that ‖gi‖ ≤ 1 and supp gi ⊂ K, we obtain

‖Du‖Lp′ (K) ≤ C‖F‖W−1,p′ (Ω).
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