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Abstract. A detailed exposition of Bernstein's inequality, inequalities of di�erent metrics and of
di�erent dimensions for entire functions of exponential type in Lebesgue spaces is given in the book
of S.M. Nikol'skii [8]. In this paper, we state analogues of these inequalities in the Morrey spaces.
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1 Introduction

De�nition 1. Let ν > 0. A function g : Cn → C is called an entire function of exponential type ν,
if the following properties hold:

1) it expands into a power series for any z ∈ Cn

g(z) =
∑
k∈Nn0

akz
k ≡

∞∑
k1=0

· · ·
∞∑

kn=0

ak1,...,knz
k1
1 . . . zknn , (1.1)

2) ∀ε > 0 ∃Aε > 0 such that for all z ∈ Cn the following inequality holds:

|g(z)| ≤ Aεe
(ν+ε)(|z1|+|z2|+···+|zn|). (1.2)

Denote by Eν(Cn) the set of all entire functions of exponential type ν and let Eν(Rn) be the
set of all functions g, de�ned on Rn, for each of which g(x) = G(x+ iy)|y=0, x ∈ Rn, for some
function G ∈ Eν(Cn). In what follows, we always assume that ν > 0, without specifying this in each
statement.

Let 1 ≤ p ≤ ∞ and

Mν,p(Rn) = Eν(Rn) ∩ Lp(Rn). (1.3)

In book [8] the following inequalities are proved for entire functions of exponential type g ∈
Mν,p(Rn).
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1. (Bernstein's inequality) Let 1 ≤ p ≤ ∞, then for any function g ∈Mνp(Rn)∥∥∥∥ ∂g∂xj
∥∥∥∥
Lp(Rn)

≤ ν‖g‖Lp(Rn), j = 1, . . . , n. (1.4)

2. (Inequality of di�erent metrics) Let 1 ≤ p < q ≤ ∞, then for any function g ∈Mνp(Rn)

‖g‖Lq(Rn) ≤ 2nνn( 1
p
− 1
q

)‖g‖Lp(Rn). (1.5)

3. (Inequality of di�erent dimensions) Let 1 ≤ p ≤ ∞ , 1 ≤ m < n , x = (u, v), u =
(x1, . . . , xm) ∈ Rm, v = (xm+1, . . . , xn) ∈ Rn−m, then for any function g ∈Mνp(Rn)∥∥∥∥‖g(u, v)‖L∞,v(Rn−m)

∥∥∥∥
Lp,u(Rm)

≤ 2n−mν
n−m
p ‖g‖Lp(Rn), (1.6)

in particular,

‖g(u, 0)‖Lp(Rm) ≤ 2n−mν
n−m
p ‖g‖Lp(Rn). (1.7)

These inequalities play an important role in developing the theory of function spaces with frac-
tional order of smoothness basing on the approximation theory described in detail in [8]. The aim
of this paper is to state similar inequalities for the case in which the space Lp(Rn) is replaced by the
Morrey space Mλ

p (Rn).

2 Morrey spaces Mλ
p (Rn)

De�nition 2. Let 0 < p ≤ ∞ and 0 ≤ λ ≤ n
p
, then f ∈Mλ

p (Rn), if f ∈ Llocp (Rn) and

‖f‖Mλ
p (Rn) = sup

x∈Rn
sup
r>0

r−λ‖f‖Lp(B(x,r)) <∞. (2.1)

We note some properties of these spaces.
1. It is immediately clear from the de�nition that for λ = 0

‖f‖M0
p (Rn) = ‖f‖Lp(Rn).

2. For λ = n
p

‖f‖
M

n
p
p (Rn)

= v
n
p
n ‖f‖L∞(Rn),

where vn is the volume of the unit ball in Rn.
3. If λ < 0 or λ > n

p
, then the spaces Mλ

p (Rn) consist only of functions equivalent to 0 on Rn.
4. For any ε > 0

‖f(εx)‖Mλ
p (Rn) = ελ−

n
p ‖f‖Mλ

p (Rn). (2.2)

5. Let η ∈ C∞0 (Rn), η(x) = 1 for any x ∈ B(0, 1), 0 < p <∞,
0 < λ < n

p
, µ ∈ R. Then

|x|µη(x) ∈ Lp(Rn)⇔ µ > −n
p
,

|x|µη(x) ∈Mλ
p (Rn)⇔ µ ≥ λ− n

p
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and

|x|µ(1− η(x)) ∈ Lp(Rn)⇔ µ < −n
p
,

|x|µ(1− η(x)) ∈Mλ
p (Rn)⇔ µ ≤ λ− n

p
,

|x|µ ∈Mλ
p (Rn)⇔ µ = λ− n

p
.

This implies, in particular, that Lp(Rn) 6⊂Mλ
p (Rn) and also Mλ

p (Rn) 6⊂ Lp(Rn). In this connection it

is useful to consider the spaces M̂λ
p (Rn) = Lp(Rn) ∩Mλ

p (Rn) with the quasinorm

‖f‖M̂λ
p (Rn) = max{‖f‖Lp(Rn), ‖f‖Mλ

p (Rn)}. (2.3)

For these spaces

|x|µη(x) ∈ M̂λ
p (Rn)⇔ µ ≥ λ− n

p
,

|x|µ(1− η(x)) ∈ M̂λ
p (Rn)⇔ µ < −n

p
.

Note that the space M̂λ
p (Rn) (in contrast to the space Mλ

p (Rn)) has the monotonicity property with
respect to the parameter λ:

M̂µ
p (Rn) ⊂ M̂λ

p (Rn), 0 < λ < µ <∞.

Moreover, 0 < p <∞.

‖f‖M̂λ
p (Rn) ≤ ‖f‖M̂µ

p (Rn). (2.4)

6. Invariance with respect to translation:

‖f(y + h)‖Mλ
p,y(Rn) = ‖f(y)‖Mλ

p (Rn) ∀h ∈ Rn. (2.5)

According to (2.3) and (2.5) also

‖f(y + h)‖M̂λ
p,y(Rn) = ‖f(y)‖M̂λ

p (Rn) ∀h ∈ Rn. (2.6)

For further properties of the Morrey spaces, their generalizations and applications see survey
papers [2], [3], [6], [7], [9], [10], [11] and references threin.

3 Bernstein's inequality for Morrey spaces

In the one-dimensional case, the interpolation formula for the derivative of an entire function g of
exponential type ν > 0 has the form

g′(x) =
ν

π2

∞∑
−∞

(−1)k−1

(k − 1
2
)2
g

(
x+

π

ν

(
k − 1

2

))
, x ∈ R, (3.1)

where the series converges uniformly (see, for example, book [8]).
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Theorem 3.1. Let Z(Rn) be a normed space of functions de�ned on Rn and the norm
‖ · ‖Z(Rn) be invariant with respect to translation, that is for any function f ∈ Z(Rn)

‖f(·+ h)‖Z(Rn) = ‖f‖Z(Rn) ∀h ∈ Rn. (3.2)

Then for any function g ∈ Eν(Rn) ∩ Z(Rn)∥∥∥∥ ∂g∂xj
∥∥∥∥
Z(Rn)

≤ ν‖g(x)‖Z(Rn), j = 1, . . . , n. (3.3)

The proof is based on representation (3.1).

Corollary 3.1. Let 1 ≤ p ≤ ∞ , 0 ≤ λ ≤ n
p
, then for any function g ∈ Eν(Rn) ∩Mλ

p (Rn)∥∥∥∥ ∂g∂xj
∥∥∥∥
Mλ
p (Rn)

≤ ν‖g‖Mλ
p (Rn), j = 1, . . . , n. (3.4)

This inequality also holds if Mλ
p (Rn) is replaced by M̂λ

p (Rn).

4 Inequality of di�erent metrics for Morrey spaces

First of all, we give de�nitions and facts related to the theory of Fourier transforms necessary for
what follows.

De�nition 3. Let functions f, g ∈ L1(Rn), then the convolution is the function f ∗ g : Rn → Rn,
de�ned by the equality

(f ∗ g)(t) =

∫
Rn
f(t− τ)g(τ)dτ, t ∈ Rn. (4.1)

Lemma 4.1. Let 1 ≤ p ≤ q ≤ ∞, f ∈ Lq′(Rn) and g ∈Mν,p(Rn). Then for any x, y ∈ Rn

|(f ∗ g)(x)− (f ∗ g)(y)| ≤M‖f‖Lq′ (Rn)‖g‖Lp(Rn)|x− y|, (4.2)

where M = 2nnν1+ 1
q
− 1
p .

De�nition 4. The Fourier transform of a function f ∈ L1(Rn) is given by the following formula:

(Ff)(ξ) =
1

(2π)n/2

∫
Rn

f(x)e−iξ·xdx, ξ ∈ Rn, (4.3)

where ξ · x = ξ1x1 + · · ·+ ξnxn.

De�nition 5. If f ∈ Lp(Rn), where 1 < p ≤ 2, then the Fourier transform is given by the equality

(Ff)(ξ) = lim
r→∞

(
F (fχB(0,r))

)
(ξ) in Lp′(Rn), (4.4)

where p′ = p
p−1

(
1
p

+ 1
p′

= 1
)
.

(Equality (4.4) also holds if p = 1 and Ff is de�ned by (4.3).) Moreover, Ff ∈ Lp′(Rn),

‖Ff‖L2(Rn) = ‖f‖L2(Rn) (4.5)

(Parseval's equality), for 1 ≤ p < 2

‖Ff‖Lp′ (Rn) = (2π)n( 1
2
− 1
p

)

(
p

1
p

p′
1
p′

)n
2

‖f‖Lp(Rn) ≤ (2π)n( 1
2
− 1
p

)‖f‖Lp(Rn) (4.6)

(Hausdor�-Joung-Beckner inequality, the constant (2π)n( 1
2
− 1
p

)

(
p

1
p

p′
1
p′

)n
2

is sharp).
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De�nition 6. If f ∈ Lp(Rn), where 1 ≤ p ≤ ∞, then the Fourier transform Ff is de�ned in the
Schwartz space of tempered distributions S ′(Rn) as a continuous linear functional on S(Rn), given
by the equality

(Ff, ϕ) = (f, Fϕ) =

∫
Rn

f(x)(Fϕ)(x)dx ∀ϕ ∈ S(Rn). (4.7)

If 1 ≤ p ≤ 2, then

(Ff, ϕ) = (f, Fϕ) =

∫
Rn

(Ff)(ξ)ϕ(ξ)dξ ∀ϕ ∈ S(Rn),

that is, Ff is a regular distribution generated by the Fourier transform Ff ∈ Lp′(Rn), given by
equality (4.3) for p = 1 and equality (4.4) for 1 < p ≤ 2.

Theorem 4.1. (Theorem of L. Schwartz, see, for example, book [8]) If 1 ≤ p ≤ ∞, and g ∈
Mν,p(Rn) then the Fourier transform Fg, understood in the sense of the Schwartz space S ′(Rn) of
tempered distributions, is equal to zero outside the closure of the cube

∆ν = {|xj| < ν, j = 1, . . . , n}. (4.8)

Recall that for ϕ, g ∈ L1(Rn)

(F (ϕ ∗ g))(ξ) = (2π)
n
2 (Fϕ)(ξ)(Fg)(ξ), ξ ∈ Rn. (4.9)

It immediately follows from (4.9) that, if (Fϕ)(ξ) = (2π)−
n
2 for any ξ ∈ supp Fg, then F (ϕ∗g) = Fg

and
g(x) = (ϕ ∗ g)(x) (4.10)

for almost all x ∈ Rn. If ϕ ∈ L1(Rn, g ∈ Mν,1(Rn) and (Fϕ)(ξ) = (2π)−
n
2 for any ξ ∈ ∆ν , then

both functions g and, according to Lemma 4.1 with f = ϕ, p = 1, q =∞, the convolution ϕ ∗ g are
continuous on Rn, so inequality (4.10) holds for any x ∈ Rn.

Lemma 4.2. Let 1 ≤ p ≤ ∞, ϕ ∈ Lp′(Rn), g ∈Mν,p(Rn), and the Fourier transform Fϕ, understood
in general in the sense of the Schwartz space S ′(Rn) of tempered distributions, is equal to (2π)−

n
2 on

∆µ for some µ > ν. Then equality (4.10) is holds for all x ∈ Rn.

Under other assumptions on the function ϕ this assertion was proved in book [8], Lemma 8.5.2
and in paper [5], Section 3, Lemma 1.

Theorem 4.2. (Young-type inequality for Morrey spaces, see paper [4]) Let

1 ≤ p ≤ q ≤ ∞, 1 +
1

q
=

1

r
+

1

p
,

f1 ∈ Lr(Rn) and f2 ∈ M̂λ
p (Rn). Then

‖f1 ∗ f2‖
M

pλ
q
q (Rn)

≤ ‖f1‖Lr(Rn)‖f2‖
p
q

Mλ
p (Rn)
‖f2‖

1− p
q

Lp(Rn). (4.11)

Theorem 4.3. Let 1 ≤ p ≤ q ≤ ∞, 0 ≤ λ ≤ n
p
, then there exists c > 0, such that

‖g‖
M

pλ
q
q (Rn)

≤ cνn( 1
p
− 1
q

)‖g‖
p
q

Mλ
p (Rn)
‖g‖

1− p
q

Lp(Rn) (4.12)

for any ν > 0 and g ∈ Eν(Rn) ∩ M̂λ
p (Rn).
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Corollary 4.1. Under the assumptions of Theorem 4.3 there exists ĉ > 0, such that

‖g‖
M̂

pλ
q
q (Rn)

≤ ĉνn( 1
p
− 1
q

)‖g‖M̂λ
p (Rn) (4.13)

for any ν > 0 and g ∈ Eν(Rn) ∩ M̂λ
p (Rn).

Remark 1. (Unimprovability of the inequality of di�erent metrics in Mλ
p (Rn).) Suppose that for

some µ ≥ 0 and c > 0, for any ν > 0 and g ∈ Eν(Rn) ∩ M̂λ
p (Rn) the following inequality holds:

‖g‖Mµ
q (Rn) ≤ cνn( 1

p
− 1
q

)‖g‖
p
q

Mλ
p (Rn)
‖g‖

1− p
q

Lp(Rn).

Then

µ =
λp

q
.

5 Inequality of di�erent dimensions for Morrey spaces

De�nition 7. Let

0 < p1, p2 ≤ ∞, m1,m2 ∈ N

0 ≤ λ1 ≤
m1

p1

, 0 ≤ λ2 ≤
m2

p2

.

De�ne the space

Mλ1
p1

(Rm1)×Mλ2
p2

(Rm2) (5.1)

with mixed quasinorm as the set of all measurable functions f on Rm1+m2 , for which

‖f‖
M
λ1
p1

(Rm1 )×Mλ2
p2

(Rm2 )
= ‖‖f(u1, u2)‖

M
λ1
p1,u1

(Rm1 )
‖
M
λ2
p2,u2

(Rm2 )
<∞. (5.2)

We note some properties of these spaces.

Lemma 5.1. Let 0 < p ≤ ∞, m1,m2 ∈ N, 0 ≤ λ1 ≤ m1

p
, 0 ≤ λ2 ≤ m2

p
, f1 ∈ Mλ1

p (Rm1) f2 ∈
Mλ2

p (Rm2). Then f1f2 ∈Mλ1
p (Rm1)×Mλ2

p (Rm2) and

‖f1f2‖Mλ1
p (Rm1 )×Mλ2

p (Rm2 )
= ‖f1‖Mλ1

p1
(Rm1 )

‖f2‖Mλ2
p2

(Rm2 )
.

Lemma 5.2. Let 0 < p ≤ ∞, m1,m2 ∈ N, 0 ≤ λ1 ≤ m1

p
, 0 ≤ λ2 ≤ m2

p
.Then

Mλ1
p (Rm1)×Mλ2

p (Rm2) ⊂Mλ1+λ2
p (Rm1+m2), (5.3)

and

‖f‖
M
λ1+λ2
p (Rm1+m2 )

≤ ‖f‖
M
λ1
p (Rm1 )×Mλ2

p (Rm2 )

for any f ∈Mλ1
p (Rm1)×Mλ2

p (Rm2).

If 0 < λ1 + λ2 <
m1+m2

p
, then inclusion (5.3) is strict.

Using De�nition 7 with λ1 = λ2 = 0, inequality (1.6) can be rewritten as

‖g‖L∞(Rn−m)×Lp(Rm) ≤ 2n−mν
n−m
p ‖g‖Lp(Rn). (5.4)
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Theorem 5.1. Let 1 ≤ p <∞, m, n ∈ N, m < n, 0 ≤ λ ≤ n
p
, then

‖g‖L∞(Rn−m)×Mλ
p (Rm) ≤ 2n−mν

n−m
p ‖g‖Lp(Rn)×Mλ

p (Rm), (5.5)

in particular, if x = (u, v), u = (x1 . . . xm), v = (xm+1, . . . , xn), then

‖g(u, 0)‖Mλ
p (Rm) ≤ 2n−mν

n−m
p ‖g‖Lp(Rn−m)×Mλ

p (Rm). (5.6)

Inequalities (5.5) and (5.6) also hold if the space Mλ
p (Rm) is replaced by the space M̂λ

p (Rm).

Remark 2. If λ = 0 then it is obvious that

Lp(Rn−m)×M0
p (Rm) = Lp(Rn−m)× Lp(Rm) = Lp(Rn) = M0

p (Rn), (5.7)

however, for 0 < λ ≤ m
p
according to Lemma 5.2

Lp(Rn−m)×Mλ
p (Rm) 6= Mλ

p (Rn). (5.8)
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