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1 Introduction

This survey is a continuation of [32] where a general and unified approach to trigonometric ap-
proximation in Lp-spaces with 0 < p ≤ ∞ has been presented. Based on the earlier papers
[19, 28, 29, 30, 31, 33] we established a general convergence theorem and determined the ranges of
convergence for approximation (summation) methods generated by classical kernels. The aim of this
second part is twofold. On the one-hand we shall deal with the equivalence of approximation errors
for families of linear polynomial operators and Fourier means in terms of generalized K-functionals
and adapted moduli of smoothness. Here we follow our earlier papers [2, 3, 20, 23, 24, 34, 35, 36]. On
the other-hand we shall use these results in order to give characterizations of periodic Besov spaces
Bsp,q(Td) in terms of approximation processes, generalized K-functionals and θ-moduli of smoothness,
where the focus lies on the case 0 < p < 1. Some of these results have been already announced in
[4].

The paper is organized as follows. In Section 2 we introduce families of linear polynomial opera-
tors, Fourier means and interpolation (sampling) means and recall the general convergence theorem.
Section 3 is concerned with K-functionals associated with general differential operators generated
by homogeneous functions. We establish a Bernstein-type inequality (Theorem 3.2) and deal with
the equivalence of approximation errors and appropriate K-functionals in Lp-spaces, 0 < p ≤ ∞
(Theorems 3.3, 3.4). Periodic Besov (Nikol’skii, Hölder-Zygmund) spaces Bsp,q(Td) are considered in
Section 4 for the range of parameters 0 < p ≤ ∞, 0 < q ≤ ∞, 0 ≤ s < ∞. We rely both on the
classical definition by means of differences and related moduli of smoothness and the Fourier-analytic
approach as decomposition spaces. We describe their interrelation (Proposition 4.1) and give charac-
terizations as approximation spaces as well as by means of generalized K-functionals (Propositions
4.2, 4.3). Section 5 is devoted to the characterization of Besov spaces via constructive approximation
processes. We present general results based on Sections 3 and 4 (Theorems 5.1, 5.2, 5.3). Applica-
tions to summation methods associated with de la Vallée-Poussin and Riesz kernels are presented
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in Subsections 5.2 and 5.3. The results collected in Sections 4 and 5 are covered as special cases
in the more general approach within the framework of spaces with generalized smoothness given in
[5]. We shall sketch the proofs for better understanding and reading. The final Section 6 deals with
various types of moduli of smoothness, their equivalence with generalized K-functionals and, as a
consequence, with related characterizations of periodic Besov spaces by means of various θ-moduli
of smoothness (Theorems 6.1, 6.2, Corollary 6.1 as well as Subsections 6.2, 6.3 and 6.4).

2 Preliminaries

2.1 Notations

Unimportant positive constants are denoted by c (sometimes with subscripts). The relationA(f, σ) .
B(f, σ) means that there exists a positive constant c that does not depend on f and σ such that
A(f, σ) ≤ cB(f, σ). We shall write A(f, σ) � B(f, σ) if A(f, σ) . B(f, σ) . A(f, σ). Symbols
N ,Z ,R ,C denote the sets of natural numbers, integers, real and complex numbers, respectively.
Furthermore, N0 = N ∪ {0} and a+ = max(0, a) for a ∈ R. We denote by Lp(Td), where d ∈
N, 0 < p <∞, the space of Lebesgue-measurable functions on the d-dimensional torus Td = [0, 2π)d

equipped with the finite norm (quasi-norm if 0 < p < 1 )

‖ f ‖p =

 ∫
Td

|f(x)|p dx

1/p

< ∞ . (2.1)

In the case p = ∞ we always consider the space C(Td) of continuous functions equipped with the
norm

‖ f ‖∞ = sup
x∈Td

|f(x)| < ∞ . (2.2)

As usual, Lp(Rd) stands for the Lebesgue space on the euclidean d-space Rd. Henceforth we put
p̃ = min(1, p) and the triangle inequality can be written for all 0 < p ≤ ∞ in the form

‖f + g‖p̃p 6 ‖f‖p̃p + ‖g‖p̃p .

By S(Rd) and S ′(Rd) we denote the Schwartz space of infinitely differentiable rapidly decreasing
functions and its dual space of tempered distributions, respectively. Further, C∞0 (Rd) stands for the
set of all infinitely differentiable functions with compact support. The Fourier transform F and its
inverse F−1 are continuous bijective linear mappings of S(Rd) and S ′(Rd) onto itself. If f ∈ L1(Rd)
then they are given by

Ff(ξ) =

∫
Rd

f(x)e−ixξdx , ξ ∈ Rd, xξ =
d∑
j=1

xjξj,

and
F−1f(x) = (2π)−d

∫
Rd

f(ξ)eixξdξ = (2π)−dFf(−x) , x ∈ Rd,

respectively.
By D′(Td) we denote the space of periodic distributions and by f∧(ν), ν ∈ Zd, the Fourier

coefficients of f ∈ D′(Td). If f ∈ L1(Td) then

f∧(ν) = (2π)−d
∫
Td

f(x) e−iνx dx, ν ∈ Zd.
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Let σ ∈ R, σ > 0. We denote by

Tσ := {g : g(x) =
∑
|ν|<σ

cν e
iνx, cν ∈ C, c−ν = cν}

(|ν|2 =
d∑
j=1

ν2
j ) the space of all trigonometric polynomials of (spherical) degree less than σ. Let us

put T =
⋃
σ>0

Tσ for the space of all trigonometric polynomials. If f ∈ Lp(Td), 0 < p ≤ ∞, and σ > 0

then
Eσ(f)p := inf{‖f − g‖p : g ∈ Tσ} (2.3)

stands for its best approximation in Lp(Td) by trigonometric polynomials belonging to Tσ.

2.2 Approximation methods

We say that a complex-valued continuous function defined on Rd belongs to the class K if:

(i) it has compact support, i. e.

r(ϕ) := sup {|ξ| : ϕ(ξ) 6= 0} <∞ ,

(ii) ϕ(−ξ) = ϕ(ξ), ξ ∈ Rd,

(iii) its Fourier transform belongs to L1(Rd) and ϕ(0) = 1.

The kernels associated with ϕ ∈ K are defined as

Wϕ
n (y) =

∑
ν∈Zd

ϕ
(ν
n

)
eiνy, n ∈ N, y ∈ Td . (2.4)

The Fourier means (or convolution means) generated by ϕ ∈ K are defined as

Mϕ
nf(x) = (2π)−d

∫
Td

f(y)Wϕ
n (x− y) dy (2.5)

if f ∈ Lp(Td), 1 ≤ p ≤ ∞, and
Mϕ

nf(x) = 〈f, Wϕ
n (x− ·)〉 (2.6)

if f ∈ D′(Td). Note that (2.5) and (2.6) can be reformulated as

Mϕ
nf(x) =

∑
ν∈Zd

ϕ
(ν
n

)
f∧(ν) eiνx, n ∈ N, x ∈ Td . (2.7)

This shows thatMϕ
nf is a trigonometric polynomial of order less than n r(ϕ). Clearly, the sequence

of operators (Mϕ
n)n∈N forms an approximate identity.

A function ϕ ∈ K also generates the family of linear polynomial operators {Lϕn}n∈N given by

Lϕnf(x, λ) = (2N + 1)−d
2N∑
k=0

f(tkN + λ)Wϕ
n (x− tkN − λ) . (2.8)
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Here (x, λ) ∈ Td × Td, N = [r n] (r ≥ r(ϕ)), and

tkN =
2πk

2N + 1
(k ∈ Zd),

2N∑
k=0

=
2N∑
k1=0

· · ·
2N∑
kd=0

.

These families have been systematically studied in [19, 20, 21, 22, 23, 24, 34] and further papers
of the authors. The approximation error of f −Lϕnf is measured in the space Lp(Td×Td), equipped
with the quasi-norm

‖g‖p = (2π)−d/p

∫
Td

‖g(·, λ)‖pp dλ

1/p

(modification by sup
λ∈Td

. . . if p =∞).

Moreover, we consider the sampling operators Sϕn defined on C(Td) as

Sϕn f(x) = (2N + 1)−d
N∑
k=0

f(tkN)Wϕ
n (x− tkN), n ∈ N. (2.9)

Let us recall that

‖f − Lϕnf‖p → 0 if and only if Fϕ ∈ Lp̃(Rd) (p̃ = min(p, 1))

(see [19, Theorem 4.1]). Under these assumptions (2.8) makes sense for almost all (x, λ) and Lϕnf(·, λ)
is a trigonometric polynomial of degree less than r(ϕ)n for almost all λ ∈ Td. Furthermore, if ϕ ∈ K
then we have the equivalences

‖f −Mϕ
nf‖p � ‖f − Lϕnf‖p, n ∈ N, (2.10)

for all f ∈ Lp(Td), 1 ≤ p ≤ ∞, as well as

‖f − Sϕn f‖∞ � ‖f −Mϕ
nf‖∞, n ∈ N, (2.11)

for all f ∈ C(Td). These are proved in [19, Theorem 4.1] and [28, Theorem 6].

3 Generalized K-functionals

Let α > 0 be a real number. We denote by Hα the class of all complex-valued continuous functions
ψ defined on Rd satisfying the conditions:

(i) ψ is infinitely differentiable on Rd \ {0} and ψ(ξ) 6= 0 on Rd \ {0},

(ii) ψ(ξ) = ψ(−ξ) for ξ ∈ Rd \ {0},

(iii) ψ is homogeneous of degree α, i. e. ψ(tξ) = tα ψ(ξ) for all t > 0 and ξ ∈ Rd \ {0}.
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If ψ ∈ Hα then we define an associated (differential) operator ψ(D) on the space of all trigono-
metric polynomials T as

(ψ(D) g)(x) =
∑
ν∈Zd

ψ(ν)g∧(ν) eiνx , x ∈ Td. (3.1)

The generalized K-functional related to ψ(D), ψ ∈ Hα, is defined on Lp(Td), 0 < p ≤ ∞, as

Kψ(f, t)p = inf
g∈T1/t

(‖f − g‖p + tα ‖ψ(D)g‖p), t > 0. (3.2)

Let us also introduce the functional

KKKψ(f, t)p = inf{ ‖f − g‖p + tα ‖ψ(D)g‖ : g ∈ T } , 0 < t ≤ 1 , (3.3)

for f ∈ Lp(Td) if 1 ≤ p ≤ ∞. The following equivalence is proved in [23, Theorem 4.21].

Theorem 3.1. Let ψ ∈ Hα for some α > 0 and let 1 ≤ p ≤ ∞. Then

Kψ(f, t)p � KKKψ(f, t)p , 0 < t ≤ 1, f ∈ Lp(Td). (3.4)

Remark 1. The definition (3.2) goes back to [11], where the equivalence of functionals (3.2) related
to ψ(D)g = g(k) (k-th derivative) and the moduli of smoothness of order k has been proved on
Lp(T), 0 < p ≤ ∞. Note that in contrast to the functional KKKψ defined in (3.3) it makes sense on
Lp(Td), 0 < p ≤ ∞. The functional Kψ is also called polynomial Kψ-functional or realization of the
functional KKKψ because of the above theorem.

Obviously,
(
Kψ(f, n−1)p

)
n∈N is a monotonically decreasing sequence and

En(f)p ≤ Kψ(f, n−1)p, f ∈ Lp(Td), 0 < p ≤ ∞, n ∈ N. (3.5)

Moreover the following properties are of peculiar interest.

Theorem 3.2. Let 0 < p ≤ ∞ and let ψ ∈ Hα for some α > 0.
(1) The following inequality

Kψ(f, δt)p . δα+d( 1
p
−1)+ Kψ(f, t)p (3.6)

holds for all 0 < t, δ ≤ 1 and f ∈ Lp(Td).
(2) Let 0 < r ≤ min(1, p). Then

Kψ(f, t)p . tα

 ∑
1≤n≤1/t

nαr−1En(f)rp

1/r

(3.7)

for all 0 < t ≤ 1 and f ∈ Lp(Td).

For a proof of (3.6) see [23, Theorem 4.22]. The Bernstein-type inequality (3.7) is proved in [23,
Theorem 4.26].

To formulate the main results we need some further notation. Let v and w be continuous
functions on Rd. Let 0 < q ≤ ∞ and let η ∈ C∞0 (Rd). In the sequel we shall write v(·)

(q, η)
≺ w(·), if

F [ (ηv)/w ] belongs to Lq(Rd). The notation v(·)
(q, η)
� w(·) indicates equivalence which means that

v(·)
(q, η)
≺ w(·) and w(·)

(q, η)
≺ v(·) simultaneously.
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Theorem 3.3. ([20, Theorem 4.1]) Let 0 < p ≤ ∞, ϕ ∈ K, Fϕ ∈ Lp̃(Rd) and let ψ ∈ Hα for some

α > 0. If 1− ϕ(·)
(p̃, η)
≺ ψ(·) for some η ∈ C∞0 (Rd) satisfying η(ξ) = 1 in a neighborhood of zero then

‖f − Lϕnf‖p . Kψ(f, n−1)p (3.8)

for all n ∈ N and f ∈ Lp(Td).

Theorem 3.4. ([20, Theorem 5.1]) Let 0 < p ≤ ∞, ϕ ∈ K such that r(ϕ) ≤ 1 and Fϕ ∈ Lp̃(Rd).
Let ψ ∈ Hα for some α > 0. Let η ∈ C∞0 (Rd) and χ ∈ C∞0 (Rd) such that η(ξ) = 1 for |ξ| ≤ % < 1/2,

χ(ξ) = 1 for 2% ≤ |ξ| ≤ 1, and η(ξ) + χ(ξ) = 1 for |ξ| ≤ 1. If ψ(·)
(p̃, η)
≺ 1 − ϕ(·) and if there exists

m ∈ N such that (ϕ(·))m
(p̃, χ)
≺ 1− ϕ(·) then

Kψ(f, n−1)p . ‖f − Lϕnf‖p (3.9)

for all n ∈ N and f ∈ Lp(Td).

Remark 2. In view of equivalences (2.10) and (2.11) under the assumptions of the above theorems
(with p̃ = 1) we can replace ‖f − Lϕnf‖p in (3.8) and (3.9) by ‖f −Mϕ

nf‖p if 1 ≤ ∞ as well as
‖f − Sϕn f‖∞ if p =∞. Recall that f ∈ C(Td) if p =∞.

4 Besov spaces

The nowadays classical Besov spaces Bsp,q of functions defined on the Euclidean d-dimensional space
Rd or the d-dimensional torus Td represent scales of spaces which are appropriate to measure the
smoothness of functions. The spaces have been introduced and investigated by O.V. Besov in [6] for
the range of parameters s > 0, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. In the particular case q = ∞ their
definition is due to S.M. Nikol’skii [17]. The case p = q = ∞ corresponds to the scale of Hölder-
Zygmund spaces. Let us also mention that the spaces Bsp,p for 1 < p < ∞ have been introduced
in connection with boundary values of functions defined on domains by N. Aronszajn [1], L.N.
Slobodeckij [46] and E. Gagliardo [13]. Besov spaces have found various applications, for example,
in PDE’s, in approximation theory, in computational mathematics as well as in stochastic processes.
The aim of this section is to describe the definition via moduli of smoothness as well as the Fourier-
analytic approach. For later use we give characterizatioins as approximaten spaces and by means of
generalized K-functionals.

4.1 The approach by differences

Let f ∈ Lp(Td), 0 < p ≤ ∞ and let k ∈ N. Then

(
∆k
hf
)

(x) =
k∑
j=0

(
k

j

)
(−1)k−jf(x+ jh) (4.1)

(x ∈ Td, h ∈ Td). We have(
∆1
hf
)

(x) = f(x+ h)− f(x) and
(
∆k+1
h f

)
(x) = ∆1

h

(
∆k
hf
)

(x) , k ∈ N.

The modulus of continuity of order k of f ∈ Lp(Td) is defined as

ωk(f, t)p = sup
|h|≤t
‖∆k

hf‖p , t > 0 . (4.2)
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Definition 1. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ≥ 0 and let k ∈ N such that k > s. The space Bsp,q(Td)
consists of all functions f ∈ Lp(Td) such that

‖f |Bsp,q‖k = ‖f‖p +

 1∫
0

t−sqωk(f, t)
q
p

dt

t

1/q

(4.3)

is finite if q <∞ and
‖f |Bsp,∞‖k = ‖f‖p + sup

0<t<1
t−sωk(f, t)p (4.4)

is finite if q =∞

Remark 3. The spaces are independent of the number k, meaning that different values of k > s
in (4.3) and (4.4) result in equivalent quasi-norms. Henceforth we shall write ‖f |Bsp,q‖ in place
of ‖f |Bsp,q‖k. The spaces Bsp,q(Td) are quasi-Banach spaces (Banach spaces if min(p, q) ≥ 1).

The integral in (4.3) can be replaced by
δ∫

0

. . . dt
t
, the supremum in (4.4) by sup

0<t<δ
. . . , where

0 < δ ≤ ∞ (equivalent definitions and quasi-norms). The definition goes back to S.M. Nikol’skii
[17] if q = ∞, 1 ≤ p ≤ ∞ and to O.V. Besov [6] if 1 ≤ q < ∞, 1 ≤ p ≤ ∞. As for the
extension to 0 < p < 1 and 0 < q ≤ ∞ and the corresponding proofs we refer to [8, Chapter 2,
Section 10, Theorem 10.1]. Note that (4.3) is finite for each f ∈ Lp(Td) if s is negative. Thus the
restriction to s > 0 is natural (apart from the limiting case s = 0 in (4.3)). Moreover, we have
B0
p,∞(Td) = Lp(Td) (= C(Td) if p =∞). Hence the limiting case s = 0 is of interest if q <∞, only.

The spaces B0
p, q(Td) have been considered in [7].

4.2 The Fourier-analytical approach

We follow [41, Chapter 3]. Let χ0 ∈ S(Rd) be such that

suppχ0 ⊂ {ξ ∈ Rd : |ξ| ≤ 1} and χ0(ξ) = 1 if |ξ| ≤ 1

2
.

For each j ∈ N we put
χj(ξ) = χ0(2−jξ) − χ0(2−j+1ξ) .

Then
∞∑
j=0

χj(ξ) = 1, ξ ∈ Rd

and {χj}j∈N0 is called a smooth dyadic decomposition of unity.
Given f ∈ D′(Td) we define

(χj(D) f)(x) =
∑
ν∈Zd

χj(ν) f∧(ν) eiνx , j ∈ N0, x ∈ Td .

Definition 2. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, and let {χj}j∈N0 be a smooth dyadic decomposi-
tion of unity. The space Bs

p,q(Td) is the collection of all distributions f ∈ D′(Td) such that

‖f |Bs
p,q‖χ =

(
∞∑
j=0

2sjq ‖χj(D)f‖qp

)1/q

< ∞ (4.5)



Methods of trigonometric approximation and generalized smoothness. II. 25

if q <∞ and
‖f |Bs

p,∞‖χ = sup
j∈N0

2sj ‖χj(D)f‖p < ∞ (4.6)

if q =∞.

Remark 4. The spaces Bs
p,q(Td) are quasi-Banach spaces (Banach spaces if min(p, q) ≥ 1). The

definition is independent of the choice of χ0 in the sense of equivalent quasi-norms. Henceforth we
shall write ‖f |Bs

p,q‖ in place of ‖f |Bs
p,q‖χ.

Proposition 4.1. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R, s > d(1
p
− 1)+. Then

Bs
p,q(Td) = Bsp,q(Td) . (4.7)

A proof can be found in [52, Theorem 2.5.12] in the non-periodic case (spaces on Rd). As far as
the periodic case is concerned we refer to [41, Remark 3.5.4/4]. See also [41, Corollary 3.7.1] and
Proposition 4.2 below.

Remark 5. If 0 < p < 1 and s > d(1
p
− 1) then

Bs
p,q(Td) ⊂ L1(Td) ⊂ Lp(Td)

for all q, 0 < q ≤ ∞. If 0 < p < 1 and s < d(1
p
− 1) then the periodic Delta-distribution belongs to

Bs
p,q(Td) (cf. [41, Remark 3.5.1/3] and [43, Remark 9]). Hence

Bs
p,q(Td) 6= Bsp,q(Td) if s < d(

1

p
− 1)

In the limiting case s = d(1
p
− 1)+ we have that

Bs
p,q(Td) ⊂ L1(Td)

if and only if 0 < p ≤ 1 and 0 < q < 1 or 1 < p ≤ ∞ and 0 < q ≤ min(p, 2) (see [45, Theorem 3.3.2]
for a proof in the non-periodic case).

The question about the diversity of spaces Bsp,q and Bs
p,q attracted some attention. The necessity

of the assumption s > d(1
p
− 1) in the case 0 < p < 1 has been proved in [42, Corollary 3.10] in the

non-periodic case. We refer also to the investigations in [15] within a more general framework.

4.3 Besov spaces as approximation spaces

Definition 3. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and let s ≥ 0. The approximation space As
p,q(Td)

consists of all functions f ∈ Lp(Td) such that

‖f |As
p,q‖ = ‖f‖p +

(
∞∑
n=1

nsq−1En(f)qp

)1/q

< ∞ (4.8)

if 0 < q <∞ and
‖f |Asp,∞‖ = ‖f‖p + sup

n∈N
nsEn(f)p < ∞ (4.9)

if q =∞.
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Remark 6. By standard arguments using the monotonicty of best approximation we obtain the
equivalences

∞∑
n=1

nsq−1En(f)qp �
∞∑
j=0

2sjq E2j(f)qp . (4.10)

and
sup
n∈N

nsEn(f)p � sup
j∈N0

2sj E2j(f)p (4.11)

for all admitted parameters 0 < p ≤ ∞, 0 < q <∞, and s ≥ 0.

Lemma 4.1. Let 0 < p < 1, 0 < q ≤ ∞, s > d(1
p
− 1). If f ∈ As

p,q(Td) then f ∈ L1(Td).

Proof. Because of
As+ε
p,∞(Td) ↪→ As

p,q(Td) ↪→ As
p,∞(Td)

we may assume q <∞ without loss of generality. We may choose trigonometric polynomials gj ∈ T2j

such that ‖f − gj‖p ≤ 2E2j(f)p. Then lim
j→∞

gj = f in Lp(Td). By Nikol’skij’s inequality for

trigonometric polynomials (see, for example, [41, Theorem 3.3.2 and Remark 3.3.2/2]) we get

‖ gj+1 − gj ‖1 . 2jd( 1
p
−1) ‖ gj+1 − gj ‖p .

Therefore, in view of s > d(1
p
− 1) we obtain

∞∑
j=0

‖ gj+1 − gj ‖1 .
∞∑
j=0

2−(s−d( 1
p
−1))j 2sj‖ gj+1 − gj ‖p

. sup
j∈N0

2sj‖ gj+1 − gj ‖p .
( ∞∑
j=0

2sjq E2j(f)qp

)1/q

<∞ .

Hence, (gj)j is a Cauchy sequence in L1(Td) ↪→ Lp(Td) and, consequently, f ∈ L1(Td).

Proposition 4.2. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and let s ≥ 0. Then

As
p,q(Td) = Bsp,q(Td) . (4.12)

A proof in the case 0 < p ≤ ∞, 0 < q ≤ ∞ and s > d(1
p
− 1)+ based on Proposition 4.1 can be

found in [41, Corollary 3.7.1]. The general case follows from the Jackson-type estimate

E2j(f)p . ωk(f, 2−j)p (4.13)

(see [18, formula (5.2.1)] or [8, Chapter 7, Theorem 2.3] (d = 1) and [52, Proposition 2.5.12] if
1 ≤ p ≤ ∞ as well as [16] (d = k = 1), [48] and [22, Theorem 3.3] if 0 < p < 1.) as well as the
Bernstein-type inequality

ωk(f, 2−j)p . 2−kj

 2j∑
n=1

nkr−1En(f)rp

1/r

, (4.14)

r ≤ min(p, 1) ([16, Theorem 2] if 0 < p < 1 and, for example, [8, Chapter 7, Theorem 3.1] if p ≥ 1)
by standard arguments.

Remark 7. Proposition 4.2 provides an alternative proof of the independence of Definition 1 of the
number k, k > s, as well as the equivalence of quasi-norms ‖ · |Bsp,q‖k for different values of k > s.
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We can give a further equivalent characterization of Bsp,q(Td) using directional moduli of smooth-
ness. Let ej, j = 1, . . . , d, be the unit vector in the direction of the j-th coordinate. We introduce
the moduli of smoothness

ω
(j)
k (f, t)p = sup

|h|≤t
‖∆k

h, jf‖p , (4.15)

where (
∆k
h, jf

)
(x) =

k∑
`=0

(
k

`

)
(−1)k−`f(x+ hej)

(x ∈ Td, h ∈ R, j ∈ {1, . . . , d}).

Corollary 4.1. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ≥ 0 and let k ∈ N, k > s. Then Bsp,q(Td) consists of
all functions f ∈ Lp(Td) such that

‖f |Bsp,q‖∗k = ‖f‖p +
d∑
j=1

 1∫
0

t−sq ω
(j)
k (f, t)qp

dt

t

1/q

< ∞ (4.16)

(standard modification if q = ∞). Moreover, ‖f |Bsp,q‖∗k is an equivalent quasi-norm in Bsp,q(Td) for
all k > s.

Proof. Clearly, ‖f |Bsp,q‖∗k . ‖f |Bsp,q‖k. The converse estimate follows from the Jackson-type estimate

En(f)p .
d∑
j=1

ω
(j)
k (f, n−1)p (n ∈ N) (4.17)

proved in [12, formula 2.14].

Let us mention that Proposition 4.2 and Corollary 4.1 are can be found in [5] as special cases.

4.4 Characterization by generalized K-functionals

Definition 4. Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ≥ 0, and let ψ ∈ Hα (α > 0) such that α > s. The
space Ks

p,q(Td) consists of all functions f ∈ Lp(Td) such that

‖f |Ks
p,q‖ψ = ‖f‖p +

(
∞∑
n=1

nsq−1Kψ(f, n−1)qp

)1/q

< ∞ (4.18)

if 0 < q <∞ and
‖f |Ks

p,∞‖ψ = ‖f‖p + sup
n∈N

nsKψ(f, n−1)p < ∞ (4.19)

if q =∞.

Remark 8. By the properties of Kψ we have the following analogue of (4.10) and (4.11). Let
ψ ∈ Hα (α > 0), 0 < p ≤ ∞, 0 < q ≤ ∞, and let s ≥ 0. Then

∞∑
n=1

nsq−1Kψ(f, n−1)qp �
∞∑
j=0

2sjqKψ(f, 2−j)qp (4.20)

(modification if q =∞).
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Proposition 4.3. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and let s ≥ 0. Then

Ks
p,q(Td) = Bsp,q(Td) . (4.21)

Moreover, ‖ · |Ks
p,q‖ψ, where ψ ∈ Hα for some α > s is an equivalent quasi-norm in Bsp,q(Td) and

As
p,q(Td).

Proof. Let ψ ∈ Hα for some α > s. In view of Proposition 4.2, Remark 8, and (3.5) it suffices to
prove that

∞∑
j=0

2sjqKψ(f, 2−j)qp .
∞∑
j=0

2sjq E2j(f)qp (4.22)

for f ∈ Bsp,q(Td) (modification if q =∞). In order to prove (4.22) we use the Bernstein-type inequality

Kψ(f, 2−j)p . 2−jα

 2j∑
n=1

nαr−1En(f)rp

1/r

(4.23)

(r ≤ min(p, 1)) which follows from (3.7). This is the counterpart of (4.14). The right-hand side of
(4.23) can be estimated by

2−αj

(
j−1∑
ν=0

2ν+1∑
n=2ν

nαr−1En(f)rp

)1/r

. 2−αj

(
j−1∑
ν=0

2α(ν+1)r E2ν (f)rp 2−ν
2ν+1∑
n=2ν

1

)1/r

. 2−αj

(
j−1∑
ν=0

2ανr E2ν (f)rp

)1/r

. (4.24)

Choosing r such that u = q
r
> 1 and using Hölder’s inequality with 1

u
+ 1

u′
= 1 we obtain(

j−1∑
ν=0

2ανr E2ν (f)rp

)q/r

≤

(
j−1∑
ν=0

2ενru
′

)u/u′ j−1∑
ν=0

2(α−ε)νq E2ν (f)qp

. 2εjq
j−1∑
ν=0

2(α−ε)νq E2ν (f)qp (4.25)

for ε > 0. Combining (4.14), (4.24) and (4.25) we see that
∞∑
j=0

2sjqKψ(f, 2−j)qp .
∞∑
j=0

2(s−α+ε)jq

j−1∑
ν=0

2(α−ε)νq E2ν (f)qp

=
∞∑
ν=0

2(α−ε)νq E2ν (f)qp

∞∑
j=ν

2(s−α+ε)jq =
∞∑
ν=0

2(k−ε)νq E2ν (f)qp

∞∑
j=0

2(s−α+ε)(j+ν)q

.
∞∑
ν=0

2sνq E2ν (f)qp

if α− s > ε > 0. Together with Remark 6 and Remark 8 this proves the lower estimate

‖f |Ks
p,q‖ψ . ‖f |As

p,q‖ .
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Remark 9. Proposition 4.3 is contained in [5] as a special case. By our knowledge the statement
is new, in particular in the case 0 < p < 1, where classical K-functionals do not make sense. For
convenience of the reader we have given details of the proof modifying the arguments of the proof of
Proposition 4.2.

Proposition 4.2 and Proposition 4.3 show that the spaces Ks
p,q(Td) are independent of the choice

of ψ ∈ Hα, where α > s in the sense of equivalent quasi-norms. According to Proposition 4.1,
Proposition 4.2, Proposition 4.3 and Remark 5 we have

Bs
p,q(Td) = Bsp,q(Td) = As

p,q(Td) = Ks
p,q(Td)

if s > d(1
p
− 1)+ and

Bsp,q(Td) = As
p,q(Td) = Ks

p,q(Td) 6= Bs
p,q(Td)

if 0 < p < 1, 0 < s < d(1
p
− 1) (see the figure below). Note that

B0
p, q(Td) = A0

p, q(Td) = K0
p, q(Td)

if 0 < p ≤ ∞ and 0 < q ≤ ∞ (see also the comment in Remark 3).

Remark 10. By similar arguments as in the proof of (4.10) and (4.20), respectively, we can show
that

‖f |Ks
p,q‖ψ � ‖f‖p +

( 1∫
0

t−sqKψ(f, t)qp
dt

t

)1/q

(4.26)

for ψ ∈ Hα, 0 < p ≤ ∞, 0 < q ≤ ∞, and 0 ≤ s < α (modification if q =∞).

Remark 11. It follows from (3.4) and (4.26) that

‖f |Ks
p,q‖ψ � ‖f‖p +

( 1∫
0

t−sqKKKψ(f, t)qp
dt

t

)1/q

(4.27)

for ψ ∈ Hα, 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and 0 ≤ s < α (modification if q = ∞). In this case Ks
p,q(Td)

turns out to be a real interpolation space. Namely, let us define the space Xψ
p (Td) as the collection

of all functions f ∈ Lp(Td) (f ∈ C(Td) if p =∞) such that

ψ(D) f(x) =
∑
ν∈Zd

ψ(ν) f∧(ν) eiνx ∈ Lp(Td)
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(for details and interpretation see [33, Section 3]). The space is equipped with the norm

‖f‖Xψ
p

= ‖f‖p + ‖ψ(D)f‖p , 1 ≤ p ≤ ∞ .

Note that according to [33, Theorems 4.1 and 4.2] we have

Xψ
p (Td) = Hα

p (Td) if 1 < p <∞ ,

where Hα
p (Td) stands for the periodic (fractional) Sobolev space (cf. [41, Subsection 3.5.4]), and

Bα
p, 1(Td) ↪→ Xψ

p (Td) ↪→ Bα
p,∞(Td)

if 1 ≤ p ≤ ∞. We introduce the functional

K(t, f, Lp, X
ψ
p ) = inf{‖f − g‖p + t ‖g‖Xψ

p
: g ∈ Xψ

p (Td)} . (4.28)

Then it follows from (4.27) that

‖f |Ks
p,q‖ψ � ‖f‖p +

( 1∫
0

t−
s
α
qK(t, f, Lp, X

ψ
p )q

dt

t

)1/q

(4.29)

using the density of T in Lp(Td), 1 ≤ p <∞ (in C(Td) if p =∞). Equivalence (4.29) implies

Ks
p,q(Td) =

(
Lp(Td), Xψ

p (Td)
)
s
α
, q

(4.30)

(ψ ∈ Hα, 0 < s < α, 1 ≤ p ≤ ∞ and 0 < q ≤ ∞), where the right-hand side stands for the real
interpolation space in the sense of [52, Definition 2.4.1].

5 Constructive approximation

5.1 General results

Theorem 5.1. (Inverse results) Let 0 < p, q ≤ ∞, s ≥ 0 and ϕ ∈ K, where Fϕ ∈ Lp(Rd) if
0 < p < 1. Then the following statements hold.

(i) If f ∈ Lp(Td) and
∞∑
n=1

nsq−1 ‖f − Lϕnf‖
q
p < ∞ (5.1)

(standard modification if q =∞), then f ∈ Bsp,q(Td) and

‖f |Bsp,q‖ . ‖ f ‖p +
( ∞∑

n=1

nsq−1 ‖f − Lϕnf‖
q
p

)1/q

. (5.2)

(ii) If f ∈ Lp(Td) for 1 6 p 6∞ or f ∈ Lp(Td) ∩D′(Td) for 0 < p < 1 and
∞∑
n=1

nsq−1 ‖f −Mϕ
nf‖qp < ∞ (5.3)

(standard modification for q =∞), then f ∈ Bsp,q(Td) and

‖f |Bsp,q‖ . ‖ f ‖p +
( ∞∑

n=1

nsq−1 ‖f −Mϕ
nf‖qp

)1/q

. (5.4)
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Proof. Taking into account that

Er(ϕ)n(f)p ≤ ‖f − Lϕnf‖p , f ∈ Lp(Td), n ∈ N ,

we immediately deduce the conclusion of part (i) from Proposition 4.2. Combining Proposition 4.2
and the estimate

Er(ϕ)n(f)p 6 ‖f −Mϕ
nf‖p , n ∈ N ,

where f ∈ Lp(Td), 1 ≤ p ≤ ∞ or f ∈ Lp(Td) ∩ D′(Td) if 0 < p < 1 we obtain the conclusion of
part (ii).

Theorem 5.2. (Direct results) Let 0 < p, q ≤ ∞, s ≥ 0 and let ϕ ∈ K where Fϕ ∈ Lp(Rd) if

0 < p < 1. Suppose there exists ψ ∈ Hα (α > 0) such that 1 − ϕ(·)
(p̃, η)
≺ ψ(·) for some function

η ∈ C∞0 (Rd) satisfying η(ξ) = 1 in a neighborhood of 0. If 0 < s < α and f ∈ Bsp,q(Td) then

‖f‖p +

(
∞∑
n=1

nsq−1 ‖f − Lϕnf‖
q
p

)1/q

. ‖f |Bsp,q‖ (5.5)

(standard modification if q =∞).

Proof. Estimate (5.5) is a corollary of Proposition 4.3 and Theorem 3.3.

Theorem 5.3. (Direct result) Let 0 < p < 1, 0 < q ≤ ∞. Let ϕ ∈ K and ψ ∈ Hα be as in Theorem
5.2. If 0 < s < α, then

‖f‖p +

(
∞∑
n=1

nsq−1 ‖f −Mϕ
nf‖qp

)1/q

. ‖f |Bs
p,q‖ (5.6)

for all f ∈ Bs
p,q(Td) ∩ Lp(Td) (standard modification if q =∞).

Proof. By standard arguments and s > 0 we obtain the estimate

∞∑
n=1

nsq−1 ‖f −Mϕ
nf‖qp .

∞∑
j=0

2sjq sup
n=2j ,...,2j+1−1

‖Mϕ
2j
f − Mϕ

nf‖q (5.7)

(see also [38, formula (4.6)] for similar arguments). We put

%τ (ξ) = ϕ(ξ) − ϕ(τξ),
1

2
< τ < 1, ξ ∈ Rd .

Then (5.7) implies

∞∑
n=1

nsq−1 ‖f −Mϕ
nf‖qp .

∞∑
j=0

2sjq sup
1/2≤τ≤1

∥∥∥∑
ν∈Zd

%τ (2
−jν) f∧(ν) eiν·

∥∥∥q
p
. (5.8)

Note that %τ (0) = 0 and supp %τ ⊂ {ξ : |ξ| ≤ 2 r(ϕ)}. Let {χ`}∞`=0 be a smooth dyadic decomposition
of unity as defined in Subsection 4.2. Recall that

χ` = χ(2−`ξ) with χ(ξ) = χ0(ξ)− χ0(2ξ), ` ∈ N .

By definition
suppχ(2−`(ξ) ·) ⊂ {ξ : 2`−2 ≤ |ξ ≤ 2`} .
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If |ν| ≥ 1 we have that
∞∑̀
=1

χ(2−`ξ) = 1 and

%τ (2
−jν) =

∞∑
`=1

%τ (2
−jν)χ(2−`)ν) =

j+L∑
`=1

%τ (2
−jν)χ(2−`ν)

=
L∑

`=−j+1

%τ (2
−jν)χ(2−(`+j)ν)

for some L ∈ N. We put

f`(x) =
∑
ν∈Zd

ψ(2−`ν)χ(2−`ν) f∧(ν) eiνx , ` ∈ N.

By the homogeneity of ψ we obtain∣∣∣∣∣∑
ν∈Zd

%τ (2
−jν) f∧(ν) eiνx

∣∣∣∣∣ =

∣∣∣∣∣∑
ν∈Zd

L∑
`=−j+1

%τ (2
−jν)χ(2−(`+j)ν) f∧(ν) eiνx

∣∣∣∣∣
≤

L∑
`=−j+1

∣∣∣∣∣∑
ν∈Zd

%τ (2
−jν)

ψ(2−(`+j)ν)
ψ(2−(`+j)ν)χ(2−(`+j)ν) f∧(ν) eiνx

∣∣∣∣∣
≤

(
L∑

`=−j+1

2α`r

∣∣∣∣∣∑
ν∈Zd

%τ (2
−jν)

ψ(2−jν)
f∧`+j(ν) eiνx

∣∣∣∣∣
r)1/r

for r ≤ min(1, p, q). This leads to the estimate

∥∥∥∑
ν∈Zd

%τ (2
−jν)f∧(ν)eiνx

∥∥∥r
p
≤

L∑
`=−j+1

2α`r
∥∥∥∑
ν∈Zd

%τ (2
−jν)

ψ(2−jν)
f∧`+j(ν)eiνx

∥∥∥r
p
. (5.9)

Note that f`+j is a trigonometric polynomial of order less than 2`+j ≤ 2L+j and that

∑
ν∈Zd

%τ (2
−jν)

ψ(2−jν)
eiνx

is a trigonometric polynomial of order less than 2j+1 r(ϕ). According to the Fourier multiplier theorem
[41, pp. 150/151] or [26, Theorem 3.2] we can estimate∥∥∥∑

ν∈Zd

%τ (2
−jν)

ψ(2−jν)
f∧`+j(ν) eiνx

∥∥∥
p

. ‖f`+j‖p .

Here we used that
sup

1/2≤τ≤1

∥∥∥F[%τ
ψ

]∥∥∥
p

= C <∞ (5.10)

(see [5, formula (4.33)]). Together with (5.8) and (5.9) we arrive at

∞∑
n=1

nsq−1 ‖f −Mϕ
nf‖qp .

∞∑
j=0

2sjq
( L∑
`=−j+1

2α`r ‖f`+j‖rp
)q/r

. (5.11)
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Setting f` = 0 if ` = 0, −1, −2, . . . and using s < α estimate (5.11) implies
∞∑
n=1

nsq−1 ‖f −Mϕ
nf‖qp .

( L∑
`=−∞

2(α−s)`r
( ∞∑
j=0

2s(`+j)q ‖f`+j‖qp
)r/q)q/r

.
∞∑
j=1

2sjq ‖
∑
ν∈Zd

ψ(2−jν)χ(2−jν) f∧(ν) eiνx‖qp . (5.12)

We put χ̃1 = χ0 + χ( ·
2
) and

χ̃j = χ(2−j+1·) + χ(2−j·) + χ(2−j−1·)

if j = 2, 3, . . . . Taking into account that F [ψ χ] ∈ Lp(Rd) and applying again the multiplier theorem
[41, pp. 150-151] or [26, Theorem 3.2] we see that∥∥∥∑

ν∈Zd
ψ(2−jν)χ(2−jν) f∧(ν) eiνx

∥∥∥
p

=
∥∥∥∑
ν∈Zd

[ψ · χ](2−jν) χ̃j(ν) f∧(ν) eiνx
∥∥∥
p

.
∥∥∥∑
ν∈Zd

χ̃j(ν) f∧(ν) eiνx
∥∥∥
p
.

Inserting this estimate into (5.12) yields (5.6) and proves the theorem.

For variants of Theorem 5.3 we refer also to [38], [39] and to [40] (non-periodic one-dimensional
case). The following corollary is a consequence of Theorems 5.1, 5.2, 5.3, Proposition 4.1 as well as
the equivalences (2.10) and (2.11).

Corollary 5.1. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and let ϕ ∈ K be as in Theorem 5.2. Then the following
statements hold.

(1) If 0 ≤ s < α then

f ∈ Bsp,q(Td) ⇐⇒ f ∈ Lp(Td) and
∞∑
n=1

nsq−1‖f − Lϕnf‖
q
p <∞. (5.13)

(2) If 1 ≤ p ≤ ∞ and 0 ≤ s < α then

f ∈ Bsp,q(Td) ⇐⇒ f ∈ Lp(Td) and
∞∑
n=1

nsq−1‖f −Mϕ
nf‖qp <∞. (5.14)

(3) If 0 ≤ s < α then

f ∈ Bs∞, q(Td) ⇐⇒ f ∈ C(Td) and
∞∑
n=1

nsq−1‖f − Sϕn f‖q∞ <∞. (5.15)

(4) If 0 < p < 1 and d(1
p
− 1) < s < α then

f ∈ Bsp,q(Td) ⇐⇒ f ∈ Lp(Td) ∩D′(Td) and
∞∑
n=1

nsq−1‖f −Mϕ
nf‖qp <∞. (5.16)

(Standard modification if q =∞, C(Td) in place of Lp(Td) if p =∞).

Note that generalizations of Theorems 5.1, 5.2, 5.3 and Corollary 5.1 to Besov spaces with gen-
eralized smoothness are given in [5].
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5.2 Means and families of de la Vallée-Poussin type

Let ϕ ∈ K be a function for which ϕ(ξ) = 1 for ξ, satisfying the inequality |ξ| ≤ δ < r(ϕ) for some
δ > 0.

Theorem 5.4. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and let ϕ ∈ K with Fϕ ∈ Lp̃(Rd). If ϕ has the above
property then the statements of Corollary 5.1 hold true with α =∞.

This follows from the fact that the condition (1 − ϕ)
(p̃,η)
≺ ψ in Theorem 5.2 and Theorem 5.3 is

satisfied for all ψ ∈ Hα, where α is an arbitrary positive number. Alternatively, (5.13), (5.14) and
(5.15) follow from the equivalence

En r(ϕ)(f)p . ‖f − Lϕnf‖p . En(f)p , n ∈ N

(see [25, Theorem 1] for the upper estimate), Proposition 4.2 as well as the equivalences (2.10)
and (2.11). As far as (5.16) is concerned we refer also to [38, Theorem 7]. Let us mention that
Fϕ ∈ Lp(Rd), 0 < p < 1, if ϕ ∈ Bκ

2,∞(Rd) where κ > d(1
p
− 1

2
) (cf. [52, Remark 1.5.2/1]).

Classical de la Vallée-Poussin means and families are generated by the function

ϕ(ξ) =


1 , | ξ | 6 1

2− | ξ | , 1 < | ξ | 6 2

0 , | ξ | > 2

. (5.17)

In this case we have Fϕ ∈ Lp(R) if and only if p > 1
2
.

Corollary 5.2. Let 1
2
< p ≤ ∞ and 0 < q ≤ ∞. If ϕ is defined by (5.17) then the statements of

Corollary 5.1 hold with d = 1 and α =∞.

5.3 Riesz means and families

Riesz means and families with indices α, β > 0 in the d-dimensional case are generated by ϕα,β(ξ) =

(1− | ξ |α)β+, ξ ∈ Rd. We define

pα,β =


2d/(d+ 2β + 1) , β > 0, α ∈ E

2d/(d+ 2β + 1) , 0 6 β < α + (d− 1)/2, α /∈ E

d/(d+ α) , β > α + (d− 1)/2, α /∈ E
(5.18)

Here E is the set of all even natural numbers. Let β > (d− 1)/2 . It is shown in [31, Theorem 2.1]
that

(i) Fϕα,β ∈ Lp(Rd) if and only if pα,β < p ≤ ∞,

(ii) 1− ϕα,β
(p̃,η)
≺ ψ for ψ(ξ) = |ξ|α if pα,β < p ≤ ∞.

Obviously, pα,β < 1 if α > 0 and β > d−1
2
.

Theorem 5.5. Let 0 < q ≤ ∞, α > 0 and let β > d−1
2
, where pα,β is defined by (5.18).

(1) If pα,β < p ≤ ∞ and 0 ≤ s < α then (5.13) holds with ϕα,β in place of ϕ.



Methods of trigonometric approximation and generalized smoothness. II. 35

(2) If 1 ≤ p ≤ ∞ and 0 ≤ s < α then (5.14) holds with ϕα,β in place of ϕ.

(3) If 0 ≤ s < α then (5.15) holds with ϕα,β in place of ϕ.

(4) If pα,β < p < 1 and d(1
p
− 1)+ < s < α then it holds (5.16) with ϕα,β in place of ϕ.

Again the theorem is a consequence of Corollary 5.1 and the above properties of ϕα,β. If α = 2
the theorem refers to Bochner-Riesz means and families. The case d = α = β = 1 corresponds to
classical Fejér means and families.

A statement with respect to part (4) of the theorem can be found in [39, Theorem 7, part (i)].
Note that the result in [39] is not correct in the case β > α + d−1

2
if α is not an even number (see

also the comments in [31, page 135]).

6 Generalized moduli of smoothness

Analyzing different moduli of smoothness we observe their equivalence with functionals Kψ defined
and investigated in Subsection 4.4 for appropriate homogeneous functions ψ ∈ Hα and operators
ψ(D), respectively. According to Proposition 4.3 this immediately leads to characterizations of
Besov spaces Bsp,q(Td) with 0 ≤ s < α and 0 < q ≤ ∞ under certain restrictions with respect to the
parameter p. We present a general result based on papers [34] (case d = 1) and [24] (case d > 1).
Finally we give a list of examples covering also known results.

6.1 θ-moduli - general results

We say that a function θ : Rd → C which is continuous and 2π-periodic with respect to each variable
belongs to the class G if

θ(−ξ) = θ(ξ) , ξ ∈ Rd

θ(0) = 0, θ(ξ) 6= 0 if 0 < |ξ| < 2π ,

θ∧(0) = −1 and
∑
ν∈Zd
|θ∧(ν)| < ∞ .

Following [34] and [24] we define the θ-modulus of smoothness of f ∈ Lp(Td), 0 < p ≤ ∞ by

ωθ(f, t)p = sup
0≤h≤t

‖∆
(θ)
h f ‖p , t ≥ 0, (6.1)

where
(∆

(θ)
h f)(x) =

∑
ν∈Zd

θ∧(ν) f(x+ h ν) (6.2)

is the θ-difference. The modulus (6.1) is well-defined in Lp(Td) if

‖θ∧‖`p̃ =
(∑
ν∈Zd
|θ∧(ν)|p̃

)1/p̃

< ∞ (6.3)

and then we have
ωθ(f, t)p ≤ ‖θ∧‖`p̃ ‖f‖p . (6.4)

Obviously, ωθ(f, ·)p is an increasing function on [0, ∞) and it holds ωθ(f, 0)p = 0. In the multi-
variate case (d > 1) the classical modulus of smoothness of order k as defined in (4.2) is not covered
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within the framework (6.1). However, let us emphasize that θ-moduli possess analogous properties.
For details we refer to [24, Lemma 4 and 5, Theorem 1].

Let η ∈ C∞0 (Rd) be a smooth function satisfying η(ξ) = 1 for |ξ| ≤ δ and η(ξ) = 0 for |ξ| ≥ 2δ,
where 0 < δ < π

2
. We shall write

η∗(ξ) =
∑
k∈Zd

η(ξ + 2πk)

for its periodic extension. Let α > 0 and 0 < p ≤ ∞. The class G(α, p) consists of all functions
θ ∈ G satisfying (6.3) and the following conditions.

(i) There exist ψ ∈ Hα and η as above such that ψ(·)
(p̃, η)
� θ(·) .

(ii) It holds (
(1− η∗(·))/θ(·)

)∧ ∈ `p̃(Zd) . (6.5)

Moreover , we set (E is the set of even natural numbers)

Ωd =

{
N× (0,∞]

⋃{
(α, p) : α 6∈ N, p > 1/(1 + α)

}
, d = 1

E× (0,∞]
⋃{

(α, p) : α 6∈ E, p > d/(d+ α)
}

, d > 1
. (6.6)

Lemma 6.1. The class G(α, p) is not empty if and only if (α, p) ∈ Ωd.

Proof. Let first (α, p) 6∈ Ωd. Then 0 < p 6 d/(d + α) and α 6∈ N if d = 1, α 6∈ E if d > 1. We
assume (to the contrary) that there exists a certain function θ ∈ G(α, p). Then by Lemma 1 in [24]
we get

‖F (ψτ) ‖p = ‖F (ψτη) ‖p = ‖F (((ηψ)/θ) (θτ)) ‖p

6 c ‖(((ηψ)/θ) (θτ))∧∗ ‖`p = c ‖((ηψ)/θ)∧∗ ∗ θ∧∗ ∗ τ∧∗ ‖`p

6 c ‖ ((ηψ)/θ)∧∗ ‖`p ‖ θ∧∗ ‖lp ‖ τ∧∗ ‖`p

6 c1 ‖F ((ηψ)/θ) ‖p < ∞ ,

where ψ belongs to Hα, η is the test function introduced above and τ is a test function, whose
support is concentrated in the set { ξ : η(ξ) = 1 }, and satisfying τ(0) 6= 0. Hence, F (ψτ) belongs
to Lp(Rd) and this implies that ψ should be a polynomial in view of the statement on the Fourier
transform of homogeneous functions multiplied with test functions given in [26]. In order to get a
contradiction it remains to notice that the class Hα, where α satisfies the above conditions, does not
contain polynomials.

Let now (α, p) ∈ Ωd. First we consider the case d = 1. For α ∈ N, 0 < p 6 ∞ the class G(α, p)
contains the generator θ(ξ) = −(1− eiξ)α of the classical modulus of smoothness of order α. In the
case α 6∈ N, p > 1/(α+1) the function θ(ξ) = (| ξ |αη(ξ))∗+(1−η∗(ξ)), where η is as above, belongs to
G(α, p) due to the result in [26] mentioned above. If d > 1, then for α ∈ E, 0 < p 6∞, as well as for
α 6∈ E and p > d/(d+α) the class G(α, p) contains the function θ(ξ) = (| ξ |αη(ξ))∗+(1−η∗(ξ)).
Theorem 6.1. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and let 0 ≤ s <∞. Let θ ∈ G such that conditions (6.3)

and (6.5) are satisfied. If there exists ψ ∈ Hα such that ψ
(p̃,η)
≺ θ for some α > 0 then

‖f |Bsp,q‖ . ‖f‖p +

 1∫
0

t−sq ωθ(f, t)
q
p

dt

t

1/q

(6.7)
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for all f ∈ Lp(Td) (standard modification if q =∞).

Proof. Under the assumptions of the theorem we have the Jackson-type estimate

En(f)p . ωθ(f, n
−1)p, n ∈ N, f ∈ Lp(Td) (6.8)

(see [24, Theorem 1]). Since ωθ(f, ·)p is non-decreasing, we get

E2j(f)p . ωθ(f, 2−j)p . ωθ(f, t)p

for all t, 2−j ≤ t ≤ 2−j+1 (j ∈ N0). This implies

2−j+1∫
2−j

t−sq E2j(f)qp
dt

t
.

2−j+1∫
2−j

t−sq ωθ(f, t)
q
p

dt

t

and, consequently,

2sjq E2j(f)qp .

2−j+1∫
2−j

t−sq ωθ(f, t)
q
p

dt

t
.

By summation and (6.4) we obtain

∞∑
j=0

2sjq E2j(f)qp .

2∫
0

t−sq ωθ(f, t)
q
p

dt

t
. ‖f‖p +

1∫
0

t−sq ωθ(f, t)
q
p

dt

t
.

This proves (6.7) taking into account Proposition 4.2 and Remark 6.

Theorem 6.2. Let 0 < p ≤ ∞, 0 < q ≤ ∞, and let 0 < α < ∞. Let θ ∈ G such that condition

(6.3) is satisfied. Suppose there exists ψ ∈ Hα such that θ
(p̃,η)
≺ ψ. If 0 ≤ s < α then it holds

1∫
0

t−sq ωθ(f, t)
q
p

dt

t
. ‖f |Bsp,q‖ (6.9)

for all f ∈ Bsp,q(Td) (standard modification if q =∞).

Proof. Under the assumptions of the theorem we have the inequality

ωθ(f, 2−j)p . Kψ(f, 2−j)p, j ∈ N0 . (6.10)

This follows from the proof of [24, Theorem 2]. It yields the estimates

1∫
0

t−sq ωθ(f, t)
q
p

dt

t
≤

∞∑
j=0

2−j∫
2−j−1

t−sq ωθ(f, t)
q
p

dt

t

.
∞∑
j=0

2sjq ωθ(f, 2−j)qp .
∞∑
j=0

2sjqKψ(f, 2−j)qp .

This implies (6.9) according to Proposition 4.3 and Remark 8.
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Corollary 6.1. Let 0 < q ≤ ∞, (α, p) ∈ Ωd and let θ ∈ G(α, p). If 0 ≤ s < α then it holds
f ∈ Bsp,q(Td) if and only if f ∈ Lp(Td) such that

‖f |Bsp,q‖θ = ‖f‖p +

 1∫
0

t−sq ωθ(f, t)
q
p

dt

t

1/q

< ∞ (6.11)

(standard modification if q =∞). Moreover, ‖ · |Bsp,q‖θ is an equivalent quasi-norm in Bsp,q(Td).

Remark 12. Let us emphasize that under the assumptions of Corollary 6.1 the equivalence

ωθ(f, n
−1)p � Kψ(f, n−1)p, n ∈ N, f ∈ Lp(Td) . (6.12)

even holds. This is proved in [24, Theorem 2] and in [34, Theorem 3].

6.2 Moduli of fractional order

Let α > 0 be be a non-integer real number and let f ∈ Lp(T), 0 < p ≤ ∞. If t > 0 we put

ωα(f, t)p = sup
0≤h≤t

∥∥∥ ∞∑
ν=1

(
α

ν

)
(−1)ν−1 f(·+ νh) − f(·)

∥∥∥
p
, (6.13)

where (
α

ν

)
=

α(α− 1) · · · (α− ν + 1)

ν !
.

This modulus is called modulus of smoothness of fractional order α and has been systematically
investigated, for example, in [44], [49] and [50] in the case 1 ≤ p ≤ ∞. It coincides with ωθα(f, ·)p
for θα(ξ) = −(1− eiξ)α, ξ ∈ R, where zα = |z|α eiα arg z, z ∈ C, −π < arg z ≤ π. It is related to the
functional Kψα , where ψα(ξ) = (iξ)α, ξ ∈ R. Note that ψα(D) is the Weyl derivative of order α. In
this case it holds the equivalence (6.12) if 1

1+α
< p ≤ ∞. For details we refer to [34, Lemma 5].

Corollary 6.2. Let 0 < q ≤ ∞ and let α > 0 be a non-integer real number. If 0 ≤ s < α and
1

1+α
< p ≤ ∞ then f ∈ Lp(T) belongs to Bsp,q(T) if and only if

1∫
0

t−sq ωα(f, t)qp
dt

t
< ∞ (6.14)

(standard modification if q =∞).

6.3 Moduli related to Riesz derivatives

Let us consider ψα(ξ) = |ξ|α, α > 0, ξ ∈ R. Then the associated operator ψα(D) corresponds to the
Riesz derivative of order α (fractional derivative if α is non-integer, usual derivative if α) is an even
natural number). The related K-functional (3.2) will be denoted by K〈α〉. Here we focus our interest
on the case when α is non-integer. There are different moduli of smoothness which are equivalent to
K〈α〉 on Lp(T) for the range of parameters 1

1+α
< p ≤ ∞. We give list of examples.

The modulus
ω̃(f, t)p = sup

0≤h≤t

∥∥∥ 4

π2

∑
ν∈Z

f(x+ (2ν + 1)h)

(2ν + 1)2
− f(x)

∥∥∥
p

(6.15)
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is generated by θ̃(ξ) = − 2
π
|ξ|, −π ≤ ξ ≤ π. Relation (6.12) holds with K〈1〉 for ω̃ if 1

2
< p ≤ ∞ (see

[34, Theorem 6]). Let 1
2
< p ≤ ∞ and let 0 ≤ s < 1. Then (6.11) with ω̃ holds for f ∈ Lp(T) if and

only if f ∈ Bsp,q(T).
The modulus

ω(f, t)p = sup
0≤h≤t

∥∥∥ 3

π2

∑
ν∈Z, ν 6=0

f(x+ νh)

ν2
− f(x)

∥∥∥
p

(6.16)

generated by θ(ξ) = 3
π2 ξ

2 − 3
π
, 0 ≤ ξ ≤ 2π, has been introduced and treated in [2] and [3]. Let

1
2
< p ≤ ∞ and let 0 ≤ s < 1. Then we have equivalence (6.12) with K〈1〉 for ω and (6.11) with ω

holds for f ∈ Lp(T) if and only if f ∈ Bsp,q(T).
The modulus

ω̃〈α〉(f, t)p = sup
0≤h≤t

∥∥∥ ∑
ν∈Z, ν 6=0

f(·+ νh)

|ν|α+1

∥∥∥
p
, (6.17)

where 0 < α < 1 , is generated by

θ̃〈α〉(ξ) =
∑

ν∈Z, ν 6=0

|ν|−α−1
(
eiνξ − 1

)
, ξ ∈ R.

Equivalence (6.12) is proved for K〈α〉 and ω̃〈α〉 in [35] for 1
1+α

< p ≤ ∞. Let 1
α+1

< p ≤ ∞ and let
0 ≤ s < α. Then (6.11) with ω̃〈α〉 holds for f ∈ Lp(T) if and only if f ∈ Bsp,q(T).

The modulus

ω〈α〉(f, t)p = sup
0≤h≤t

∥∥∥ ∑
ν∈Z, ν 6=0

(
−
a|ν|(α)

a0(α)

)
f(·+ νh) − f(·)

∥∥∥
p
, (6.18)

where

am(α) =
∞∑
j=m

(−1)j+1

22j

(
α/2

j

)(
2j

j −m

)
, m ∈ N0,

is generated by

θ〈α〉(ξ) =
1

a0(α)

∣∣ sin ξ
2

∣∣α, ξ ∈ R.

If α /∈ E and 1
α+1

< p ≤ ∞ then equivalence (6.12) holds for K〈α〉 and ω̃〈α〉. This can be found in
[34, Theorem 7]. Under these assumptions and 0 ≤ s < α (6.11) with ω〈α〉 holds for f ∈ Lp(T) if and
only if f ∈ Bsp,q(T).

6.4 Moduli related to the Laplacian

Given m ∈ N we define the modulus

ωm, d(f, t)p = sup
0≤h≤t

∥∥∥σm
d

d∑
j=1

m∑
ν=−m, ν 6=0

(−1)j

ν2

(
2m

m− |ν|

)
f(x+ νhej) − f(x)

∥∥∥
p

(6.19)

(t > 0, f ∈ Lp(Td), 0 < p ≤ ∞), where

σm =
(

2
m∑
ν=1

(−1)ν

ν2

(( 2m

m− ν

)))−1



40 S. Artamonov, K.V. Runovski, H.-J. Schmeisser

and where {ej}dj=1 denotes the standard basis in Rd. It is generated by the function

θm,d(ξ) =
1

d

d∑
j=1

θm(ξj), ξ ∈ Rd,

where

θm(ξj) = γm

ξj∫
0

x∫
0

(
sin2m(τ/2)− am

)
dτ dx

with
am = 2−2m

(
2m

m

)
, γm = −22m σm .

This modulus has been considered in [10] (the case m = 1) and in [36] (general case). It is equivalent
to the K-functional (3.2) associated with the Laplacian (ψ(ξ) = |ξ|2) in the sense of (6.12) if and
only if

p > pm,d =

{
d

d+2(m+1)
, d = 2, m ∈ E

d
2m
, otherwise

(cf. [36, Theorem 5.3]). Consequently, the statement of Corollary 6.1 with ωm, d(f, ·)p in place of
ωθ(f, ·)p holds if pm, d < p ≤ ∞ and 0 ≤ s < 2.
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