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Abstract. Uniform asymptotic expansions of solutions of two-point boundary value problems of Dirichlet,

Neumann and Robin for a linear inhomogeneous ordinary di�erential equation of the second order with a

small parameter at the highest derivative are constructed. A feature of the considered two-point boundary

value problems is that the corresponding unperturbed boundary value problems for an ordinary di�erential

equation of the �rst order has a regularly singular point at the left end of the segment. Asymptotic solutions

of boundary value problems are constructed by the modi�ed Vishik-Lyusternik-Vasilyeva method of boundary

functions. Asymptotic expansions of solutions of two-point boundary value problems are substantiated. We

propose a simpler algorithm for constructing an asymptotic solution of bisingular boundary value problems

with regular singular points, and our boundary functions constructed in a neighborhood of a regular singular

point have the property of "boundary layer", that is, they disappear outside the boundary layer.
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1 Introduction

As we know, the mathematical models of many problems in science and technology are ordinary
di�erential equations with small parameters in the highest derivatives [1], [4], [5], [7]-[18]. For
example, the equation

εy′′ε (x) + p(x)y′ε(x) + q(x)yε(x) = f(x), , x ∈ (0, 1),

describes two closely related processes. One is the stationary distribution of heat in a moving
medium, depending on one variable x. The small parameter ε is the low thermal conductivity, and
the coe�cient p(x) is related to the velocity of the medium. Another interpretation is related to
the random walk of a particle on a segment, provided that p(x) determines the average speed of
movement, and the parameter ε is a small variance [6].

Today, di�erential equations with small parameters at the highest derivative or singularly per-
turbed di�erential equations already constitute an independent area of mathematics. Singularly
perturbed di�erential equations are of great applied interest, as evidenced by the increase in publi-
cations on this topic [1] - [22].

The results obtained can �nd applications in continuum mechanics, hydro- and aerodynamics,
magneto-hydrodynamics, oceanology, etc.
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2 Formulation of the problem

Let us investigate the boundary value problems generated by the equation

ε y′′ε (x) + xp(x)y′ε(x)− q(x)yε(x) = f(x), 0 < x < 1, (2.1)

and one of the boundary conditions of the form

yε(0) = a, yε(1) = b, (2.2)

y′ε(0) = a, y′ε(1) = b, (2.3)

yε(0)− h1y
′
ε(0) = a, yε(1) + h2y

′
ε(1) = b, (2.4)

here 0 < ε << 1, a, b, 0 < h1, 0 < h2 are given constants, p(0) = 1, q(0) = 2, p, q, f ∈
C∞[0, 1], f ′′(0) 6= 0, 0 < p, q. yε(x) is the required function depending on the small parameter ε
and on the independent variable x.

The two-point boundary value problem (2.1), (2.2) is called the Dirichlet problem, (2.1), (2.3) is
the Neumann problem and (2.1), (2.4) is the Robin problem.

Solutions to boundary value problems exist, are unique and bounded [6].
The speci�c features of the considered boundary value problems are: the presence of a small

parameter ε at y′′ε (x) and the corresponding unperturbed equation

xp(x)y′0(x)− q(x)y0(x) = f(x), (2.5)

which has a regular singular point at x = 0 (see [2]).
Earlier, in [6], a similar equation with Dirichlet boundary conditions was investigated by the

matching method. In [3], the Dirichlet problem for equation (2.1) is investigated by the method
of structural matching. In these works, the asymptotic solution consists of three or four compo-
nents and their construction and justi�cation, in our opinion, is relatively complicated. In paper [2]
the Dirichlet problem for di�erential equation (2.1) was investigated by the generalized method of
boundary functions. However, the functions πk(t), k = 0, 1, 2, . . . constructed in the neighborhood
of the regular singular point x = 0, are bounded, but do not possess the "layerwise" property, that
is, they do not disappear outside the boundary layer, which is essential in the theory of the bound-
ary layer. We propose a simpler algorithm for constructing an asymptotic solution of boundary
value problems (2.1) - (2.4), which consists of two composite functions and our boundary functions
πk(t), k = 0, 1, 2, . . . , constructed in the vicinity of the point x = 0, have the property of "boundary
layer", that is, they have a power-type decay outside the boundary layer.

3 Main result

First, we prove an auxiliary lemma.

Lemma 3.1. Problems generated by equation (2.5) and one of the boundary conditions of the form

y0(1) = b, (3.1)

y′0(1) = b, (3.2)

y0(1) + h2y
′
0(1) = b, (3.3)
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have unique solutions representable in the form, respectively

y0,i(x) = e
∫ x
1

q(s)
sp(s)

ds

(
ci +

∫ x

1

f(τ)

τp(τ)
e−

∫ τ
1

q(s)
sp(s)

dsdτ

)
, i = 1, 2, 3; (3.4)

where c1 = b; c2 =
p(1)bf(1)

q(1)
; c3 =

p(1)bf(1)h2

p(1) + q(1)h2

.

Proof. First, we construct a general solution, for this we write equation (2.5) in the form:

y′0(x)− q(x)

xp(x)
y0(x) =

f(x)

xp(x)
⇒

(
y0(x)e−

∫ x
1

q(s)
sp(s)

ds
)′

=
f(x)

xp(x)
e−

∫ x
1

q(s)
sp(s)

ds.

After integration, we get the general solution:

y0(x) = cE(x) + E(x)

∫ x

1

f(τ)

τp(τ)
E−1(τ)dτ,

where E(x) = e
∫ x
1

q(s)
sp(s)

ds, c is an arbitrary constant.
Taking into account boundary condition (3.1), we have: c = b.
Calculating the derivative of the general solution and taking into account boundary condition

(3.2), we get:

c2 =
p(1)b− f(1)

q(1)
.

From the general solution and from the derivative of the general solution, for x = 1, we have:

y0(1) = c, y′0(1) =
f(1)

p(1)
+
q(1)

p(1)
y0(1) =

f(1)

p(1)
+
q(1)

p(1)
c.

Taking into account condition (3.3), we get the following:

y0(1) + h2y
′
0(1) = c+ h2

(
f(1)

p(1)
+
q(1)

p(1)
c

)
= b ⇒

c
(
p(1) + h2q(1)

)
= p(1)bf(1)h2 ⇒ c =

p(1)b− f(1)h2

p(1) + q(1)h2

.

�

Corollary 3.1. The (3.9) solution can be represented as:

y0(x) = c0x
2 lnx+Q(x),

where Q ∈ C∞[0, 1], and c0 is a constant.

Proof. By the conditions of the problem, the functions q(x) and p(x) can be represented as:

q(x) = 2 + q1x+ q2x
2 + . . .+ qnx

n + . . . ; p(x) = 1 + p1x+ p2x
2 + . . .+ pnx

n + . . . ,

therefore, the following relations are valid:∫ τ

1

q(s)

sp(s)
ds = 2 ln τ +Q0(τ),
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and

e
∫ τ
1

q(s)
sp(s)

ds = e2 ln τ+Q0(τ) = τ 2Q1(τ),

here Q0 ∈ C∞[0, 1], Q1(τ) = eQ0(τ) ∈ C∞[0, 1].
Hence we have

e
∫ x
1

q(s)
sp(s)

ds

∫ x

1

f(τ)

τp(τ)
e−

∫ τ
1

q(s)
sp(s)

dsdτ = x2Q1(x)

∫ x

1

1

τ 3
Q2(τ)dτ = c0x

2 lnx+Q3(x),

where Qi ∈ C∞[0, 1].
Considering these properties of integrals, solution (3.4) can be written as

y0(x) = c0x
2 lnx+Q(x).

�
It is easy to see that y0 ∈ C1[0, 1], but y0 /∈ C2[0, 1].
In what follows, the series used in the article are asymptotic expansions of relevant functions.
External asymptotic solutions of boundary value problems (2.1), (3.14); (2.1), (3.2) and (2.1),

(3.3) can be written as:

Vε(x) = f1x
2 lnx+ ε(lnx)ṽ1(x) + ε

( ε
x2

)
ṽ2(x) + . . .+ ε

( ε
x2

)n
ṽn+1(x) + . . . , x→ 0,

here ṽk ∈ C∞[0, 1], k ∈ N.
This means that the studied boundary value problems of Dirichlet, Neumann and Robin are

bisingular [6].
Formal asymptotic solutions of all boundary value problems of Dirichlet, Neumann and Robin

will be sought in the form:

yε(x) =
∞∑
k=0

εkwk(x) +
∞∑
k=0

µkπk(t), (3.5)

where µ =
√
ε, x = tµ.

We write di�erential equation (2.1) in the form

ε y′′ε (x) + xp(x)y′ε(x)− q(x)yε(x) = f(x)− gε(x) + gε(x), 0 ≤ x ≤ 1, (3.6)

where gε(x) =
∞∑
k=1

εkgk lnx, still unknown constants gk are elaborated below.

Substituting (3.5) into (3.6) we get:

lw0 ≡ xp(x)w′0(x)− q(x)w0(x) = f(x), (3.7)

lwk = gk lnx− w′′k−1(x), k ∈ N ; (3.8)

∞∑
k=0

µk
(
π′′k(t) + p(µt)tπ′k(t)− q(µt)πk(t)

)
= −

∞∑
k=1

µ2kgk ln(µt). (3.9)

We require the following conditions to be met, respectively:
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1) in the case of Dirichlet boundary condition (2.2):

w0(1) = b, wk(1) = 0, k ∈ N. (3.10)

π0(0) = a− w0(0); π2k−1(0) = 0; π2k(0) = −wk(0); πk−1(µ−1) = 0, k ∈ N ; (3.11)

2) in the case of Neumann boundary condition (2.3):

w′0(1) = b, w′k(1) = 0, k ∈ N. (3.12)

π′1(0) = a− w′0(0); π′2k−2(0) = 0; π′2k+1(0) = −w′k(0); π′k−1(µ−1) = 0, k ∈ N ; (3.13)

3) in the case of Robin boundary condition (2.4):

w0(1) + h2w
′
0(1) = b, wk(1) + h2w

′
k(1) = 0, k ∈ N. (3.14)

π′0(0) = 0, π′1(0) =
1

h1

(w0(0) + π0(0)− a)− w′0(0), π′2k+1(0) =
1

h1

(wk(0) + π2k(0))− w′k(0),

π′2k(0) =
1

h1

π2k−1(0), π′0(µ−1) = 0, h1 pi
′
k(µ
−1)− πk−1(µ−1) = 0, k ∈ N. (3.15)

Based on the Lemma 3.1, solutions of boundary value problems (3.7), (3.10); (3.7), (3.12); (3.7),
(3.14) exist and all of them can be represented as:

w0(x) = α0x
2 lnx+ w̃0(x),

where w̃0 ∈ C∞[0, 1].
Calculate w′′0(x):

w′0(x) = 2α0x lnx+ α0x+ w̃′(x), w′′0(x) = 2α0 lnx+ 3α0 + w̃′′(x).

Taking into account Lemma 3.1, solutions of boundary value problems (3.8), (3.10); (3.2), (3.17)
and (3.2), (3.24) can be written as:

w1(x) = ciE(x) + E(x)

∫ x

1

g1 ln τ − w′′0(τ)

τp(τ)
E−1(τ)dτ,

where E(x) = e
∫ x
1

q(s)
sp(s)

ds, c1 = 0; c2 = −f(1)

q(1)
; c3 = − f(1)h2

p(1) + h2q(1)
.

Let g1 = 2α0, then
w1(x) = α1x

2 lnx+ w̃1(x),

where w̃1 ∈ C∞[0, 1].
Similarly, for g2 = 2α1, we have

w2(x) = α2x
2 lnx+ w̃2(x),

where w̃2 ∈ C∞[0, 1].
Continuing this process, we sequentially determine wk(x), for gk(x) = 2αk−1 :

wk(x) = αkx
2 lnx+ w̃k(x),
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where w̃k ∈ C∞[0, 1].
Thus, we have de�ned all functions wk(x) and gk(x).
The function gε(x) can be represented as follows:

gε(x) =

(
∞∑
k=1

εkgk

)
lnx ⇒ gµ(µt) =

(
∞∑
k=1

εkgk

)
ln(µt).

We write di�erential equation (3.9) in the form

∞∑
k=0

µk
(
π′′k(t) + tπ′k(t)− 2πk(t) + µt2p̃(µt)π′k(t)− µtq̃(µt)πk(t)

)
= −

∞∑
k=1

µ2kgk ln(µt),

where p(x) = p(0) + xp̃(x), q(x) = q(0) + xq̃(x), p̃, q̃ ∈ C∞[0, 1].
Hence, we write down the following di�erential equations

Lπ0 ≡ π′′0(t) + tπ′0(t)− 2π0(t) = 0, (3.16)

Lπ1 = Φ0(µt, t), (3.17)

Lπ2 = Φ1(µt, t)− g1 ln(µt), (3.18)

Lπ2k+1 = Φ2k(µt, t), (3.19)

Lπ2k = Φ2k−1(µt, t)− gk ln(µt), (3.20)

where Φk(µt, t) = tq̃(µt)πk(t)− t2p̃(µt)π′k(t).

Lemma 3.2. Boundary value problems generated by the equation

Lz = r(t), 0 < t < µ−1, (3.21)

and one of the boundary conditions of form (3.22) or (3.23):

z(0) = z0, z(µ−1) = 0, (3.22)

z′(0) = z0, z′(µ−1) = 0, (3.23)

have unique solutions, representable in the form, respectively:

z(t) =
z2(t)

c

∫ t

0

et
2/2z1(s)r(s)ds+

z1(t)

c

∫ µ−1

t

et
2/2z2(s)r(s)ds+

z2(t)

(
z0 − 1

c

∫ µ−1

0

et
2/2z2(s)r(s)ds

)
,

z(t) =
z2(t)

c

∫ t

0

et
2/2z1(s)r(s)ds+

z1(t)

c

∫ µ−1

t

et
2/2z2(s)r(s)ds+

z2(t)

(
z0

z′2(0)
− 1

c

∫ µ−1

0

et
2/2z1(s)r(s)ds

)
.
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where r ∈ C[0, µ−1], z1(t) and z2(t) is the fundamental system of solutions of the homogeneous
equation Lz = 0 :

z1(t) = t2 + 1, z2(t) = −(t2 + 1)c

∫ µ−1

t

1

(s2 + 1)2
e−s

2/2ds,

here c = −

(∫ µ−1

0

1

(s2 + 1)2
e−s

2/2ds

)−1

, if µ→ 0 then c→ −
√

2π
4
.

Proof. The z2(t) function has the following properties:
a) z2(0) = 1, z′2(0) = c;
b) z2(t) ∼ t−3e−t

2/2, t→∞, µ→ 0;
c) z2 ∈ C∞[0, µ−1];
d) the function z2(t) decreases monotonically as t ∈ [0, µ−1], (z′2(t) < 0).
The proof of Lemma 3.2 is not di�cult. Using the functions z1(t), z2(t) and the Wronskian

W (z1, z2) = ce−t
2/2 one can construct a general solution to di�erential equation (3.21):

z(t) = z2(t)

∫
z1(t)r(t)

W
dt− z1(t)

∫
z2(t)r(t)

W
dt+ c1z1(t) + c2z2(t),

where c1 and c2 are arbitrary constants.
Then, we select c1 and c2 so that either (3.22) or (3.23) are satis�ed. �
Note that the homogeneous boundary value problem

Lπ0 ≡ π′′0(t) + tπ′0(t)− 2π0(t) = 0, 0 < t < µ−1, π′0(0) = 0, π′0(µ−1) = 0

has the only trivial solution π0(t) ≡ 0.
Using Lemma 3.2, we prove the existence and uniqueness of the solution of the equations (3.16)

- (3.20) with one of the boundary conditions (3.11), or (3.13), or (3.15).
Let us turn to the estimation of the remainder. Let

yε(x) =
n∑
k=0

εkwk(x) +
2n+1∑
k=0

µkπk(t) +Rn+1,ε(x), (3.24)

where Rn+1,ε(x) is the remainder of the expansion.
Substituting (3.24) into (2.1) - (2.4) we obtain the di�erential equation for the residual functions

εR′′n+1,ε(x) + xp(x)R′n+1,ε(x)− q(x)Rn+1,ε(x) = G(x, t, ε), 0 ≤ x ≤ 1 (3.25)

and the boundary conditions take the form:

Rn+1,ε(0) = 0, Rn+1,ε(1) = 0, (3.26)

R′n+1,ε(0) = 0, R′n+1,ε(1) = 0, (3.27)

Rn+1,ε(0)− h1R
′
n+1,ε(0) = εn+1/2π2n+1(0), Rn+1,ε(1) + h2R

′
n+1,ε(1) = 0, (3.28)

where G(x, t, ε) = µ2n+1
(
µtq̃(µt)π2n+1(t)− µt2p̃(µt)π′2n+1(t)

)
− εn+1w′′n(x).
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Considering the properties of the functions q̃(µt), π2n+1(t), p̃(µt), π′2n+1(t), w′′n(x) we obtain
asymptotic estimates:

G(x, t, ε) = O
(
εn+1/2

)
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1/

√
ε,

Rn+1,ε(0)− h1R
′
n+1,ε(0) = O(εn+1/2), ε→ 0.

For each problem (3.25), (3.26); (3.25), (3.27) and (3.25), (3.28) applying theorems in [6, p. 116],
respectively, we obtain an estimate for Rn+1,ε(x):

Rn+1,ε(x) = O(εn+1/2), ε→ 0, 0 ≤ x ≤ 1.

We have proved the following statement.

Theorem. Two-point boundary value problems (2.1), (2.2); (2.1), (2.3) and (2.1), (2.4) on the
segment 0 ≤ x ≤ 1 for ε→ 0 have the uniform asymptotic expansion

yε(x) =
n∑
k=0

εkwk(x) +
2n+1∑
k=0

√
ε
k
πk(xµ

−1) +O
(
εn+1/2

)
,

where the functions wk(x) and πk(xµ
−1) are de�ned above.

Conclusion. Uniform asymptotic expansions of solutions of the two point boundary value prob-
lems of Dirichlet, Neumann and Robin for a linear inhomogeneous ordinary di�erential equation of
the second order with a small parameter at the highest derivative are constructed on the segment
[0, 1]. A speci�c feature of the considered two-point boundary value problems is that the correspond-
ing unperturbed boundary value problems for an ordinary di�erential equation of the �rst order has
a regular singular point at the left end of the segment, that is, for x = 0. Asymptotic solutions
of boundary value problems are constructed by the modi�ed Vishik-Lyusternik-Vasilyeva method of
boundary functions. Asymptotic expansions of solutions of two-point boundary value problems are
substantiated. Note that earlier in the [6], a similar equation with Dirichlet boundary conditions was
investigated by the matching method. In [3], the Dirichlet problem for equation (2.1) is investigated
by the method of structural matching. In papers, [2] and [3], the asymptotic solution consists of four
components and the construction, in our opinion, is too complicated, if we compare the algorithm
for constructing the asymptotic solution with ours, our algorithm is simpler. Also in paper [2] the
Dirichlet problem for di�erential equation (2.1) was investigated by the generalized method of bound-
ary functions. However, the functions πk(t), k = 0, 1, 2, . . . constructed in the neighborhood of the
regular singular point x = 0, are bounded, but do not possess the "layerwise" property, they do not
disappear outside the boundary layer, which is essential in the theory of the boundary layer. We pro-
pose a simpler algorithm for constructing the asymptotic solution of boundary value problems (2.1)
- (2.4), which consists of two composite functions and our boundary functions πk(t), k = 0, 1, 2, . . .
constructed in the vicinity of x = 0, have the property of "boundary layer", that is, they have a
power-type decay outside the boundary layer.
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